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Abstract

There has been a recent surge of powerful tools to show rapid mixing of Markov chains, via
functional inequalities such as Poincaré inequalities. In many situations, Markov chains fail to
mix rapidly from a worst-case initialization, yet are expected to approximately sample from
a random initialization. For example, this occurs if the target distribution has metastable states,
small clusters accounting for a vanishing fraction of the mass that are essentially disconnected
from the bulk of the measure. Under such conditions, a Poincaré inequality cannot hold,
necessitating new tools to prove sampling guarantees.

We develop a framework to analyze simulated annealing, based on establishing so-called
weak Poincaré inequalities. These inequalities imply mixing from a suitably warm start, and simu-
lated annealing provides a way to chain such warm starts together into a sampling algorithm.
We further identify a local-to-global principle to prove weak Poincaré inequalities, mirroring
the spectral independence and localization schemes frameworks for analyzing mixing times of
Markov chains.

As our main application, we prove that simulated annealing samples from the Gibbs measure
of a spherical spin glass for inverse temperatures up to a natural threshold, matching recent
algorithms based on algorithmic stochastic localization. This provides the first Markov chain
sampling guarantee that holds beyond the uniqueness threshold for spherical spin glasses, where
mixing from a worst-case initialization is provably slow due to the presence of metastable states.
As an ingredient in our proof, we prove bounds on the operator norm of the covariance matrix
of spherical spin glasses in the full replica-symmetric regime.

Additionally, we resolve a question related to sampling using data-based initializations.

*MIT. Email: bmhuang@mit.edu. Supported by a Google PhD Fellowship, NSF-Simons collaboration grant DMS-
2031883, NSF CAREER grant DMS-1940092, and the Solomon Buchsbaum Research Fund at MIT.

†MIT. Email: sidm@mit.edu. Supported by NSF Award DMS-2022448.
‡MIT. Email: amit r@mit.edu. Supported by CSAIL.
§UC Berkeley. Email: david wu@berkeley.edu. Supported by an OpenAI Superalignment grant.



Contents

1 Introduction 1
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1 Introduction

A common task of interest in computer science, probability, and physics is to efficiently sample
from Gibbs distributions. For a Hamiltonian energy function H : Ω → R over state space Ω ⊆ RN ,
the associated Gibbs distribution µH is defined by dµH(x) ∝ exp(H(x))dx.

The class of Markov chain Monte Carlo (MCMC) algorithms is arguably the most widely used
tool for sampling from Gibbs distributions. In this paradigm, one sets up a Markov chain PH

whose stationary distribution is µH, and outputs the final state of a poly(N)-time random walk
according to PH. Common choices include the Glauber dynamics, for discrete state spaces such as
Ω = {±1}N , and the Langevin diffusion, for continuous state spaces such as Ω = RN or

√
N · SN−1.

To prove that such an algorithm indeed correctly samples from µH, one bounds the mixing
time of the Markov chain. A common route to prove a bound on the mixing time is to establish
functional inequalities, such as Poincaré inequalities. There are now powerful frameworks for
proving such functional inequalities, such as spectral independence [ALOG21] and localization schemes
[CE22]. The development of these frameworks has led to a flurry of activity in analyzing mixing
times of Markov chains, including the resolution of several long-standing open problems in the
algorithmic theory of counting and sampling [ALGV24, ALOG21, AJK+22, EKZ22, CE22].

The implications of these inequalities are quite strong. In particular, they imply that for any
initial distribution ν, for an appropriate divergence function, a single step of the Markov chain
shrinks the distance to the stationary distribution by a significant multiplicative factor:

Divergence(PHν∥µH) ⩽
(

1 − 1
poly(N)

)
Divergence(PHν∥µH) .

The presence of such a functional inequality typically implies that a Markov chain mixes rapidly
from a worst-case initialization.

Sampling from random initializations. Many natural Markov chains are expected to produce
approximate samples from the Gibbs measure when started at a random initialization, but fail to mix
rapidly from a worst-case initialization. Often, this is because the Gibbs measure contains patho-
logical clusters (termed metastable states in the physics literature) that are essentially disconnected
from most of the measure, and account for a vanishing fraction of the total mass. A Markov chain
initialized in such a cluster will remain trapped inside it and fail to mix, and therefore methods
that show mixing from worst-case initializations cannot give effective guarantees in such settings.

However, one may still hope to show that from a random initialization, the Markov chain
samples from the non-pathological part of the Gibbs measure, which is statistically indistinguishable
from the true Gibbs measure. In our work, we prove that under suitable conditions, the simulated
annealing algorithm samples from a distribution close to the Gibbs measure.

Simulated annealing. In the simulated annealing algorithm, one defines a “schedule” of inverse
temperatures, i.e. for i = 0, . . . , T, let βi := i/T. The algorithm initializes at a sample from the
uniform distribution µβ0 H. Then, for i = 1, . . . , T, the i-th stage of the algorithm runs the Markov
chain Pβi H corresponding to µβi H for poly(N) time, initialized at the output of the previous stage.

The underlying idea of this algorithm is that, for T sufficiently large, the Gibbs distribution
µβi−1 H is a “warm start” for µβi H, i.e. an initialization with suitably bounded likelihood ratio with
µβi H. So, if one could show that each of the Markov chains Pβi H (approximately) mixes rapidly
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from a warm start, one may inductively argue that the output of the i-th stage of the algorithm is
an approximate sample from µβi H . In other words, simulated annealing chains a sequence of warm
starts together into a sampling algorithm.

This algorithmic idea is widely used empirically, and has also been employed to obtain algo-
rithms for approximating the volumes of convex bodies [DFK91, DF91, LS90, KLS97], approximat-
ing the number of perfect matchings in a bipartite graph [JSV04], and sampling from the random
field Ising model at sufficiently high temperatures [AEGP23], among others. However, we lack
a general theory for why simulated annealing achieves provable guarantees beyond the settings
of sampling from log-concave distributions and convex bodies. Indeed, in contrast to the general
recipes available to prove mixing from worst-case initialization, proofs of rapid mixing from warm
starts often employ ad-hoc arguments.

One of the main contributions of this work is a framework for proving mixing from warm
starts, which combined with the above discussion provides general sufficient conditions under
which simulated annealing samples from the Gibbs measure. We achieve this by generalizing the
frameworks of spectral independence and localization schemes, previously employed to prove
mixing from worst-case initialization, to show mixing from warm starts (see Section 6 for details).
As we discuss just below, our framework gives sampling guarantees for simulated annealing in
regimes where mixing from worst-case initializations is provably false.

Main application: spherical spin glasses. In a spherical mixed p-spin glass, H :
√

N · SN−1 → R is
a random Hamiltonian parameterized by coefficients β, γ2, . . . , γp∗ ⩾ 0 where:

H(σ) = β ∑
p⩾2

γp

N(p−1)/2 ∑
i1,...,ip

gi1,...,ip σi1 · · · σip , (1)

for i.i.d. gi1,...,ip ∼ N (0, 1). The Gibbs distribution µH is very well-studied in probability, statistical
physics, and average-case algorithm design, as it simultaneously exhibits rich behavior and is
amenable to analytic tools. Notably, this model undergoes numerous sharp phase transitions as
one increases β. For small β, the model satisfies a Poincaré inequality [GJ19]. Beyond a uniqueness
transition βuniq, small isolated clusters in µH known as metastable states start to appear [AJ24]. In
particular, the natural Markov chain Langevin diffusion initialized from such states mixes slowly,
thereby precluding a Poincaré inequality. However, these states account for a vanishing fraction
of the measure under µH, and the Langevin diffusion with a random initialization is expected to
still mix rapidly over a 1 − oN(1) fraction of µH, thereby producing a sample with vanishing total
variation distance from µH.

The threshold for efficient algorithmic sampling is believed to occur at the shattering transition
βshatter — beyond this transition, the Gibbs measure shatters into an exponential number of poorly-
connected clusters with exponentially small mass, and mixing is provably slow [CHS93, AMS23b,
GJK23]. It is expected that all efficient algorithms fail to sample from the Gibbs measure above
βshatter, and recently [AMS23b] gave rigorous evidence for this picture by showing that all stable
algorithms fail.

We use our framework to prove that annealed Langevin diffusion, where one begins by running
Langevin diffusion for β0 = 0, and slowly increases the inverse temperature to the target β, samples
from the spherical mixed p-spin glass. This leads to the first rigorous guarantee in this problem for
a Markov chain beyond the uniqueness threshold.
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Theorem 1.1 (Informal). For any choice of γ2, . . . , γp∗ , there is a threshold βSL ⩽ βshatter such that for
any β < βSL, with probability at least 1 − e−Ω(N1/5) over the randomness of H, annealed Langevin diffusion
run for poly(N) time samples from a distribution whose total variation distance to µH is at most e−Ω(N1/5).

The thresholds βSL and βshatter are formally defined as the supremal β such that the inequalities
(SL) and (Non-shattering) below hold. The recent work [HMP24] produces a different sampling
algorithm based on algorithmic stochastic localization, which succeeds to the same threshold βSL;
see below for further discussion. This threshold is a fundamental barrier for stochastic localization
based approaches, and we explain its physical significance in Remark 7.4.

Remark 1.2. In many models, we have βuniq < βSL < βshatter, and βSL is close to βshatter. For
example, for the pure p-spin models (where γp = 1 and all the other γi are equal to 0), βuniq ≍
(log p)−1/2, while βSL, βshatter ≍ 1 and βSL/βshatter is bounded from below by the universal constant√

e/2. See [HMP24, Remark 1.1, Eq. 1.8].

1.1 Weak Poincaré inequalities and localization schemes

The starting point of our work is a relaxation of Poincaré inequalities, known as weak Poincaré
inequalities, which can be leveraged to prove mixing from warm starts. To simplify the discussion,
we restrict here to the setting of discrete Markov chains. Our main application is to a continuous
Markov chain, namely the Langevin diffusion for a spherical spin glass, and we outline the
differences in Remark 1.7 below.

Let PH be a time-reversible Markov chain with stationary distribution µH. For any functions
f , g : Ω → R, define the Dirichlet form as E( f , g) := Ex∼µH Ey∼PH x( f (x)− f (y))(g(x)− g(y)). We
say PH satisfies a C-Poincaré inequality if for any function f : Ω → R:

E( f , f ) ⩾ C · Var[ f ] ,

for C ⩾ 1/poly(N). A Poincaré inequality has a classic implication for rapid mixing. In particular,
for νt as the distribution obtained by running PH for continuous time t starting at a distribution ν0,
we have:

χ2(νt∥µH) ⩽ exp(−Ct) · χ2(ν0∥µH) .

We say PH satisfies a (C, ε)-weak Poincaré inequality if for any function f : Ω → R:

E( f , f ) ⩾ C · Var[ f ]− ε · ∥ f − E f ∥ 2
∞

One can derive the following mixing guarantee from a weak Poincaré inequality; see, e.g., [RW01,
Theorem 2.1].

χ2(νt∥µH) ⩽ exp(−Ct) · χ2(ν0∥µH) + ε ·
∥∥∥∥ dν0

dµH
− 1
∥∥∥∥2

∞
. (2)

In particular, if ν0 is a warm start for µH in the sense that
∥∥∥ dν0

dµH
− 1
∥∥∥

∞
is suitably small, this implies

that the Markov chain’s output distribution νt approximates µH.
Since the target measure in one stage of simulated annealing is a warm start for that of the

next stage, such a guarantee allows one to inductively argue that simulated annealing succeeds at
sampling. We summarize this implication below.
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Theorem 1.3 (Informal, see Theorem 4.13). If PβH satisfies a weak Poincaré inequality with suitable
parameters for every β ∈ [0, 1], then simulated annealing succeeds at sampling from µH.

Localization schemes for weak Poincaré inequalities. We restrict to the following simple setting:
µH is a distribution on {±1}N . Let PH be the Glauber dynamics Markov chain where in a single step
from x, we pick a uniformly random coordinate i ∼ [N], and toggle xi with probability:

µH(x⊕i)

µH(x) + µH(x⊕i)
.

A special case of the localization schemes framework is the spectral independence framework of
Anari, Liu, and Oveis Gharan [ALOG21].

Theorem 1.4 ([AL20, ALOG21]). The following local-to-global principle reduces proving a Poincaré
inequality to establishing bounds on the spectrum of influence matrices. Suppose for every S ⊆ [N], and
every pinning xS of coordinates in S, the spectral norm of its influence matrix ΨS,xS is at most α, then
the Glauber dynamics chain satisfies a n−O(α)-Poincaré inequality. Here, the influence matrix ΨS,xS is an
(n − |S|)× (n − |S|) matrix indexed by vertices v /∈ S, where

ΨS,xS [a, b] := Pr[xa = +1|xb = +1]− Pr[xa = −1|xb = +1] .

While the above theorem has been influential and useful in proving mixing time bounds for a
variety of Markov chains relevant to sampling combinatorial structures, the “for every” requirement
in the above theorem is quite punishing in average-case settings. For example, in the presence of
metastable states, PH does not satisfy a Poincaré inequality, but may nevertheless satisfy a weak
Poincaré inequality. In such cases, there are choices of S and xS for which ΨS,xS has large spectral
norm, and the above statement has no implications for the mixing time of PH.

We give a general local-to-global principle to prove weak Poincaré inequalities. A one-line
summary of this local-to-global principle is:

Bounded influence over all pinnings implies a Poincaré inequality.

An analogous summary of the local-to-global principle in the present paper is:

Bounded influencce over typical pinnings implies a weak Poincaré inequality.

To give a more concrete instantiation of our message, our result implies a “softer” version of
Theorem 1.4, tolerant to some “bad” pinnings, which we state below.

Theorem 1.5 (Special case of Lemma 6.8 and Remark 6.9). Let i1, . . . , iN be a random permutation of
[N], let St := {i1, . . . , it}, and let x ∼ µH. Suppose with probability 1 − ε over the randomness of x and
the permutation i1, . . . , iN , we have that for every t ∈ [N], the influence matrix ΨSt,xSt

has spectral norm
bounded by α. Then, PH satisfies a (n−O(α), O(ε))-weak Poincaré inequality.

Remark 1.6. The reader should think of the spectral norm of ΨSt,xSt
as quantifying how much

variance of the distribution µH |xSt is “explained” by revealing xit+1 .

4



Remark 1.7. Theorem 1.5 holds at a more general level, for a large family of localization schemes;
see [CE22] for examples of localization schemes and further discussion. The localization scheme at
play in the above local-to-global principle is process of revealing coordinates of a Gibbs sample x in
random order.

In our main application of sampling from a spherical spin glass using simulated annealing
of Langevin diffusion, we consider a different localization scheme, stochastic localization, where
the revealed information at time t is yt = tx + Bt where (Bt)t⩾0 is a standard Brownian motion.
Analyzing this localization scheme requires studying exponential tilts rather than pinnings of µH.
The analogous local-to-global principle in this setting is:

Bounded covariance over typical exponential tilts implies a weak Poincaré inequality.

We defer a technical discussion to Section 2, and refer to Lemma 6.8 and Remark 6.9 for a formal
statement.

1.2 Sampling from spherical spin glasses

We now state our main results for sampling from spherical spin glasses. We will encode the
coefficients γ2, . . . , γp∗ in (1) into the mixture function ξ(q) = ∑

p∗
p=2 γ2

pqp. Note that the parameter
β in (1) can of course be absorbed into the γp, so we can state thresholds directly in terms of the
function ξ. Physics heuristics [CHS93] suggest that Glauber dynamics and Langevin diffusion, with
random initialization, sample from µH with vanishing total variation error under the following
condition. Note that this and the below conditions take the form of an upper bound on ξ or its
derivatives, and therefore demarcate a region of sufficiently high temperature.

ξ ′(q) <
q

1 − q
for all q ∈ (0, 1). (Non-shattering)

Recent work by one of the authors, Montanari, and Pham [HMP24] gives an algorithm based on
simulating Eldan’s stochastic localization process [Eld13, Eld20] (see below), which samples from
µH with vanishing total variation error under the following condition.

ξ ′′(q) <
1

(1 − q)2 for all q ∈ [0, 1). (SL)

Note that this condition implies (Non-shattering), which can be seen by integrating the inequality.
[HMP24] also shows a matching hardness result, that for any strictly replica symmetric model (see
(Strict RS) below) not satisfying (SL), a generalized family of stochastic localization algorithms fails
to sample from µH.

Our main result is that simulated annealing samples from µH in the same regime.

Theorem 1.8 (See Theorem 7.2). Under (SL), with probability at least 1 − e−Ω(N1/5) over the randomness
of H, annealed Langevin dynamics produces a sample whose total variation distance to µH is at most
e−Ω(N1/5).

As alluded to in the above discussion, the main input to our framework is a high-probability
covariance bound on the random exponential tilts of the Gibbs measure encountered along the
stochastic localization process. Combined with our weak Poincaré inequality framework, this
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implies that simulated annealing samples from the Gibbs measure. On the way to proving these
covariance bounds, we establish a high-probability covariance bound on all spherical spin glasses
in the (strictly) replica symmetric phase, a high-temperature phase where the model enjoys a certain
notion of correlation decay.

ξ ′′(0) < 1 and ξ(q) + q + log(1 − q) < 0 for all q ∈ (0, 1). (Strict RS)

Theorem 1.9 (Informal, see Theorem 7.29). Under (Strict RS), with probability 1 − e−Ω(N1/5) over the
randomness of H, ∥Cov(µH)∥op = O(1).

This is the first covariance bound to cover the entire replica symmetric phase with higher order
interactions, and we believe it is interesting in its own right. This result is sharp: in the complement
of the replica symmetric regime, arguing as in [AG24, Proposition 4.2] shows that E∥Cov(µH)∥op is
diverging, of order Ω(

√
N).

The relation between (SL) and (Strict RS) is as follows. First, (Strict RS) follows from (SL) by
integrating twice. Second, (SL) is equivalent to the condition that random exponential tilts of µH

of any magnitude are typically replica symmetric. This is needed for the algorithmic stochastic
localization approach of [HMP24], and arises in the current work (where stochastic localization
appears as an analysis tool, rather than as an algorithm) for a similar reason, see Remark 7.4.

The connection from Theorem 1.9 to high-probability covariance bounds on the tilted measures
encountered along the localization process relies on a reduction developed in [HMP24]. This
reduction implies that typically, the vast majority of the mass of these tilted measures live near
a certain codimension-2 band passing through a TAP fixed point, which behaves like a spin glass
in two fewer dimensions. The proof of Theorem 1.9 also builds on tools developed in [HMP24],
and by one of the authors and Sellke in [HS23], which together provide high-precision control of
partition functions in the replica symmetric regime.

On the other hand, our approach also leads to several improvements over earlier results. First,
we obtain a sampler with total variation error e−Ω(N1/5) with probability 1 − e−Ω(N1/5), whereas
[HMP24] obtains total variation error N−ε with probability 1 − N−ε, for small constant ε. Our total
variation error is close to the best possible, as beyond the uniqueness threshold, at least a e−O(N)

fraction of µH is typically trapped in metastable states [AJ24], which are hard to reach. Moreover,
there is no longer a need to encode a mean estimator for the stochastic localization process (see
below) directly in the algorithm; running a natural Markov chain is sufficient.

More conceptually, our work gives the first analysis of a Markov chain for this problem that
“sees” the benignness of a random initialization and overcomes the uniqueness threshold.

1.3 Weak Poincaré inequalities beyond annealing

The discussion thus far has been focused on proving mixing time bounds for Markov chains
initialized at warm starts. In fact, our framework extends beyond this and can be used to prove
rapid mixing of a Markov chain initialized at a distribution that “sees” the different components of
the target distribution. For instance, consider the simple scenario where the target distribution π is
a mixture of two disconnected component distributions, each of which satisfies a (true) Poincaré
inequality. The disconnectedness means that the full distribution π does not satisfy a true Poincaré
inequality. However, if we initialize at a distribution that splits its mass equally between the two
components, we would expect a Markov chain to rapidly mix to the target distribution.
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How does one convert this belief to a (generalizable) proof? The key is that while the distribution
may not satisfy a Poincaré inequality for all functions, a variant of such an inequality does hold for
functions encountered along the trajectory of the Markov chain. More concretely, we may prove
the following theorem.

Theorem 1.10 (Informal, see Theorem 4.6). Consider the trajectory (νt)t⩾0 of a Markov chain with
stationary distribution π, initialized at a distribution ν0. Suppose that for all s ⩽ T,

E
(

dνs

dπ
,

dνs

dπ

)
⩾ ρPI

(
Varπ

[
dνs

dπ

]
− δ

)
.

Then,
χ2(νT∥π) ⩽ e−2ρPITχ2(ν0∥π) + δ.

We remark that our earlier equation (2) is a near-immediate consequence of the above. Returning
to the above example with two disconnected components, if νs placed exactly half its mass on each
of the two components, the error δ can be taken to be 0.

For our first application in Section 5, we use this picture of how the initialization can capture
“symmetries” in the distribution.

Sampling from mixtures of log-concave distributions with advice. An example of a distribution
where we can take advantage of “symmetries” is the following. Suppose we have a distribution π

which is a mixture of K distributions

π =
K

∑
i=1

piπi,

each of which is well-connected (e.g., satisfies a Poincaré inequality). We do not expect a Markov
chain to rapidly mix to π from a worst-case initialization. Does the scenario change if we initialize
more cleverly? To be concrete, suppose we are given m samples x1, . . . , xm from π, and initialize
our Markov chain at the empirical distribution ∑m

i=1 δxi . If the component measures (πi) are “far
apart” and do not interact with each other, we would expect the Markov chain to rapidly mix from
this initialization if the fraction of points in each cluster is (approximately) equal to the correct
fraction pi. On the other hand, if the component measures were very close together, we would
expect their mixture to also satisfy a Poincaré inequality.

However, it is unclear how to translate this intuition to a proof. In previous work [KV23],
sampling guarantees are provided for this algorithm, but the running time has a doubly exponential
dependence on the number of components K. Our second illustration of weak Poincaré inequalities
provides high-probability sampling guarantees for this problem, by running Langevin diffusion for
time that is polynomial in all parameters involved. We refer the reader to Section 5 for the details
of the theorem statement and its (self-contained) proof.

This problem is studied extensively in an independent work of Koehler, Lee, and Vuong [KLV24].
Motivated by the success of score matching methods in modern machine learning, they prove that
Langevin dynamics and Glauber dynamics converge to the stationary distribution when initialized
from the above empirical distribution under similar conditions to our setting, even if the Markov
chain updates come from a slightly perturbed distribution (i.e. if they were learned by a score
matching algorithm). They also use their techniques to give an efficient algorithm for learning
approximately low-rank Ising models.
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1.4 Related work

Markov chain mixing and localization schemes. The first use of the local-to-global phenomenon
in mixing was in the work of [ALGV24] on establishing rapid mixing of the “basis exchange” walk
on bases of a matroid, which used the local-to-global theorem for simplicial complexes from [KO20].
Their approach was later formalized into the framework of spectral independence [ALOG21], which
was widely successful in resolving numerous problems in algorithmic sampling and counting; see
[Liu23] for a comprehensive literature survey.

In the world of sampling from continuous distributions, most recent progress on the KLS
conjecture on the Poincaré constant of isotropic log-concave distributions (see [LV24] and the recent
survey [KL24]) has employed Eldan’s stochastic localization [Eld13]. Later, stochastic localization
was used in the work of Eldan, Koehler, and Zeitouni [EKZ22] to analyze the Poincaré constant for
Glauber dynamics on Ising models. The seemingly unrelated techniques of spectral independence
and stochastic localization approaches to analyzing mixing times were unified under the framework
of localization schemes [CE22], which, as an application, also simplified the proof of [EKZ22].

Weak Poincaré inequalities. The study of weak Poincaré inequalities was initiated in the work
of Aida [Aid98] and Mathieu [Mat06] in the context of proving other functional inequalities. The
work of Röckner and Wang [RW01] observed the connection between a Markov chain satisfying a
weak Poincaré inequality, and rapid mixing from “sufficiently warm starts”. We refer the reader
to the monograph of Wang [Wan06, Chapter 4] for a comprehensive treatment of weak Poincaré
inequalities and their implications to mixing and concentration.

Weak Poincaré inequalities are also related to the notion of s-conductance, a weakened version of
conductance introduced in [LS93] which has been used frequently in the literature on sampling from
convex bodies (see [Che23, Section 7.4.2] for a textbook treatment). This connection is explained
in [GMT06]. We also refer the reader to [CGG07], which defines a notion of weak log-Sobolev
inequality and uses it to derive a rapid mixing result.

The work [AEGP23] gives a sampling algorithm for the ferromagnetic random-field Ising model
on a finite domain D ⊆ Zd, which follows an approach of chaining warm starts similar to the
present work, inspired by convex body sampling literature [LS93]. [AEGP23] shows that in a
certain parameter regime, the Glauber dynamics for this model satisfy a weak Poincaré inequality.
They then construct an increasing sequence of sub-domains D0 ⊂ D1 ⊂ · · · ⊂ DT = D and show
that a sample from the model on Di can be converted to a warm start for the model on Di+1. Since
the weak Poincaré inequality implies mixing from a warm start, this yields a sampling algorithm
based on running the Glauber dynamics on this increasing sequence of models.

The work [AJK+21] introduces a related notion of restricted modified log-Sobolev inequality,
which implies entropy contraction (without an additive error, in contrast to a weak Poincaré
inequality) for all warm starts. This is used to derive optimal mixing times for several Markov
chains.

Sampling from random initializations. The separation between worst-case mixing times and mix-
ing from a random initialization has been studied in a variety of other settings. [CDL+12, BGZ24]
characterize which product measure initializations enjoy rapid mixing in a temperature range
where worst-case mixing is exponential for the Curie-Weiss Potts model. Notably, as discussed in
[BGZ24, Section 1.3], their analysis also characterizes mixing from initializations constructed by
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simulated annealing. [LS16, LS17] show that a uniform initialization halves the mixing time for
Glauber dynamics for the ferromagnetic Ising model on bounded degree graphs, such as the 1D
lattice. [GS22] introduces the notion of weak spatial mixing in a phase, and proves that Glauber
dynamics for the ferromagnetic Ising model on the 2D lattice has rapid mixing when initialized
uniformly at ±⃗1. [GS24] uses the same notion to study mixing from a similar random initialization
for a certain natural Markov chain for the random cluster model. [BNN24] show rapid mixing
for Glauber dynamics for the exponential random graph model when initialized from a carefully
chosen Erdős–Rényi random graph.

Sampling from spherical spin glasses and algorithmic stochastic localization. There is a long
history of work studying Markov chain dynamics on spin glasses. An important line of work
[CHS93, CK93, BCKM98, BADG06, BAGJ20, CCM21, Sel24b] studies the Langevin dynamics for
spherical spin glasses on an N-independent time scale. While the Langevin dynamics do not mix
on this time scale, these works capture important statistics of the trajectory such as the energy
attained by the Langevin dynamics after a given time, and uncover deep phenomena such as aging.

Rapid mixing guarantees at sufficiently high temperature were obtained in [GJ19] for the
Langevin dynamics for spherical spin glasses, and in [BB19, EKZ22, AJK+22, ABXY24, AJK+24,
AKV24] for the Glauber dynamics for the Sherrington–Kirkpatrick model [SK75] and Ising spin
glasses. These approaches show mixing from a worst-case initialization via a functional inequality.

Recently, [AMS22, AMS23a] introduced a new sampling algorithm based on simulating Eldan’s
stochastic localization scheme [Eld13, Eld20]. This approach has since been used in applications
such as Bayesian posterior sampling [MW23, MW24], and is closely related to the denoising diffu-
sions method in machine learning [SDWMG15, HJA20, SSDK+21] (see [Mon23] for details). The
resulting algorithm samples in a wider range of temperatures, though with the weaker guarantee
of vanishing Wasserstein rather than total variation error. The recent work [HMP24] improved this
guarantee to total variation, and the resulting algorithm succeeds to the same threshold (SL) as in
the present work.

Within the algorithmic stochastic localization approach, the main task is to estimate the means
of a sequence of exponential tilts of the Gibbs measure, which appear as the drift process of a
stochastic differential equation parametrizing the localization process. In [AMS22], this is achieved
with an estimator based on approximate message passing (AMP), which is accurate to leading
order. [HMP24] develops an improved estimator with a suitable correction term, which improves
the algorithm’s guarantee from Wasserstein to total variation error.

Covariance bounds for spin glasses. There has been a great deal of recent work on covariance
bounds for spin glasses [BXY23, AG24, BSXY24], in part due to the connection between covariance
bounds and functional inequalities developed in the localization schemes literature. In partic-
ular, [AG24, BSXY24] address the case of the Sherrington–Kirkpatrick (SK) model, and [BXY23]
addresses the SK model with external field.

1.5 Open problems

We conclude with several open problems.

Non-sampling guarantees for simulated annealing. While we initiate a study of simulated
annealing to attain sampling guarantees, one could ask how to analyze simulated annealing beyond

9



sampling. In recent work [LMR+24], three of the authors, Liu, and Raghavendra introduce the
framework of locally stationary distributions to analyze slow-mixing Markov chains, and leverage it
to obtain recovery guarantees for the spiked Wigner and stochastic block model inference problems.
We start by reiterating [LMR+24, Problems 1.20 and 1.21] — is simulated annealing computationally
optimal for random CSPs with planted solutions?

Further, consider the problem of optimizing the Hamiltonian (1) of the mixed p-spin model.
Historically, simulated annealing was one of the earliest algorithms developed for this problem
[CHKW23]. The works [Mon21, Sub21, AMS21, Sel24a] develop algorithms that are optimal among
suitably Lipschitz algorithms [HS22] and conjecturally among all efficient algorithms. The limiting
energy obtained by natural Markov chain dynamics is an long-standing question in its own right
[CK93], which was solved for pure models in [Sel24b] but is otherwise open. We ask:

Problem 1.11. What energy does simulated annealing obtain when run on the Hamiltonian (1)?

We refer the reader to [MRT04, FFRT21] and references therein for relevant discussion. We also
ask the following question, which seems instrumental to making progress towards the above.

Problem 1.12. How does a non-worst-case initialization (such as one constructed by simulated
annealing) affect the locally stationary distribution that is reached by a Markov chain?

Along similar lines, we have the following concrete question about understanding Markov
chains from non-worst-case initializations.

Worst-case combinatorial optimization via simulated annealing. The paradigm of solving a
semidefinite program and rounding its solution has been extremely successful at achieving optimal
approximation guarantees for a wide variety of combinatorial optimization problems, especially
constraint satisfaction problems [KKMO07, Rag08].

However, on large families of instances (sparse ones for instance), the solutions produced by
these SDPs can be refined locally to improve the approximation ratio, but these improvements
do not match the corresponding hardness thresholds. For example, for the problem of Max Cut,
the classical SDP algorithm [GW95] gives an αGW-approximation for αGW ≈ 0.878, and a local
refinement [HK22] produces an αGW + Ω

( 1
d2

)
-approximation. On the other hand, it is (UG-)hard

[Tre01] to approximate the max-cut better than αGW + O
(

1√
d

)
.

Problem 1.13. Does a Markov chain initialized at the SDP solution attain a αGW + Ω
(

1√
d

)
-

approximation to the max-cut in a bounded degree graph?

Sampling from spin glasses up to the shattering threshold. It is conjectured that the Langevin
diffusion with uniform random initialization samples from spherical p-spin models for inverse
temperatures up to the shattering threshold (Non-shattering) [CHS93, CK93]. Similarly, this is
conjectured for the Glauber dynamics Markov chain for models over the hypercube {±1}N instead
of the sphere SN , for an analogous shattering threshold. As a start, can we show such guarantees for
simulated annealing (as opposed to a fixed-temperature Markov chain from uniform initialization)?

Problem 1.14. Does simulated annealing sample from p-spin models up to the shattering threshold?
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The failure of algorithmic stochastic localization beyond the (SL) condition [HMP24, Section 10]
suggests that ideas beyond our proof strategy are required to prove the above.

Simulated annealing in more general models. For sampling from the spherical p-spin model,
our results show that simulated annealing succeeds in the regime (SL) where algorithmic stochastic
localization succeeds. At the level of proofs, these methods are also closely related, as both revolve
around suitable control of the localization process: in the algorithmic stochastic localization ap-
proach, this is used to construct a mean estimator for the localized measures, and in our approach it
is used to bound the localized measures’ covariances. These tasks are closely linked; see Remark 7.4.

One question is whether simulated annealing succeeds in more general models. In particular,
samplers based on algorithmic stochastic localization have been developed for the Sherrington-
Kirkpatrick model in the replica symmetric regime [AMS22, Cel24], p-spin models over the hyper-
cube [AMS23a], and posteriors of spiked matrix models [MW23]. These samplers are proven to
have vanishing Wasserstein error, and sampling with vanishing total variation error remains an
open problem in these models. It would be interesting to show that simulated annealing achieves
this. More speculatively, we may ask if there is a general reduction from a sampling guarantee for
algorithmic stochastic localization to one for simulated annealing.

#BIS. A major open problem in the field of approximate counting is settling the complexity of
#BIS: where the algorithmic task is to approximate the number of independent sets in a bipartite
graph. So far, algorithmic progress for this problem has been limited to restricted classes of graphs,
such as lattices & tori [HPR19], and expander graphs [JKP20]. Numerous interesting approximate
counting problems have been shown to be #BIS-hard [CGM12, GJ12, CGG+16, GSVY16]. While
vanilla Glauber dynamics fails at the corresponding sampling task, it is plausible that a variant of
simulated annealing succeeds.

Problem 1.15. Does (a simple variant of) simulated annealing succeed at sampling a uniformly
random independent set in a bipartite graph?

Structural guarantees from weak Poincaré inequalities. According to physics heuristics, the
Gibbs measure of a spherical mixed p-spin glass between βuniq and βshatter consists of one main
cluster accounting for nearly all the mass, and metastable states with exponentially small mass that
are poorly connected to the main cluster and each other. We do not prove this picture, but the weak
Poincaré inequality we obtain (up to βSL) is sufficient to imply a sampling guarantee for simulated
annealing. One open direction is to show that the above picture holds, and that the main cluster
satisfies a genuine Poincaré inequality. More generally, one may ask:

Problem 1.16. If a distribution satisfies a weak Poincaré inequality, is it TV-close to a distribution
satisfying a true Poincaré inequality?

We note that Lemmas 4.10 and A.4 show a converse of this statement, that if we perturb a
distribution satisfying a true Poincaré inequality (for the Langevin diffusion or Glauber dynamics
Markov chains), the resulting distribution satisfies a weak Poincaré inequality.

1.6 Organization

In Section 2, we give a technical overview of how we use weak Poincaré inequalities to analyze
simulated annealing for our main application of sampling from spherical p-spin distributions.
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In Section 3, we cover some basic preliminaries that will be useful. Then, in Section 4, we
formally define weak functional inequalities and establish some of their basic properties.

In Section 5, we demonstrate the effectiveness of this framework by showing how to sample
from a mixture of distributions satisfying Poincaré inequalities from data-based initializations.

Our main application to spherical p-spin models spans Sections 6 to 8, and requires more
background in stochastic localization and spin glass theory. In Section 6, we review some basic
properties of stochastic localization and show how to adapt the framework of localization schemes
from [CE22] to prove weak functional inequalities. Then, in Section 7, we initiate the discussion of
weak Poincaré inequalities for spherical p-spin models. To assist the reader in understanding the
proof of a weak Poincaré inequality, we provide a separate technical overview in Subsection 7.1.
The rest of Section 7 reduces the proof to proving high-probability covariance bounds for strictly
replica-symmetric models with small external field, which is then established in Section 8.

Acknowledgements. BH is extremely grateful to Andrea Montanari and Huy Tuan Pham for
early discussions on this problem, and to Ahmed El Alaoui, Sinho Chewi, and Mark Sellke for
enlightening conversations. We would also like to thank Sitan Chen, Jason Gaitonde, Kuikui Liu,
and Francisco Pernice for insightful discussions. We would like to thank Thiago Bergamaschi for
pointing out an error in an application to the ferromagnetic Potts model in an earlier version of this
paper.

2 Technical overview

Let H be a Hamiltonian on state space Ω, and let µH be its Gibbs distribution. Our goal in this
section is to describe our strategy to prove that simulated annealing succeeds at sampling. In our
application, Ω is the scaled sphere SN :=

√
N · SN−1, and µH comes with an associated Markov

chain known as Langevin diffusion, which we denote with PH . For ease of exposition, we restrict the
discussion to this setting, though much of it holds in a more general setting.

Definition 2.1 (Simulated annealing, informal). Initialize at the uniform distribution on SN (which
is equal to µ0), and for each i ∈ [m], run P i

m H for time T.

For the sequel, we abbreviate P i
m H and µ i

m H as Pi and µi, and we use Pi,t to denote running Pi

for time t. The strategy to prove that simulated annealing succeeds at sampling is to establish a
weak Poincaré inequality for Pi for all i.

Let L be the infinitesimal generator of Pi. For functions f , g : Ω → R, we define the Dirichlet
form E( f , g) as Eµi [ f L g].

Remark 2.2. In the case of Langevin diffusion for a distribution π, the Dirichlet form can be
evaluated as

E( f , g) = Eµi⟨∇ f ,∇g⟩ ,

where ∇ denotes the Euclidean gradient if π is supported on RN , and the Riemannian gradient on
SN if π is supported on SN .

As discussed in Section 1, we say a Markov chain satisfies a weak Poincaré inequality with
parameters (C, ε) if

E( f , f ) ⩾ C · Var[ f ]− ε · ∥ f − E f ∥ 2
∞ − ε · sup

x∈Ω
∥∇ f (x)∥ 2 ,
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which implies the following mixing result Theorem 4.6 for the chi-squared divergence; see also
[RW01, Theorem 2.1]. Defining νt as the distribution after running the Markov chain for time t
from initial distribution ν0, we have

χ2(νt∥µi) ⩽ exp(−Ct) · χ2(ν0∥µi) + ε ·
∥∥∥∥dν0

dµi
− 1
∥∥∥∥2

∞
+ ε · sup

x∈Ω

∥∥∥∥∇dν0

dµi
(x)
∥∥∥∥2

.

Analyzing simulated annealing with weak Poincaré inequalities. To see why the above state-
ment plays well with simulated annealing, imagine plugging in initialization ν0 = µi−1. By selecting
the number of annealing steps m = poly(N), we can ensure

∥∥∥dν0
dµi

− 1
∥∥∥

∞
and supx∈Ω

∥∥∥∇dν0
dµi

(x)
∥∥∥

are O(1). The guarantee after running the Markov chain for some sufficiently large polynomial
time T is then

χ2(Pi,Tµi−1∥µi) ⩽ O(ε) ,

which in particular implies
dTV(Pi,Tµi−1, µi) ⩽ O(

√
ε) .

When we combine the above with the data processing inequality, we then get the following
guarantee for νm,T := Pm,T · · · P2,TP1,Tν0, the distribution that simulated annealing samples from.

dTV(Pm,T · · · P1,Tµ0, µm) ⩽ dTV(Pm,T · · · P1,Tµ0, Pm,Tµm−1) + dTV(Pm,Tµm−1, µm)

⩽ dTV(Pm−1,T · · · µ0, µm−1) + O(
√

ε) .

Applying the above inequality m times tells us that dTV(νm,T, µm) ⩽ O
(√

ε · m
)
.

We now turn our attention to the proof technique for showing a weak Poincaré inequality.

How to prove weak Poincaré inequalities. Suppose our goal is to prove a weak Poincaré inequal-
ity for a measure π. The high-level strategy in the localization schemes approach for proving a
weak Poincaré inequality is to design a measure decomposition of π: for some mixture distribution ρ,
express π as Ez∼ρπz. Refer to Subsection 3.1 for a brief review of measure decompositions. Once
we have a measure decomposition in hand, establishing the following simple set of inequalities
forms the crux of the argument. Let f be a function such that Eπ f = 1.

1. Conservation of Dirichlet form.

Eπ( f , f ) ⩾ Ez∼ρEπz( f , f ) .

In the case of Langevin diffusion, this is an equality, and in the case of Glauber dynamics, the
inequality is true by a generic concavity argument; see, e.g. [AJK+22, Page 19] or [LMRW24,
Page 5].

2. Weak Poincaré inequality for good component measures.

Ez∼ρEπz( f , f ) ⩾ C · Ez∼ρVarπz [ f ] · 1[z “good”]− ε∥ f − 1∥ 2
∞ − ε∥∇ f ∥ 2

∞ ,

where the “good” πz are those which satisfy a (c, ε)-weak Poincaré inequality. This inequality
follows from the nonnegativity of norms and Dirichlet forms.
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3. Approximate conservation of variance.

Ez∼ρVarπz [ f ] ⩾ α · Varπ[ f ] .

This is one of the parts that depends nontrivially on π and the decomposition ρ, and we
discuss the general proof strategy for this portion based on localization schemes.

4. High-probability goodness of component measures.

Prz∼ρ[z “good”] ⩾ 1 − ε .

This part also requires analyzing the measure decomposition we design. Ideally, the measure
decomposition presents us with “simpler” measures than π itself.

Once we have the above inequalities at hand, we get a (cα, 2ε)-weak Poincaré inequality; see
Lemma 4.11 for details.

How to construct a good measure decomposition. Henceforth, we restrict our attention to the
case where π = µH, the Gibbs distribution for a spherical mixed p-spin glass model. In the
discussion below, we fix H as a typical Hamiltonian, and drop the phrase “with high probability”
for events that occur with high probability over the randomness of H.

To construct our measure decomposition, we rely on Eldan’s stochastic localization [Eld13].
Our inspiration is the use of stochastic localization as a tool for measure decomposition for proving
Poincaré inequalities in the work of Chen and Eldan [CE22]. Stochastic localization is a measure-
valued random process (µt)t⩾0 described by:

dµt(x) ∝ exp
(
⟨yt, x⟩ − t

2
∥x∥ 2

)
dµH(x) ,

where yt = σ + Bt where σ ∼ µH and (Bt)t⩾0 is a standard Brownian motion; see [AM22a, Theorem
2] for a proof of why the above description of stochastic localization is equivalent to the more
traditional definition via a stochastic differential equation that µt obeys.

We run stochastic localization up to a stopping time τ, defined as

τ := min{t : 0 ⩽ t ⩽ T, ∥Cov(µt)∥ ⩾ K or t = T} ,

where T is chosen as a sufficiently large constant, independent of N. We impose the constraint on
the covariance matrix as it is relevant to satisfying approximate conservation of variance: [CE22,
Eq. (20)] proves that a measure decomposition based on stochastic localization run for time at most
T satisfies approximate conservation of variance with parameter α = exp(−KT) if ∥Cov(µt)∥op is
bounded by K almost surely. Hence, by construction, we automatically ensure that our measure
decomposition satisfies approximate conservation of variance.

For the measure decomposition to ultimately be useful, we also need to argue that the compo-
nent measures satisfy a weak Poincaré inequality with high probability. Building on technical results
in Huang, Montanari, and Pham [HMP24, Section 9.2], we show that the stochastic localization
process run up to time T starting at µH gives a distribution satisfying an (Ω(1), exp(−Ω(n)))-
weak Poincaré inequality with probability 1 − exp(−Ω(n)) over the randomness of the stochastic
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localization path; see Lemma 7.7 for details. Unfortunately, in the situation where the stochastic lo-
calization process stops before T, we do not have a simple way to show a weak Poincaré inequality,
and for our analysis, treat z arising from early stopping as “bad”.

Thus, we have: Prz∼ρ[z “good”] ⩾ 1 − exp(−Ω(n))− Pr[τ < T]. To bound Pr[τ < T], it is
sufficient to prove a high-probability covariance norm bound on the entire stochastic localization
path for 0 ⩽ t ⩽ T. Most of the technical work in this paper is devoted to proving this covariance
norm bound.

Theorem 2.3 (Informal version of Lemma 7.6). For a typical H, with probability 1 − e−Ω(n1/5) over the
randomness of the stochastic localization path, we have ∥Cov(µt)∥op < K.

The proof of the covariance bound spans Sections 7 and 8; we give a detailed technical overview
of how it is proved in Subsection 7.1.

3 Preliminaries

Notation

• We use SN to denote the scaled (N − 1)-sphere,
√

N · SN−1.

• We use ρ to denote the uniform measure over SN .

• Given σ1, σ2 ∈ SN , we use R(·, ·) to denote the normalized inner product (i.e. the overlap)

R(σ1, σ2) :=
⟨σ1, σ2⟩

N
.

• For an interval I ⊆ [−1, 1] and x ∈ SN , define Band(x, I) := {σ ∈ SN : R(σ, x) ∈ I}.

• We use c to denote small constants whose values may change from line to line, and C to
denote similarly fickle large constants.

• Let f : Ω → R be any function. We define osc( f ) := sup f − inf f .

• Let f : Ω → R be a smooth function. If Ω ⊆ RN , then ∇ f denotes its Euclidean gradient.
If Ω ⊆ SN , then ∇sp f denotes the Riemannian gradient on SN . When the correct notion of
gradient is clear from context, by an abuse of notation we will suppress this distinction and
simply write ∇ f .

3.1 Measure decompositions

Our framework for proving weak functional inequalities relies on the notion of a measure decom-
position.

Definition 3.1 (Measure decomposition). Let π be a distribution on RN . Let ρ be a mixture
distribution, also on RN , which indexes into a family of mixture components {πz}z∈RN . We say
that (ρ, πz) is a measure decomposition for π if

π = Ez∼ρπz .
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One reason measure decompositions are useful is that they compose nicely with worst-case
functional inequalities, as shown in the following lemma.

Lemma 3.2 ([BB19, AJK+22, CE22]). Let π be a distribution over Ω ⊆ RN , and π = Ez∼ρπz a measure
decomposition of π such that

• for all functions f , Ez∼ρVarπz [ f ] ⩾ CVarVarπ[ f ], and

• Every πz satisfies a ρPI-Poincaré inequality with respect to Langevin diffusion.

Then, π satisfies a ρPICVar-Poincaré inequality.

In Lemma 4.11, we will show an average-case relaxation of the above result, that π satisfies a
weak Poincaré inequality if most measures in the decomposition satisfy weak Poincaré inequalities.
Then, in Section 6, we construct explicit measure decompositions using the localization schemes
framework introduced in [CE22]. This will show weak Poincaré inequalities for our measures of
interest.

Besides proving functional inequalities, measure decompositions have also been directly used
for sampling and inference (see, e.g., [MW24, LMR+24]).

3.2 Langevin diffusion

In this paper, we study Langevin diffusion on RN and the scaled sphere SN . These definitions can
be directly generalized to the setting of Riemannian manifolds, but we do not comment further on
this.

Definition 3.3 (Langevin diffusion on RN). Let π be a distribution on RN with density at x propor-
tional to e−V(x) for some function V. The Langevin diffusion process with stationary distribution π is
the solution to the stochastic differential equation

dZt = −∇V(Zt)dt +
√

2 dBt,

where (Bt)t⩾0 is a standard Brownian motion.

Definition 3.4 (Langevin diffusion on SN). Let π be a distribution on SN with dπ(x) ∝ e−V(x) dρ(x),
where V : SN → R. The Langevin diffusion process with stationary distribution π is the solution
to the stochastic differential equation

dZt = −∇spV(Zt)dt +
√

2 dBt,

where (Bt)t⩾0 is a standard spherical Brownian motion. (For a textbook introduction to spherical
Brownian motion, see [Hsu02].)

Fact 3.5 ([Che23, Example 1.2.17]). The Langevin diffusion SDE with stationary distribution π is
reversible with respect to π. In particular, the ergodicity of the process implies that KL(Law(Zt)∥π)

t→∞−−→ 0.

Furthermore, it is well-known that Langevin diffusion on RN with respect to a strongly log-
concave stationary distribution converges rapidly.
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Definition 3.6. Let π be a distribution over RN with density proportional to e−V . π is said to be
α-strongly log-concave if V is α-strongly convex, that is, ∇2V ⪰ αI.

Fact 3.7 ([Che23, Theorem 1.2.24]). Let π be a distribution satisfying a log-Sobolev inequality with
constant ρLS, in that for any differentiable function f : RN → R>0,

Eπ∥∇
√

f ∥2 ⩾ ρLSEntπ[ f ].

Then, if πt is the distribution at time t of Langevin diffusion,

KL(πt∥π) ⩽ KL(π0∥π)e−ρLS·t.

Furthermore, α-strongly log-concave distributions π satisfy a log-Sobolev inequality with constant α.

4 Weak functional inequalities

In this paper, we study continuous-time Markov chains.

Definition 4.1 (Markov semigroup). Let (Xt)t⩾0 denote a continuous-time Markov process on state
space Ω. Let (Pt)t⩾0 be the associated Markov semigroup operator; Pt acts on functions f : Ω → R

via Pt f (x) = E[ f (Xt)|X0 = x]. Throughout, we assume that the semigroup is reversible with respect
to stationary distribution π. Furthermore, let L denote the infinitesimal generator of Pt, i.e., Pt = e−tL.
For functions f , g : Ω → R, we define the Dirichlet form as E( f , g) = Eπ[ f Lg].

See e.g. [Che23, Section 1.2] for a textbook treatment. Of particular interest to us are the
two settings where the semigroup corresponds to a discrete-time Markov chain or the Langevin
diffusion defined in Subsection 3.2. In these cases, the Dirichlet form satisfies the following explicit
identities.

Fact 4.2 (Dirichlet form from discrete-time Markov chain). Let P be the transition matrix of a reversible
discrete-time Markov chain with stationary distribution π. We can define an associated continuous-time
semigroup operator (Pt)t⩾0 by setting L = I − P. The Dirichlet form for the continuous-time dynamics
satisfies

E( f , g) := Ex∼πEy∼Px( f (x)− f (y))(g(x)− g(y)) .

Here, for a probability distribution µ, we say x ∼ µ to denote a sample x from µ, and we use y ∼P x for a
single transition from x according to P.

Fact 4.3 (Dirichlet form for Langevin diffusion). We will need the following explicit identities for the
Dirichlet form for Langevin diffusion.

(1) When (Pt)t⩾0 corresponds to Langevin diffusion on RN with stationary distribution π, the Dirichlet
form is E( f , g) = Eπ[⟨∇ f ,∇g⟩].

(2) When (Pt)t⩾0 corresponds to Langevin diffusion on SN with stationary distribution π, the Dirichlet
form is E( f , g) = Eπ[⟨∇sp f ,∇spg⟩].
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Definition 4.4. We say π satisfies a weak Poincaré inequality if for some error functional Error :
RΩ

>0 → R⩾0 and ρPI > 0,

Varπ[ f ] ⩽
1

ρPI
· E( f , f ) + Error( f ) .

Similarly, we say π satisfies a weak modified log-Sobolev inequality if for some error functional
Error : RΩ

>0 → R⩾0 and ρLS ⩾ 0,

Entπ[ f ] ⩽
1

ρLS
· E( f , log f ) + Error( f ).

Theorem 4.5. Consider the trajectory (νt)t⩾0 of a reversible continuous-time Markov chain with stationary
distribution π, initialized at the distribution ν0, and suppose that π satisfies a weak MLSI with parameters
Error and ρLS. Fix T > 0, and set ΛT to be the distribution on [0, T] with density ΛT(s) = eρLS

eρLST−1
· eρLSs.

Then,
KL(νT∥π) ⩽ e−ρLSTKL(ν0∥π) + Es∼ΛT [Error(dνs

dπ )].

Proof. Let f0 = dν0
dpi , and let ft = Pt f0 = dνt

dπ (this last equality holds due to reversibility). For ease

of notation, set Errort = Error( ft) for t ⩾ 0. Recalling that E( ft, log ft) = − d
dt KL(νt∥π), the weak

MLSI says that
−E( ft, log ft) + ρLS · KL(νt∥π)− ρLS · Errort ⩽ 0,

so
d
dt

(
eρLSt · KL(νt∥π)− ρLS

∫ t

0
eρLSsErrors ds

)
⩽ 0.

Therefore,

eρLST · KL(νT∥π)− ρLS

∫ T

0
eρLSsErrors ds ⩽ KL(ν0∥π),

and

KL(νT∥π) ⩽ e−ρLSTKL(ν0∥π) + ρLS

∫ T

0
eρLS(s−T)Errors.

Noting that ΛT(s) =
ρLS

eρLST−1
· eρLSs ⩾ ρLSeρLS(s−T), the above implies that

KL(νT∥π) ⩽ e−ρLSTKL(ν0∥π) + Es∼ΛT [Errors] ,

as desired.

By essentially the same proof, we obtain the analogous result for weak Poincaré inequalities.

Theorem 4.6. Consider the trajectory (νt)t⩾0 of a (continuous-time) Markov chain with stationary dis-
tribution π, initialized at the distribution ν0, and suppose that π satisfies a weak Poincaré inequality
with parameters Error and ρPI. Fix T > 0, and set ΛT to be the distribution on [0, T] with density
ΛT(s) = e2ρPI

e2ρPIT−1
· e2ρPIs. Then,

χ2(νT∥π) ⩽ e−2ρPITχ2(ν0∥π) + Es∼ΛT [Error(dνs
dπ )].

For the analysis of the annealed Langevin dynamics, we will also require the following definition.
For f : Ω → R, let osc( f ) := sup( f )− inf( f ), and let ∇ f denote the Riemannian gradient.
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Definition 4.7 (Weak functional inequalities for Langevin). We say a distribution π on Ω ⊆ RN or
Ω ⊆ SN satisfies a (ρPI, ε)-weak Poincaré inequality if for all differentiable functions f ,

Varπ[ f ] ⩽
1

ρPI
· E( f , f ) + ε · (osc( f )2 + sup

x∈Ω
∥∇ f ∥2).

Similarly, we say π satisfies a (ρLS, ε)-weak modified log-Sobolev inequality if for all differentiable
functions f ,

Entπ[ f ] ⩽
1

ρLS
· E( f , log f ) + ε · (osc(

√
f )2 + sup

x∈Ω
∥∇ f ∥2).

Remark 4.8. As mentioned in the beginning of this section, by replacing the Riemannian gradient
with the discrete gradient, an analogous theory can be developed for annealed Glauber dynamics;
see Definition A.1.

Remark 4.9. A weak Poincaré inequality with sufficiently good parameters implies a true Poincaré
inequality. Indeed, any low conductance cut limits on the region of valid (ρPI, ε). Hence, by Cheeger,
one can conclude that Langevin satisfies a true Poincaré inequality, with some loss in parameters.

We shall typically use weak Poincaré inequalities with functions f that have expectation 1,
where we bound osc( f ) ⩽ 2∥ f − 1∥∞.

4.1 Properties of weak functional inequalities

In this section, we state some crucial properties of weak functional inequalities for Langevin
diffusion on RN or SN . With minor modifications, the same results hold for Glauber dynamics on
finite state spaces; see Appendix A for formal details.

Lemma 4.10. Let π be a distribution on RN or SN satisfying a ρPI-Poincaré inequality for Langevin
diffusion, and π′ a distribution such that dTV(π, π′) ⩽ δ. Then, π′ satisfies a

(
ρPI, δ max(ρ−1

PI , 1)
)

-weak
Poincaré inequality for Langevin diffusion.

Proof. There exists a coupling C of (π, π′) such that for (x, x′) ∼ C, Pr[x ̸= x′] ⩽ δ. Thus,

Eπ′( f , f ) = Eπ′∥∇ f ∥2

⩾ Eπ∥∇ f ∥2 − δ sup ∥∇ f ∥2

⩾ ρPIVarπ[ f ]− δ sup ∥∇ f ∥2.

Let I = [inf f , sup f ]. Note that Varπ[ f ] = infa∈I Eπ[( f − a)2]. For each a ∈ I,

Eπ[( f − a)2] ⩾ Eπ′ [( f − a)2]− δ · osc( f )2,

and therefore
Varπ[ f ] ⩾ Varπ′ [ f ]− δ · osc( f )2. (3)

Combining with the above shows

Eπ′( f , f ) ⩾ ρPIVarπ′ [ f ]− δ
(

ρPI · osc( f )2 + sup ∥∇ f ∥2
)

.
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As foreshadowed previously, measure decompositions compose well with weak functional
inequalities. Indeed, the following lemma can be viewed as a relaxation of the setup to prove
genuine functional inequalities (cf. Lemma 3.2).

Lemma 4.11. Let π be a distribution over RN or SN , and π = Ez∼ρπz a measure decomposition of π such
that

• for all functions f , Ez∼ρVarπz [ f ] ⩾ CVarVarπ[ f ], and

• with probability 1 − η over z ∼ ρ, πz satisfies a (ρPI, δ)-weak Poincaré inequality with respect to
Langevin diffusion.

Then, π satisfies a
(

ρPICVar,
δ+η
CVar

)
-weak Poincaré inequality.

Proof. Let us say that z is good if πz satisfies a weak Poincaré inequality, and f be a function. Then,

Eπ( f , f ) = Ez∼ρEπz( f , f )

⩾ Ez∼ρEπz( f , f )1z is good

⩾ Ez∼ρρPIVarπz [ f ]1z is good − δρPI · (osc( f )2 + sup ∥∇ f ∥2)

= Ez∼ρρPIVarπz [ f ]− δρPI · (osc( f )2 + sup ∥∇ f ∥2)− Ez∼ρρPIVarπz [ f ]1z is not good

⩾ ρPIEz∼ρVarπz [ f ]− (δρPI + ηρPI) · (osc( f )2 + sup ∥∇ f ∥2)

⩾ CVarρPIVarπ[ f ]− (δρPI + ηρPI) · (osc( f )2 + sup ∥∇ f ∥2) .

The desired follows.

4.2 Weak Poincaré inequalities and annealed Markov chains

The notion of weak functional inequalities defined in Definition 4.7 can be naturally applied in the
context of simulated annealing, which we now define.

Definition 4.12 (Annealing scheme). Let H be a Hamiltonian over Ω, and (µβ)β⩾0 the class of
distributions over Ω with µβ(σ) ∝ eβH(σ). For each β ⩽ β0, let P = Pβ be a (reversible and ergodic)
Markov chain with stationary distribution µβ.

An (inverse) temperature schedule is any function β : R⩾0 → R⩾0. An annealing scheme A is the
time-inhomogeneous Markov chain such that at time t, one applies the Markov chain Pβ(t).

Of interest is the temperature schedule of the form t 7→ δ ·
⌊ t

T

⌋
, with the chain being run for

time T ·
(

β0
δ + 1

)
.

Theorem 4.13. Let T, δ > 0 such that k0 := β0
δ is an integer. Suppose that for each β = kδ for 0 ⩽ k ⩽ k0,

µβ satisfies a (ρPI, ε)-weak Poincaré inequality for Pβ. Consider the annealing scheme given by schedule

t 7→ δ ·
⌊ t

T

⌋
, run for total time T ·

(
β0
δ + 1

)
. Let ν be the output distribution of this annealing scheme.

Then,

dTV
(
ν, µβ0

)
⩽

β0

δ
·
[
(1 + δ sup ∥∇H∥)e2δ∥H∥∞ − 1

]
· O
(

e−2ρPIT + ε
)1/2

.

Remark 4.14. Setting ε = 0 and δ = β0 matches the guarantees of [CE22] (after applying Pinsker’s
inequality).
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Proof. We shall prove the above using a simple inductive argument – our goal will be to show
that initialized at µβ, the Pβ+δ Markov chain run for time T yields a distribution sufficiently close
(in total variation distance) to µβ+δ. The total variation distance between the distribution that the
annealed Markov chain outputs and the true distribution µβ0 is then upper bounded by the sum of
these total variation errors.

Let ν(r,k) be the distribution obtained by running the annealed Markov chain initialized with µrδ

until inverse temperature kδ. In particular, ν(r,k) corresponds to the result of running our annealed
Markov chain for T(k − r) time, and ν(k.k) = µkδ. We are interested in bounding dTV

(
ν(0,k0), µβ0

)
.

We have

dTV

(
ν(0,k0), µβ0

)
= dTV

(
ν(k0−1,k0), µβ0

)
+ ∑

1⩽r⩽k0−1

(
dTV

(
ν(r−1,k0), µβ0

)
− dTV

(
ν(r,k0), µβ0

))
⩽ dTV

(
ν(k0−1,k0), µβ0

)
+ ∑

1⩽r⩽k0−1
dTV

(
ν(r−1,k0), ν(r,k0)

)
(Triangle inequality)

⩽ dTV

(
ν(k0−1,k0), µβ0

)
+ ∑

1⩽r⩽k0−1
dTV

(
ν(r−1,r), ν(r,r)

)
(Data processing)

= ∑
1⩽r⩽k0

dTV

(
ν(r−1,r), µrδ

)
.

We now turn to controlling the error functional osc( f )2 + sup ∥∇ f ∥2. Fix an arbitrary β, and set f
to be the likelihood ratio dµβ

dµβ+δ
. Then,

∥ f − 1∥∞ ⩽

∥∥∥∥∥ e−δH

Eµβ+δ
e−δH − 1

∥∥∥∥∥
∞

⩽

∥∥∥∥∥ e−δH − 1
Eµβ+δ

e−δH

∥∥∥∥∥
∞

+

∣∣∣∣∣ 1
Eµβ+δ

e−δH − 1

∣∣∣∣∣
⩽

eδ∥H∥∞ − 1
e−δ∥H∥∞

+
eδ∥H∥∞ − 1

e−δ∥H∥∞
⩽ 2 · (e2δ∥H∥∞ − 1).

Hence, osc( f ) ⩽ 4 · (e2δ∥H∥∞ − 1). Next, a simple computation yields

∥∇ f ∥ =
δe−δH

Eµβ+δ
e−δH ∥∇H∥

⩽ 2δ · e2δ∥H∥∞∥∇H∥ ,

so we have sup ∥∇ f ∥ ⩽ 2δ · e2δ∥H∥∞ sup ∥∇H∥.
Since each µrδ satisfies a (ρPI, ε)-weak Poincaré inequality, Theorem 4.6 with the above calcula-

tion implies that

dTV

(
ν(r−1,r), µrδ

)2
⩽ χ2

(
ν(r−1,r)∥µrδ

)
⩽ e−2ρPIT · χ2

(
µ(r−1)δ∥µrδ

)
+ ε · (16(e2δ∥H∥∞ − 1)2 + 4(δe2δ∥H∥∞ sup ∥∇H∥)2)

⩽ (16(e2δ∥H∥∞ − 1)2 + 4(δe2δ∥H∥∞ sup ∥∇H∥)2)
(

e−2ρPIT + ε
)

.

Plugging this back into the earlier sequence of equations completes the proof.
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Remark 4.15. While the proof above has been stated for the annealing scheme where at time t
the Hamiltonian is of the form σ 7→ β(t) · H(σ), the proof immediately extends to essentially any
annealing scheme that changes the Hamiltonian “slowly”, in that if Ht is the Hamiltonian at time t,
∥Ht+T − Ht∥∞ ⩽ δ for all t. A concrete example of such a scheme that might work better than the
vanilla annealing is that which at time t has as Hamiltonian σ 7→ H(β(t) · σ).

5 Vignette: Sampling from mixture models with advice

We are interested in the following question.

Let π be a distribution over RN with density proportional to e−V . Given oracle access
to the gradient ∇V, when is it possible to efficiently produce samples that are close (in
total variation distance) to π?

We begin with an overview of existing results towards the above question. Recall from Fact 3.7
that for distributions satisfying a Poincaré inequality, such as strongly log-concave distributions,
Langevin diffusion enjoys rapid mixing. Beyond this setting, however, very little is known.
[BCE+22, CWZZ24] prove certain “local mixing” guarantees for Langevin diffusion on non-log-
concave distributions, but these do immediately not translate to sampling guarantees. The works
[GLR18, LRG18, GTC24] use Langevin diffusion-based algorithms to sample from mixtures of
log-concave distributions. Furthermore, the first of these papers proves that it is hard to sample
from a mixture of two Gaussian distributions with distinct covariance matrices given access to just
the gradient ∇V.

In [KV23], the first theoretical guarantees are provided for a new model designed to circumvent
this issue, where in addition to being given access to the gradient ∇V, we are also given “advice”
in the form of m samples from the distribution (also see [NHH+20] and [Hin10, GLZ+18, XLZW16]
for related discussion). In particular, they show that when the stationary distribution is a mixture of
constantly many strongly log-concave distributions, Langevin diffusion initialized at the empirical
measure on the advice gets close to the stationary distribution. However, their dependence on
the number of components K is doubly exponential. The main result in this section improves the
doubly exponential dependence to a polynomial one for any mixture of distributions satisfying
Poincaré inequalities. Similar results are obtained by Koehler, Lee, & Vuong [KLV24].

Theorem 5.1. Let ε, δ ∈ (0, 1), and let π a mixture

π =
K

∑
i=1

piπi

of distributions (πi)
K
i=1, where each πi satisfies a Poincaré inequality with constant (at least) ρPI. Further

assume that pi ⩾ p∗ for all i. Let ν0 be a random distribution over RN such that Eν0 = π, in that for any
measurable subset A of RN , Eν0(A) = π(A). Set

m = Ω
(

log(1/δ)

p∗ε2

)
.
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Let ν1, . . . , νm be iid draws from ν0, and ν the uniform mixture over the (νi)
m
i=1. Further suppose that with

probability at least 1 − δ, χ2(νi∥π) ⩽ M. Denoting by µT the distribution attained by running Langevin
diffusion for time T initialized ν, it holds that

Pr
[
χ2(µT∥π) ⩽ ε

]
⩾ 1 − O(δ),

for T = Ω
(

1
ρPI

log
(M

ε

))
, where the probability is over the draws of νi.

Remark 5.2. One should think of ν0 as being the point mass distribution supported on a (random)
sample drawn from π. Alternatively, one can think of ν0 as being the distribution obtained by
drawing a sample x0 according to π, then running Langevin diffusion for a short amount of time —
doing this would make the χ2-divergence χ2(ν0∥π) finite. We also remark that a version of this
proof goes through if we have that each πi satisfies a log-Sobolev inequality instead of a Poincaré
inequality, working with KL divergences instead.

Proof of Theorem 5.1. The idea of the proof will be to show that up to some additive error depending
on the samples, π does satisfy a Poincaré inequality with respect to the distributions along the
path of Langevin diffusion initialized at the empirical distribution. This error corresponds to how
imbalanced the samples are in terms of the mixture weights — a straightforward concentration
argument using Bernstein’s inequality then shows that this error is small, so the χ2 divergence
essentially decays exponentially fast, as if π satisfied a true Poincaré inequality.

Let ft be the Radon-Nikodym derivative of µt (obtained by running Langevin diffusion initial-
ized at ν) with respect to π. By definition, we have

χ2(µt∥π) = Eπ[ f 2
t ]− 1

=
K

∑
i=1

pi
(
Eπi [ f 2

t ]− 1
)

=
K

∑
i=1

piVarπi [ ft] +
K

∑
i=1

pi
(
Eπi [ ft]

2 − 1
)

.

Because each πi satisfies a Poincaré inequality, the first term is bounded as

K

∑
i=1

piVarπi [ ft] ⩽
1

ρPI
∑
i=1

piEπi∥∇ ft∥2 =
1

ρPI
Eπ∥∇ ft∥2.

Consequently,

χ2(µt∥π) ⩽
1

ρPI
· Eπ∥∇ ft∥2 +

K

∑
i=1

pi
(
Eπi [ ft]

2 − 1
)

. (4)

Theorem 4.6 then yields that

χ2(µT∥π) ⩽ χ2(µ0∥π) · e−ρPIT + Es∼ΛT

[
K

∑
i=1

pi
(
Eπi [ ft]

2 − 1
)]

⩽ Me−ρLST + Es∼ΛT

[
K

∑
i=1

pi
(
Eπi [ ft]

2 − 1
)]

.
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Above, we use that because the KL divergence to π of each of the νi is at most M, so is that of the
mixture µ0 = ν.

To conclude, we shall establish tail bounds on

Es∼ΛT

[
K

∑
i=1

pi
(
Eπi [ fs]

2 − 1
)]

.

For 1 ⩽ j ⩽ m, let f (j)
s be the Radon-Nikodym derivative of µ

(j)
s with respect to π, where µ

(j)
s is the

distribution obtained by running Langevin diffusion for time s initialized at νj. It is not difficult to

see that fs =
1
m ∑m

j=1 f (j)
s .

First, for fixed s and j, we use the fact that the (Eπi [ f (j)
s ])j are independent mean 1 random

variables, with Hoeffding’s inequality, to get tail bounds for Eπi [ fs]2 − 1. We may use this to
bound a certain Orlicz norm of this random variable — this bound on the norm also transfers
to Es∼ΛT

[
∑K

i=1 pi
(
Eπi [ fs]2 − 1

)]
as it is a convex combination of random variables with bounded

Orlicz norm. This immediately yields the desired tail bound.
Fix s and i. To start, we have the almost sure bounds

1
p∗

=
1
p∗

Eπ[ f (j)
s ] =

1
p∗

K

∑
r=1

prEπr [ f (j)
s ] ⩾ Eπi [ f (j)

s ] ⩾ 0.

Note that because the expected νj is equal to π, Eνj Eπi [ f (j)
s ] = 1 for any j. Furthermore, because

Eπi

[
f (j)
s

]
is a mean 1 random variable which is bounded in

[
0, 1

p∗

]
, its variance is at most 1

p∗ (see
e.g. [BD00]). Bernstein’s inequality implies that

Pr [|Eπi fs − 1| > t] = Pr

[∣∣∣∣∣ 1
m

m

∑
i=1

Eπi

[
f (j)
s

]
− 1

∣∣∣∣∣ > t

]
⩽ 2 exp

(
−mp∗

2
· t2

1 + t

)
.

Thus, for any t > 0,

Pr
[∣∣Eπi [ fs]

2 − 1
∣∣ > t

]
⩽ Pr

[
|Eπi fs − 1| > t

2(1 +
√

t)

]

⩽ 2 exp

−mp∗
8

·

(
t

1+
√

t

)2

1 + t
1+

√
t

 .

Now, consider the Orlicz norm ∥ · ∥ψ associated to the above family of tail bounds. As mentioned
earlier, standard machinery may be used to go from the above tail bounds to a bound on the norm∥∥Eπi [ fs]2 − 1

∥∥
ψ

. Convexity of the norm yields the same bound on
∥∥∥Es∼ΛT ∑K

i=1 pi
(
Eπi [ fs]2 − 1

)∥∥∥
ψ

.

Translating this back to a tail bound, we get that

Pr

[∣∣∣∣∣Es∼ΛT

K

∑
i=1

pi
(
Eπi [ fs]

2 − 1
)∣∣∣∣∣ > ε

2

]
⩽ 2 exp

(
−mp∗ε2

10

)
⩽ δ.

Conditioning on the above event not happening, we get that

χ2(µT∥π) ⩽ χ2(µ0∥π) · e−ρPI·T +
ε

2
⩽ ε,

as desired.
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6 Stopped localization schemes

6.1 Localization schemes

We review some basic notions for the localization schemes framework introduced in [CE22].

Definition 6.1 (Linear-tilt localization scheme). Let µ = µ0 be a probability measure, (µt)t∈Z⩾0 be a
localization process. A linear-tilt localization scheme is one where µt is defined by

µt+1(x) = µt(x) (1 + ⟨x − m(µt), Zt⟩)

where Zt is a random variable with E[Zt|µt] = 0 and m(µt) denotes the mean of µt.

For our main application to p-spin models, we will focus on a continuous-time version of
linear-tilt localization known as stochastic localization [Eld13].

Definition 6.2 (Stochastic localization). Let µ be a probability measure on Ω ⊆ RN , (Bt)t⩾0 be a
standard Brownian motion on RN . The stochastic localization process with driving matrix (Ct)t⩾0

is a localization process (µt)t⩾0 with µ0 = µ and

µt(x) ∝ µ0(x) exp
(
− 1

2 ⟨x, Σtx⟩+ ⟨yt, x⟩
)
,

where Σt =
∫ t

0 C2
s ds and yt =

∫ t
0 C2

s m(µs)ds + Cs dBs.

A crucial property of these localization schemes is that establishing (approximate) conservation
of variance reduces to bounding the covariance matrices of the intermediate distributions µt.

Lemma 6.3 (Conservation of variance for linear-tilt [CE22, Claim 22]). Let (µt)t∈Z⩾0 be a linear-tilt
localization process. Suppose that for all t ⩽ T we have∥∥∥Cov(Zt|µt)

1/2 · Cov(µt) · Cov(Zt|µt)
1/2
∥∥∥
op

⩽ Kt,

where Kt ∈ [0, 1]. Then for any function φ,

EVarµT [φ]

Varµ[φ]
⩾

T−1

∏
t=0

(1 − Kt).

Lemma 6.4 (Conservation of variance for stochastic localization). Let (µt)t⩾0 be a stochastic localization
process with driving matrix (Ct)t⩾0. Suppose that for all t ⩽ T we have∥∥∥C1/2

t · Cov(µt) · C1/2
t

∥∥∥
op

⩽ Kt

where Kt ∈ [0, 1]. Then for any function φ,

EVarµT [φ]

Varµ[φ]
⩾ e−

∫ T
0 Kt dt.
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6.2 Proving weak Poincaré inequalities using stopped localization schemes

To apply Theorem 4.13, we required weak Poincaré inequalities for the measures of interest. To
show these, we next introduce a generic tool to prove these using Lemma 4.11, building on the
localization schemes framework introduced in Subsection 6.1. Let µ be a distribution. Using a
localization scheme, we would like to design a measure decomposition µ = Ez∼ρµz such that

• for all functions f , Varπ[ f ] ⩽ CVarEz∼ρVarπz [ f ], and

• with probability 1 − η over z ∼ ρ, πz satisfies a (ρPI, δ)-weak Poincaré inequality.

One way to ensure the first condition — approximate conservation of variance — is to simply
stop the localization scheme whenever it fails to hold. Indeed, the following lemma immediately
follows from Lemma 6.3.

Lemma 6.5. Let µ = µ0 be a measure, and let (µt)t∈Z⩾0 be a linear-tilt localization process defined by

µt+1(x) = µt(x) (1 + ⟨x − m(µt), Zt⟩)

for some random variable Zt with E[Zt|µt] = 0. Let T > 0 be an arbitrary stopping time and 0 ⩽ Kt < 1
for each t ⩾ 0, and consider the stopping time

τ = T ∧ inf
t⩾0

{∥∥∥Cov(Zt|µt)
1/2 · Cov(µt) · Cov(Zt|µt)

1/2
∥∥∥
op

⩾ Kt

}
.

Then, for any function φ,
EVarµτ [φ]

Varµ[φ]
⩾ ∏

t⩾0
(1 − Kt).

Similarly, we have the following lemma for stochastic localization, which follows from Lemma 6.4.

Lemma 6.6. Let µ = µ0 be a measure, and (µt)t⩾0 be a stochastic localization process with driving matrix
(Ct)t⩾0. Let T, K > 0 be constant parameters, and consider the stopping time

τ = T ∧ inf
t⩾0

{∥∥∥C1/2
t · Cov(µt) · C1/2

t

∥∥∥
op

⩾ K
}

.

Then,
EVarµτ [φ]

Varµ[φ]
⩾ e−TK.

Remark 6.7. The localization process in the above lemmas can depend on φ, and need not be a
linear-tilt localization. The more general requirement is that

E
[
Varµt+1 [φ]|µt

]
Varµt [φ]

⩾ Kt or
1

Varµt [φ]
· d

ds
E
[
Varµs [φ] | µt

] ∣∣∣∣
s=t

⩾ K.

This can always be achieved by stopping the localization process whenever these conditions fail to
hold.

With these elements in hand, we now show how to prove a weak Poincaré inequality using
stopped localization schemes.
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Lemma 6.8. Let µ = µ0 be a measure, and (µt)t⩾0 be a stochastic localization process with driving
matrix (Ct)t⩾0. Let T, K > 0 be constant parameters. Suppose that with probability 1 − η1, it holds
that

∥∥∥C1/2
t · Cov(µt) · C1/2

t

∥∥∥
op

< K for all t ∈ [0, T]. Further suppose that with probability 1 − η2,

µT satisfies a (ρPI, δ)-weak Poincaré inequality. Then, µ satisfies a
(
ρPIe−TK, eTK (δ + η1 + η2)

)
-weak

Poincaré inequality.

Proof. As in Lemma 6.6, define the stopping time

τ = T ∧ inf
t⩾0

{∥∥∥C1/2
t · Cov(µt) · C1/2

t

∥∥∥
op

⩾ K
}

.

Consider the measure decomposition µ = Eµτ. By Lemma 6.6, this decomposition is variance-
conserving with parameter e−K. By the hypothesis of the lemma, τ = T with probability 1 − η1,
and µ1 satisfies a weak Poincaré inequality with probability 1 − η2. Consequently, µτ satisfies a
weak Poincaré inequality with probability at least 1− η1 − η2. Lemma 4.11 completes the proof.

Remark 6.9. An analogous lemma to the above holds if (µt)t∈Z⩾0 is any linear-tilt localization
process.

While it will not be used in this paper, we note that a similar method proves a weak Poincaré
inequality for a natural Markov chain associated to a localization scheme. This includes for example
the restricted Gaussian dynamics; see [CE22] for several other examples.

Lemma 6.10. Let µ = µ0 be a measure, and (µt)t⩾0 be a stochastic localization process with driving
matrix (Ct)t⩾0. Let T, K > 0 be constant parameters. Consider the Markov chain P given by Px→y =

E
[

µT(x)µT(y)
µ0(x)

]
. Define the stopping time

τ = T ∧ inf
t⩾0

{∥∥∥C1/2
t · Cov(µt) · C1/2

t

∥∥∥
op

⩾ K
}

.

If τ = T with probability at least 1 − δ, then P satisfies a (e−TK, δeTK)-weak Poincaré inequality.

Proof. For the Markov chain P, the Dirichlet form is given by EP( f , f ) = EVarµT [ f ] (see, e.g., [CE22,
Proposition 19]). We then have the chain of inequalities

EVarµT [ f ] ⩾ EVarµτ [ f ]− δosc( f )2

⩾ e−TKVarµ0 [ f ]− δosc( f )2.

The first inequality here is immediate since

EVarµτ [ f ]− EVarµT [ f ] = EVarµτ [ f ]1τ ̸=T ⩽ osc( f )2Pr[τ ̸= T].

The second inequality follows from Lemma 6.4.

Remark 6.11. As in Remark 6.7, the above lemma can be generalized to localization schemes other
than stochastic localization.

27



7 Sampling from spherical p-spin models

In this section, we prove that simulated annealing samples from spherical spin glass models for
models satisfying (SL). Recall that SN =

√
N · SN−1. For γ2, γ3, . . . , γp∗ ⩾ 0, the mixed p-spin

Hamiltonian HN : SN → R is defined by

HN(σ) := ∑
p⩾2

γp

N(p−1)/2

N

∑
i1,...,ip=1

gi1,...,ip σi1 · · · σip , (5)

for i.i.d. samples gi1,...,ip from N (0, 1). This is the gaussian process on RN with covariance

EHN(σ
1) · HN(σ

2) = N · ξ
(

R(σ1, σ2)
)

,

where we recall the mixture function ξ is defined by ξ(s) = ∑
p∗
p=2 γ2

psp. The algorithm we will study
is the following simple annealing scheme for Langevin diffusion.

Definition 7.1 (Annealed Langevin diffusion). Let δN , TN > 0 be parameters possibly depending
on N. For any β ⩾ 0, let µβ := µβHN , where HN is the p-spin Hamiltonian. Annealed Langevin
diffusion is the annealing scheme A where β(t) = δN⌊t/TN⌋ and Pβ is the Langevin semigroup
operator for Gibbs distribution µβ. In words, A keeps β constant for time TN and then increments
β by δN .

Theorem 7.2. Let HN be a mixed p-spin Hamiltonian whose mixture function ξ satisfies (SL), which we
recall below:

ξ ′′(q) <
1

(1 − q)2 for all q ∈ [0, 1).

Let µ be the associated Gibbs measure over the scaled sphere SN , with

dµ(σ) ∝ exp(HN(σ))dρ(σ).

With probability 1 − e−cN1/5
over the randomness of HN , the following holds. For some parameters δN =

O(N−4/5), TN = Ω(N1/5), the output measure ν of the the annealed Langevin diffusion scheme with these
parameters satisfies

dTV(ν, µ) ⩽ e−cN1/5
.

Remark 7.3. We expect that the error e−cN1/5
can be improved to e−cN , matching the fact that a e−O(N)

fraction of the Gibbs measure is typically trapped in metastable states between the uniqueness and
shattering thresholds [AJ24]. However, we will not pursue this improvement in this paper.

Remark 7.4. The condition (SL) is a fundamental barrier for stochastic localization, both as an
algorithm and a proof technique. As was essentially shown in [HMP24, Section 10], for models
satisfying (Strict RS) but not (SL), the means m(µt) along the localization process do not move
stably, in the sense that there exist time intervals of width o(1) in which m(µt) moves by Ω(N1/2).
(The condition (Strict RS) is an artifact of the proof, and it is expected that the mean continues to
move non-stably beyond the regime (Strict RS)). In the setting of [HMP24], this implies that their
algorithmic simulation of the localization process fails, because approximate message passing will
not estimate the mean at some times. In our setting, this implies that the covariance Cov(µt), which
arises as the derivative of m(µt), is genuinely not bounded in operator norm at some times, and
thus the main input to our framework does not hold.
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Remark 7.5. While the result above is stated for the continuous time Langevin diffusion, the results
therein can be adapted to the discretized Langevin Monte Carlo algorithm using standard tools, à
la [Che23, Part II], to obtain a polynomial time sampling algorithm.

To prove the above, we shall use Theorem 4.13 in conjunction with Lemma 6.8. For the remainder
of this section, let (γp)p⩾2 be a sequence of weights such that the associated mixture function ξ

satisfies the condition (SL).

Notation (Measure decomposition for p-spin models). Let µHN = µ0. For a large constant time T,
let (µt)0⩽t⩽T be the stochastic localization process with driving matrix Id (see Definition 6.2).

Lemma 7.6 (Covariance bound on stochastic localization path). There exist constants c, K, depending
only on ξ, such that for any constant T > 0 the following holds with probability at least 1 − e−cN1/5

over the
randomness of HN . If (µt)0⩽t⩽T is the (random) trajectory of stochastic localization initialized at µ0 = µHN ,
with probability 1 − e−cN1/5

, ∥Cov(µt)∥op < K for all 0 ⩽ t ⩽ T. In other words,

PrHN

[
Pr(µt)|HN

[
∥Cov(µt)∥op < K for all 0 ⩽ t ⩽ T

]
⩾ 1 − e−cN1/5

]
⩾ 1 − e−cN1/5

.

Lemma 7.7 (Weak Poincaré inequality for endpoint distributions). There exists a constant T depending
only on ξ such that the following holds with probability at least 1 − e−cN over the randomness of HN . With
probability at least 1 − e−cN , the (random) measure µT satisfies a (c, e−cN)-weak Poincaré inequality. In
other words,

PrHN

[
PrµT |HN

[
µT satisfies a (c, e−cN)-weak Poincaré inequality

]
⩾ 1 − e−cN

]
⩾ 1 − e−cN .

Let us first see how these two lemmas imply the main theorem.

Proof of Theorem 7.2. Fix some 0 ⩽ β ⩽ 1. Note that the Hamiltonian βHN has mixture function
ξβ(s) = ξ(β2s), and if ξ satisfies (SL) then ξβ does as well. Plugging in Lemmas 7.6 and 7.7
into Lemma 6.8 implies that with probability at least 1 − e−cN1/5

, µβHN satisfies a (c, e−cN1/5
)-weak

Poincaré inequality. A union bound implies that with probability 1 − e−cN1/5
, for all β encountered

along the annealing schedule, µβHN satisfies a (c, e−cN1/5
)-weak Poincaré inequality.

By [HS22, Proposition 2.3], with probability 1− e−cN , ∥∇HN∥∞ = O(
√

N). The same argument
implies that with probability 1 − e−cN , ∥HN∥∞ = O(N). With probability 1 − e−cN1/5

, all three of
these events occur, and Theorem 4.13 completes the proof.

We conclude this subsection by proving Lemma 7.7.

Proof of Lemma 7.7. Let dµt(σ) ∝ eHN,T(σ) dσ for HN,T(σ) = HN(σ) + ⟨y, σ⟩. Let

SN(y) = {σ ∈ SN : R(y, σ) > 0}.

Let U ∈ RN×(N−1) be a matrix whose columns are an orthonormal basis of the orthogonal comple-
ment of y. Let ŷ =

√
Ny/∥y∥ be y (which is a.s. nonzero) scaled to length

√
N, and define the map

σy(ρ) : RN−1 → SN(y) by

σy(ρ) =
ŷ + Uρ√

1 + R(ρ, ρ)
.
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This is the inverse of the map that first stereographically projects SN(y) from the origin to ŷ +

URN−1, the plane tangent to SN at ŷ, and then maps the resulting point to coordinates given by U.
Let ε0 = 0.1, and A = {ρ ∈ RN−1 : ∥ρ∥2 ⩽ ε0N}, and note that

σy(A) = {σ ∈ SN : R(σ, ŷ) ⩾ (1 + ε0)
−1/2}

is a spherical cap around ŷ. Let A′ := σy(A). By arguments in [HMP24, Subsection 9.2], there exists
a measure ν (denoted ν̃projHN ,y, see Eq. 2.10 therein) such that the following holds with probability
1 − e−cN .

• The push-forward of ν|A through σy coincides with (µT)|A′ . (Lemma 9.5 therein.)

• µT(A′) = 1 − e−cN . (Lemma 9.6 therein states this with 1 − oN(1) in place of 1 − e−cN , but the
proof implies bound 1 − e−cN , as this is the bound given by Proposition 5.12 used therein.)

• ν(A) = 1 − e−cN . (Corollary 9.7 therein, modulo the same issue of 1 − oN(1) versus 1 − e−cN ,
which is addressed the same way.)

• ν is Ω(1)-strongly log-concave. (Proposition 9.8 therein.)

By the well-known Bakry-Émery condition (see, e.g., [Che23, Section 1.2.3]), on this event ν satisfies
a ρPI-Poincaré inequality for some ρPI = Ω(1). We will transfer this inequality to a (ρPI, e−cN)-weak
Poincaré inequality for µT. Consider a smooth test function f : SN → R and let f̃ : RN−1 → R be
defined by f̃ = f ◦ σy. Since dTV

(
µT, (µT)|A′

)
= e−cN and dTV

(
ν, ν|A

)
= e−cN , and osc( f ′) ⩽ osc( f ),

arguing as in (3) shows

VarµT ( f ) ⩽ Var(µT)|A′ ( f ) + e−cNosc( f )

= Varν|A( f̃ ) + e−cNosc( f )

⩽ Varν( f̃ ) + 2e−cNosc( f ).

By the Poincaré inequality for ν and the definition of the Dirichlet form for Langevin diffusion,

Varν( f̃ ) ⩽
1

ρPI
· Eν( f̃ , f̃ ) =

1
ρPI

· Eν[∥∇ f̃ ∥2]

By [HMP24, Proof of Lemma 9.5], the map σy has Jacobian Jσy satisfying ∥Jσy∥op ⩽ 1, and thus for
all ρ ∈ RN−1,

∥∇ f̃ (ρ)∥ = ∥∇
(

f ◦ σy
)
(ρ)∥ ⩽ ∥∇ f (σy(ρ))∥.

It follows that

Eν[∥∇ f̃ ∥2] ⩽ Eν|A [∥∇ f̃ ∥2] + e−cN sup ∥∇ f̃ ∥2

⩽ E(µT)|A′ [∥∇ f ∥2] + e−cN sup ∥∇ f ∥2

⩽ EµT [∥∇ f ∥2] + 2e−cN sup ∥∇ f ∥2

Combining the above shows

VarµT ( f ) ⩽
1

ρPI
EµT ( f , f ) + 2e−cN

(
osc( f ) +

1
ρPI

sup ∥∇ f ∥2
)

.

The result follows by adjusting c.
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7.1 Technical overview for covariance bounds

The proof of the main theorem has boiled down to Lemma 7.6 — we now give a high-level overview
of our proof strategy for this. We wish to show that with very high probability (1 − e−Ω(N1/5)), the
covariance is bounded along the entire path (µt)0⩽t⩽T of stochastic localization. By performing a
union bound over time and a standard perturbation argument, it suffices to show that for a fixed
time t ∈ [0, T], µt has bounded covariance with very high probability.

To do this, we recall an alternate view of stochastic localization [AM22b]. The measure at time t
of stochastic localization (with the identity driving matrix) is given as follows. First, draw σ ∼ µHN ,
and independently g ∼ N (0, IN). Then, µt has the same law as µHN ,tσ+

√
tg , in that

µHN ,tσ+
√

tg(σ̃) ∝ exp
(

HN(σ̃) + ⟨tσ +
√

tg, σ̃⟩
)

.

As written, the covariance of this distribution is difficult to analyze — the sample σ has very
complicated correlations with the disorder of the Hamiltonian HN , making it intractable.

The planting trick. To deal with this, we will use the planting trick introduced by Achlioptas
and Coja-Oghlan [ACO08]. The application of this method in the context of stochastic localization
is by now standard [AMS22, AMS23b, HMP24], and we review the main ideas for the reader’s
convenience.

Definition 7.8 (Planted p-spin model). The planted measure µpl is a joint law over a Hamiltonian
HN and a spike x ∈ SN given by

dµpl(HN , x) ∝ exp (HN(x)) · dρ(x) · dµnull(HN),

where ρ is the uniform measure over SN and µnull is the law over p-spin Hamiltonians with mixture
function ξ. We frequently abuse notation to let µpl(HN) denote the marginal of µpl on HN .

To provide further intuition for the above definition, consider the following alternate sampling
interpretation of the planted model, which describes the distribution of x conditioned on HN .

Fact 7.9. Consider the following inference problem. We start by sampling the spike x ∼ SN , sample G(p) as
a rank-p tensor with iid N (0, 1) entries for p ⩾ 2, and for each p let M(p) = −G(p) +

γp

N(p−1)/2 x⊗p.
Then, the posterior on x after observing the tensors (M(p))p⩾2 is of the form µ(x = σ | (M(p))) ∝

exp(HN(σ)), where

HN(σ) = ∑
p⩾2

γp

N(p−1)/2
⟨M(p), σ⊗p⟩.

Then, the joint law of (HN , x) is µpl.

The above says that conditioned on HN , the distribution of x (according to µpl) is simply
distributed as a sample according to µHN . That is, the spike x resulting in a Hamiltonian HN ∼ µpl

is exchangeable with a sample from µHN .
The latter of these interpretations will be very useful for us. When dealing with the measure

at time t of stochastic localization applied to the p-spin model, the primary issue was that it was
unclear how to deal with the sample σ drawn from the Gibbs distribution. However, if we could
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work with the planted p-spin model, this issue would be absent. Indeed, the exchangability of the
spike and a sample implies that the law of µt applied to the planted model is given by

µHN ,tx+
√

tg(σ̃) ∝ exp
(

HN(σ̃) + ⟨tx +
√

tg, σ̃⟩
)

,

where x is the spike hidden in HN . This decouples the randomness of the external field tx +
√

tg
and the disorder of the Hamiltonian HN that arises from the Gaussians (G(p))p⩾2.

As was shown in [HMP24, Corollary 3.5] and recalled just below, the planted and null models
are mutually contiguous. Thus high-probability statements from one model transfer to the other,
and it suffices to study the planted model.

For all models satisfying (Strict RS), the measures µnull(HN) and µpl(HN) from Defini-
tion 7.8 are mutually contiguous, i.e., for any sequence of events EN , µnull(EN) → 0
whenever µpl(EN) → 0.

The transfer from the p-spin model to the planted model may then be carried out by setting

EN =

{
HN : Pr σ∼µHN

g∼N (0,IN)

[
∥Cov

(
µHN ,tσ+

√
tg

)
∥ > K

]
< e−cN1/5

}
.

This event is very complicated in the null model, but exchangeability makes it tractable in the
planted model. In the actual proof, we will require a stronger (quantitative) version of mutual
contiguity; see Proposition 7.16 for details.

Now, we must understand what the Hamiltonian in the planted model looks like conditioned
on the spike.

Fact 7.10. Consider the following process: sample x ∼ SN , H̃N ∼ µnull, and define HN by HN(σ) =

H̃N(σ) + N · ξ(R(x, σ)). Then, the joint law of (HN , x) is µpl.

Consequently, our goal is to bound the covariance of the distribution

µt(σ) ∝ exp
(

H̃N(σ) + N · ξ (R (x, σ)) + ⟨tx +
√

tg, σ⟩
)

.

for H̃N ∼ µnull with mixture function ξ. Now, define ξt by ξt(s) = ξ(s) + ts, and extend the
definition of the p-spin model (5) to allow a random linear term. Then,

µt(σ) ∝ exp

H̃N,t(σ) + N · ξt(R(x, σ))︸ ︷︷ ︸
HN,t(σ)

 ,

where H̃N,t ∼ µnull with mixture function ξt.

The TAP planted model. We now turn to controlling the covariance matrix of these models. As
we will see below, it is relatively easier to bound the covariance matrix (in fact, the second moment
matrix) of a model with zero or small external field. However, for any time t > 0, HN,t has an
external field. We will use a method developed in [HMP24] to reduce to the case of a model with
zero or small external field.
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Let mtrue = m(µt). The main intuition of this reduction is that the Gibbs measure concentrates
near a codimension-2 band passing through mtrue and orthogonal to mtrue and x, and furthermore
the model on this band is essentially a replica symmetric model with no external field. Moreover, one
expects that both R(mtrue, mtrue) and R(mtrue, x) concentrate near a value q∗ = q∗(t) defined by
ξ ′t(q∗) =

q∗
1−q∗ .

However, mtrue is a complicated function of HN,t, so it is a priori difficult to reason about the
joint distribution of (mtrue, HN,t). Thus, this reduction is formally carried out by conditioning on a
TAP fixed point mTAP, which will serve as a proxy for mtrue. Define the TAP free energy

FTAP(m) = HN,t(m) +
N
2
· θ(R(m, m)) +

N
2

log(1 − R(m, m)),

where
θ(s) = ξ(1)− ξ(s)− (1 − s)ξ ′(s).

As shown in [HMP24], for sufficiently small constant ι > 0, with probability 1 − e−cN FTAP has a
unique critical point mTAP in the region Sι defined by R(m, m), R(m, x) ∈ [q∗ − ι, q∗ + ι]. Due to
the existence and uniqueness of mTAP, it becomes possible to relate HN,t to a “TAP-planted model”
where one samples mTAP first, and then samples HN,t conditional on ∇FTAP(m) = 0:

Lemma 7.11 (See Lemma 7.21; essentially due to [HMP24]). For any small constant ι > 0, the following
holds. For any HN,t-measurable event E , if

sup
mTAP∈Sι

Pr(E|∇FTAP(mTAP) = 0) → 0,

then Pr(E) → 0.

Crucially, the conditional law of HN,t in the TAP-planted model is very tractable, as (for a
fixed mTAP) ∇FTAP(mTAP) = 0 amounts to a linear constraint on the Gaussian process HN,t. The
resulting explicit conditional law of HN,t is described in Lemma 7.23.

Remark 7.12. While it will not be relevant to our purposes, [AMS22, AMS23b, HMP24] have shown
that mTAP typically approximates mtrue well, in the sense that ∥mtrue − mTAP∥2 = O(1), thereby
justifying the heuristic that mTAP is a proxy for mtrue.

Remark 7.13. The idea of reducing to a TAP-planted model has also been used beyond the setting
of sampling from spherical spin glasses. In the recent work [Hua24], an analogous reduction is
used to obtain the capacity of the Ising perceptron. In this application, passage to the TAP-planted
model is used to tightly control a partition function rather than to bound a covariance matrix.

Consequently, we can now work within the TAP-planted model. Let HTAP denote the Hamilto-
nian HN,t after conditioning on x and ∇FTAP(mTAP) = 0. As

Cov(µHTAP
) ⪯ Eσ∼µHTAP

(σ − v)(σ − v)⊤

for any v ∈ RN (with equality at v = mtrue), it suffices to control the operator norm of

Eσ∼µHTAP
(σ − mTAP)(σ − mTAP)⊤.
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Reduction to slices of the sphere. Next, to control the covariance, let us decompose the sphere
into codimension-2 slices

S(a, b) :=
{

σ ∈ SN : R(σ, m) =

(
1 +

a√
N

)
R(m, m), R(σ, x) =

(
1 +

b√
N

)
R(x, m)

}
,

with the central slice centered at m = mTAP. Let µa,b be the measure µHTAP
conditioned to lie in the

codimension-2 slice S(a, b).
The concentration of the Gibbs measure described in the previous section implies that, viewed

as random variables of a sample σ ∼ µHTAP
, a and b are well-concentrated around 0. Let va,b be the

center of S(a, b). The covariance of the distribution may be bounded as

Cov(µ) ⪯ E(σ − m)(σ − m)⊤

= E(a,b)Eσ∼µa,b(σ − va,b + va,b − m)(σ − va,b + va,b − m)⊤

⪯ 2E(a,b)Eσ∼µa,b(σ − va,b)(σ − va,b)
⊤ + 2E(a,b)(va,b − m)(va,b − m)⊤

⪯ 2E(a,b)Eσ∼µa,b(σ − va,b)(σ − va,b)
⊤ + 2E(a,b)O

(
a2 + b2) . (6)

One can interpret va,b as explaining the variation within the slice originating from the m and x
directions. Hence, as alluded to in the previous discussion about the TAP planted model, the key
fact is that under µa,b, the recentered sample σ − va,b is a sample from a spherical spin glass in two
lower dimensions, as can be shown by calculating the covariance of the (conditioned) Gaussian
process HTAP restricted to this slice. This verification is carried out in Corollary 7.26.

These codimension-2 models have the crucial property that the spherical spin glass on the slice
a = b = 0 is a model satisfying (Strict RS) with no external field (i.e. degree-1 term), while nearby
slices have a small (random) external field of magnitude

√
a2 + b2. In particular, the first term of

(6) requires bounding the second moment of a Gibbs sample from a strictly RS model with small
(random) external field. As a result, (6) would be bounded if we proved the following.

1. Let HN be the Hamiltonian of a slightly generalized mixed p-spin model, where we allow the
mixture function ξ to have a small linear term γ1q (in our proofs we allow γ2

1 ⩽ N−4/5), such
that the non-degree-1 part ξ∼1 of ξ satisfies (Strict RS). Then, with high probability,

∥EµHN
σσ⊤∥

op
= O

(
1 + γ2

1N
)

.

Much of Section 8 is dedicated to showing this.

2. The second moments of a and b are O(1). In fact, we will show in Lemma 7.37 that they are
essentially O(1)-subgaussian.

Let us start by explaining how to show subgaussianity.

Subgaussianity of a, b. The distribution ν of (a, b) is given by

ν(a, b) ∝ exp
(

log Ẑa,b +
N − 4

2
log
(

1 − ∥va,b∥2

N

)
+ HTAP(va,b)

)
.

Here, the first term log Ẑa,b is the free energy of the (N − 2)-dimensional p-spin model µa,b, obtained
by restricting µHTAP

to the slice S(a, b) and rescaling the distribution to lie on SN−2. The second term
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is an effective decrement in the free energy caused by the radius of the sphere S(a, b) shrinking for
larger values of a and b. The third term is an effective increment in the free energy coming from the
energy of HTAP at the center of the slice S(a, b).

For a fixed (a, b), the only random quantities in the definition of ν are the first and third terms.
In Theorem 7.29, proved in Section 8, we show that the first term may essentially be approximated
by a deterministic function of the mixture function of µa,b, at the cost of incurring a small O(1) error.
We do not elaborate on the details of this proof in the technical overview; it is similar to that used to
bound the covariance (which we explain shortly). The third term is similar, and is a deterministic
function plus a small Gaussian, whose variance is O(a2 + b2).

Given these bounds, we may show that the distribution ν is strongly log-concave at 0 with high
probability over the randomness of HTAP. A simple perturbation argument then implies that ν is
strongly log-concave in a macroscopic neighborhood of 0, implying subgaussianity.

Covariance bound for strictly RS models with small external fields. The covariance bound
has now boiled down to bounding ∥M∥op, for M = EµHN

[σσ⊤] the second moment matrix of
model satisfying Eq. (Strict RS) with small external field. Note that M is a HN-measurable random
variable.

The proof proceeds in two high level steps, which we carry out in Section 8.

1. We show using the second moment method that with positive probability over HN , ∥M∥op is
bounded.

2. Using a much simpler argument, we can show that ∥M∥op is essentially O(N−1/10)-Lipschitz
in the disorder. Hence, by gaussian concentration, it concentrates very well around its
expectation (which is O(1) by the positive probability bound).

Let us elaborate a bit more on the proof of the first point above. It turns out that, under the
condition (Strict RS) with small external field, the leading order contribution to M comes from the
degree-2 part of the Hamiltonian HN,2(σ) =

γ2
N1/2 ∑i,j gi,jσiσj. We will ultimately reduce the study

of the covariance matrix of µHN to that of µHN,2 , and then show boundedness of Cov(µHN,2) using
random matrix theory. A similar strategy of isolating the degree-2 component of HN was used to
study the partition function and magnetization of strictly RS models in [HMP24].

Degree-2 behavior. Let us discuss the typical behavior of the covariance of µHN,2 . Define the
degree-2 Gibbs measure

dµHN,2(σ) ∝ exp(HN,2(σ))dρ(σ),

with corresponding partition function ZN,2 =
∫

exp(HN,2(σ))dρ(σ). This is the spherical Sherrington-
Kirkpatrick model with interaction matrix A = ∇2HN(0); note that A is a scaled GOE matrix.
Observe that if we shift A by a constant multiple of the identity γIdN , the measure does not change,
as it is supported on SN . The crucial observation is the following:

For a careful choice of γ, the measure dµHN,2(σ) ∝ exp
(
− 1

2 ⟨σ, (γIdN − A)σ⟩
)

dρ(σ)

looks like a Gaussian with covariance (γIdN − A)−1.

In fact, we will see that it suffices to pick γ = 1 + ξ ′′(0). The typical value of ∥x∥2
2, where x ∼

N (0, γIdN − A)−1, is equal to Tr(γIdN − A)−1. By approximating this trace using the semicircle
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law for the eigenvalues of A and the explicit choice of γ, we see that ∥x∥2
2 ≈ N, which justifies the

heuristic that this Gaussian approximates the spherical distribution µHN,2 .
For the above discussion to be well-defined, we require that γIdN − A is positive definite,

which can only occur if the maximum eigenvalue of A is bounded above by γ = 1 + ξ ′′(0). By
standard concentration inequalities about the maximum eigenvalue of a GOE matrix, this holds
with a constant margin with exponentially good probability. Thus, at least for typical realizations
of HN,2, the covariance will have bounded operator norm. To make this rigorous, we will use the
Laplace transform to precisely control the moments of the overlaps, as was previously done in
[BL16, HMP24].

Reduction to degree-2. Below, we give some justification for why one should expect to be able
to reduce to the degree-2 behavior. We will heuristically argue this by showing that the partition
function ZN is essentially controlled by the degree-2 portion.

To simplify the discussion, let us assume that we are in a 2 + p spin model, so that HN(σ) =

HN,2(σ) + HN,p(σ), where HN,p(σ) =
γp

N(p−1)/2 ∑N
i1,...,ip=1 gi1,...,ip σi1 · · · σip . The corresponding mixture

function decomposes as ξ(q) = γ2
2q2 + ξ∼2(q), so that ξ∼2(q) = γ2

pqp corresponds to the non
degree-2 part of the mixture function. It turns out that, once we condition on HN,2 (and hence the
value of ZN,2), the full partition function ZN is essentially deterministic. Indeed, we will show in
Proposition 8.2 that with very high probability,

ZN ≈ ZN,2eNξ∼2(1)/2

To see why this is reasonable, let us consider the first two moments of ZN conditioned on the
degree-2 Hamiltonian HN,2. Indeed, let E∼2 denote expectation with respect to HN,p conditioned
on HN,2. Standard gaussian MGF calculations yield E∼2ZN = eNξ∼2(1)/2ZN,2 and

E∼2[Z2
N ] = Z2

N,2eNξ∼2(1)
∫

exp
(

Nξ∼2(R(σ1, σ2))
)

dρ⊗2(σ1, σ2)

= (E∼2ZN)
2
∫

exp
(

Nγ2
pR(σ1, σ2)p

)
dρ⊗2(σ1, σ2).

At sufficiently high temperatures, the typical overlap behavior R(σ1, σ2) ≍ N−1/2, where σ1, σ2 are
iid draws from µHN . This matches the overlap behavior at infinite temperature, where the Gibbs
distribution is uniform. Then, pretending that R(σ1, σ2) = cN−1/2 for all σ1, σ2, we obtain that

E∼2[Z2
N ] ≈ (E∼2ZN)

2 exp
(

cpγ2
pN1−p/2

)
.

Since p ⩾ 3, it follows that, conditional on HN,2, the conditional variance of ZN is tiny compared to
its conditional expectation. In summary, we see that the higher degree portions of the partition
function have negligible contributions to the fluctuations of ZN , so that the typical behavior of ZN

is controlled by ZN,2.
Turning now to the covariance bound, we will control the (i, j)th covariance entry Mi,j :=∫

σiσjeHN(σ) dρ(σ). A crucial fact is that, by rotational invariance of the sphere and gaussians, we
can rotate to the eigenbasis of A = ∇2HN(0) so that A becomes diagonal. When A is diagonal, one
can in fact show that

E∼2[M2
i,j] ≲

1
N2 (E∼2Mi,j)

2,
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where E∼2Mi,j can be interpreted as (up to normalization) the predicted (i, j)th covariance entry
by just looking at the degree-2 randomness; see Propositions 8.17 and 8.18 for details. It follows
that the Frobenius norm error of the true covariance compared to the degree-2 covariance is O(1).
Combined with the typical behavior of the degree-2 covariance being essentially the diagonal
matrix ((1 + ξ ′′(0))IdN − A)−1, we conclude an O(1) covariance bound for µHN .

Although this direct moment approach can be made rigorous at sufficiently high temperature,
it will not cover the entire regime (Strict RS) of our main theorem. To deal with this, we will use
the free energy typical truncation recently introduced by [HS23]. The main idea is that, while pairs
σ1, σ2 with overlap R(σ1, σ2) ≍ N−1/2 do not necessarily dominate the second moment E[Z2

N ]

throughout the regime (Strict RS), there is a truncation Z̃N accounting for nearly all of ZN , whose
second moment is dominated by such pairs. We defer the details to the following sections.

7.2 Null models, planted models, and contiguity

As described in the technical overview, we will need a quantitative strengthening of contiguity
between the null and planted models. For convenience, let us restate the definition of the planted
model.

Definition 7.8 (Planted p-spin model). The planted measure µpl is a joint law over a Hamiltonian
HN and a spike x ∈ SN given by

dµpl(HN , x) ∝ exp (HN(x)) · dρ(x) · dµnull(HN),

where ρ is the uniform measure over SN and µnull is the law over p-spin Hamiltonians with mixture
function ξ. We frequently abuse notation to let µpl(HN) denote the marginal of µpl on HN .

Remark 7.14 (Interpretation of planted model). Equivalently, the planted measure µpl can be
described as follows.

• Sample x ∼ SN .

• Sample H̃N ∼ µnull.

• Define HN by HN(σ) = H̃N(σ) + N · ξ(R(x, σ)).

The following Bayesian interpretation of µpl will make the planted model amenable to explicit
calculation. For (x, HN) sampled from µpl, the posterior distribution x|HN is described by the
density:

dµx|HN
(σ) ∝ exp(HN(σ))dρ(σ) .

Therefore, the distribution of (HN , σ) for σ ∼ µHN is identical to that of (HN , x).

In order to show the probability bound of 1 − e−cN1/5
in Lemma 7.6, we will prove the following

quantitative strengthening of mutual contiguity, under the following quantitative strict RS condition.
Note that, since the proof of Theorem 7.2 union bounds over poly(N) many values of β, quantitative
control of the error in Lemma 7.6 is needed to carry out the proof.

Condition 7.15 (ε-strict replica symmetry). We say ξ is ε-strictly replica symmetric if for all q ∈ (0, 1),

1
q2 · (ξ(q) + q + log(1 − q)) ⩽ −ε/2. (7)
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Under this assumption, we prove the following quantitative contiguity result in Section 8.

Proposition 7.16 (Quantitative contiguity). Under Condition 7.15, there exists c = c(ε) > 0 such that

for any event E , if µpl(E) = p, then µnull(E) ⩽ e−cN1/5
+ e

1
c

√
log 2

p p.

Thus, from now on, we work under the planted model. One reason the planted model is
easier to work with is because of the following lemma, which provides a simple description of the
distribution of µt (by describing the distribution of the external field at time t) in the planted model.

Lemma 7.17. Let µt be the distribution after running stochastic localization with the Id driving matrix for
time t initialized at µHN . Then µt arises as the Gibbs distribution of the Hamiltonian HN,t(σ):

HN,t(σ) = HN(σ) + ⟨yt, σ⟩ ,

where
(HN , yt)

law
= (HN , tx +

√
tg) ,

where x ∼ SN , HN ∼ µpl(·|x), and g ∼ N (0, IdN).

Notation (µpl,t, ξt(q), γ(q)). We will use µpl,t to denote the distribution of the pair (HN,t, x), ξt(q) =
ξ(q) + tq to refer to the mixture function of HN,t, and γ(q) to refer to the function qξ ′t(q).

In the subsequent sections, we will prove a high probability covariance bound for µt at a fixed
time t under the planted model.

Lemma 7.18. There exist universal constants c, T, K, such that for any t ∈ [0, T], with probability at least
1 − e−cN1/5

over the randomness of HN drawn from µpl,t, we have ∥Cov(µt)∥ ⩽ K.

We now have all the necessary ingredients to prove the covariance bound along the entire
localization path for the null model.

Proof of Lemma 7.6. Define T as the discrete set {iT/δ : 1 ⩽ i ⩽ 1/δ, i ∈ Z} for δ = N−100. We will
prove:

PrHN

[
Pr(µt)|HN

[
∥Cov(µt)∥ op < K for all t ∈ T

]
⩾ 1 − e−cN1/5

]
⩾ 1 − e−cN1/5

.

A simple continuity argument can be used to derive the desired statement from the above. By
taking a union bound over all elements of T , along with Proposition 7.16 and Lemma 7.18, we can
conclude:

EHN Pr(µt)|HN

[
∥Cov(µt)∥ op > K for some t ∈ T

]
⩽ e−2cN−1/5

.

The resulting statement then follows from Markov’s inequality on the random variable

Pr(µt)|HN

[
∥Cov(µt)∥ op > K for some t ∈ T

]
.
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7.3 TAP planted models

In this section, we formally introduce the TAP planted model and relate it to the planted model
from the previous section.

Definition 7.19. Let HN be a planted Hamiltonian with mixture function ξ, and define

θ(s) = ξ(1)− ξ(s)− (1 − s)ξ ′(s).

The associated TAP free energy is defined by

FTAP(m) = HN(m) +
N
2
· θ (R(m, m)) +

N
2
· log (1 − R(m, m)) .

While the TAP free energy is interesting for a multitude of reasons, we will be interested in it
because its fixed points provide a good proxy for the mean. Furthermore, the linearity of the TAP
free energy in the Gaussian coefficients of the Hamiltonian provides certain desirable properties
(that using the true mean would not allow).

Fact 7.20 ([HMP24, Fact 4.2]). Let ξ be a mixture function satisfying the condition (SL). For any t ∈ [0, ∞),
let ξt(q) = ξ(q) + tq. Then there is a unique solution in [0, 1), which we denote q∗ = q∗(t), to

ξ ′t(q∗) =
q∗

1 − q∗
.

Lemma 7.21. For any K > 0, sufficiently small (constant) ι > 0 and x ∈ SN :

Prµpl,t

[∥∥Cov(µHN,t)
∥∥
op

⩾ K
]

⩽ C · sup
m∈Sι

Prµpl,t|x

[∥∥Cov(µHN,t)
∥∥
op

⩾ K ∧ Eι | ∇FTAP(m) = 0
]1/2

+ 2e−cN ,

where

Sι = Sι(x) :=
{

m ∈ RN : |R(m, m)− q∗|, |R(m, x)− q∗| < ι
}

,

and Eι is the event that FTAP has a unique critical point mTAP in Sι, and that

Prσ∼µHN,t

[
R(σ, mTAP), R(σ, x) ∈ [q∗ − ι, q∗ + ι]

]
⩾ 1 − e−cN .

Proof. The above statement is effectively due to [HMP24, Propositions 4.4(d) and 4.5(a)]. For the
reader’s convenience, we include the steps to arriving at the above statement. For any event E (and
in particular, for the event E defined in [HMP24, Proposition 4.4]), we have:

Pr
[∥∥Cov(µHN,t)

∥∥
op

⩾ K
]
⩽ Pr

[∥∥Cov(µHN,t)
∥∥
op

⩾ K ∧ Eι ∧ E
]
+ Pr

[
E
]
+ Pr

[
Eι

]
.

The desired statement follows by observing that Pr
[
Eι

]
⩽ e−cN by [HMP24, Proposition 4.5(a)],

Pr
[
E
]
⩽ e−cN by [HMP24, Proposition 4.4], and applying [HMP24, Proposition 4.4(d)] with X =

1
[∥∥Cov(µHN,t)

∥∥
op

⩾ K ∧ Eι

]
.

Lemma 7.21 reduces our task to studying the covariance matrix in a conditional planted model.
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Notation (µTAP, HTAP, qm, qx). For x ∼ SN and m ∈ RN , we consider the distribution µTAP,x,m

of HTAP for HTAP ∼ (µpl,t|x,∇FTAP(m) = 0). We use qm and qx to refer to R(m, m) and R(m, x)
respectively.

Lemma 7.22. Let x ∈ SN , let Sι be as in Lemma 7.21, and let m ∈ Sι. Then for an absolute constant K > 0,

PrHTAP∼µTAP,x,m [∥Cov(µHTAP
)∥ ⩾ K ∧ Eι] ⩽ e−cN1/5

.

Proof of Lemma 7.18. The statement is immediate from Lemmas 7.21 and 7.22.

The rest of this section is dedicated to proving Lemma 7.22. As a first step, we determine the
law of the typical Hamiltonian sampled from µTAP. We prove the following lemma in Appendix B
— it follows by routine calculations, using the form of the law of a Gaussian process conditioned on
the value of a linear function of it. Recall that ξt(q) = ξ(q) + tq.

Lemma 7.23. The law of Hamiltonian HTAP ∼ µTAP,x,m is described by a Gaussian process (HTAP(σ))σ∈SN

defined by

E HTAP(σ) = Nξt(R(x, σ))− ⟨x, v(σ)⟩ · ξ ′t(qx)−
ξ ′t(R(m, σ))

γ′(qm)
· ⟨m, σ⟩ ·

(
θ′(qm)−

1
1 − qm

)
1
N

Cov
(

HTAP(σ), HTAP

(
σ′)) = ξt

(
R(σ, σ′)

)
− R(σ, σ′)

ξ ′t(R(m, σ))ξ ′t(R(m, σ′))

ξ ′t(qm)

+
ξ ′′t (qm)

γ′(qm)ξ ′t(qm)
γ(R(m, σ))γ(R(m, σ′)),

where

v(σ) :=
ξ ′t(R(m, σ))

ξ ′t(qm)

[
I − ξ ′′t (qm)

γ′(qm)
· mm⊤

N

]
σ

γ(q) := q · ξ ′t(q) .

For the proofs below, it will also be helpful to consider Hamiltonians with a linear term
representing an external field. For a sequence γ1, γ2, . . . , γp∗ , consider the following generalization
of HN from (5):

HN(σ) := ∑
p⩾1

γp

N(p−1)/2

N

∑
i1,...,ip=1

gi1,...,ip σi1 · · · σip . (8)

This has mixture function
ξ(s) = ∑

p⩾1
γ2

pqp.

We will write ξ∼1(s) = ∑p⩾2 γ2
pqp for the part of ξ with degree at least 2, and extend Condition 7.15

to such ξ as follows.

Condition 7.24 (ε-strict replica symmetry). We say ξ is ε-strictly replica symmetric if γ2
1 ⩽ N−4/5

and ξ∼1 satisfies Condition 7.15.
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7.4 Slices in TAP planted models

For succinctness, we shall fix x ∈ SN and m ∈ Sι(x), and use µTAP to refer to the distribution
µTAP,x,m. For HTAP ∼ µTAP, we are interested in bounding the covariance of µHTAP

. To reason about
µHTAP

, we write it as a mixture of distributions over (N − 2)-dimensional slices of SN . For a, b ∈ R,
we define

S(a, b) :=
{

σ ∈ SN : R(σ, m) =

(
1 +

a√
N

)
qm, R(σ, x) =

(
1 +

b√
N

)
qx

}
.

Let ra,b refer to the radius of this slice, which is equal to

ra,b =

√
1 − qm

(
1 +

a√
N

)2

− qmq2
x

qm − q2
x

(
a − b√

N

)2

.

Note in particular that

qm

(
1 +

a√
N

)2

+
qmq2

x
qm − q2

x

(
a − b√

N

)2

⩾ qm

(
1 +

a√
N

)2

. (9)

We refer to the uniform distribution on this slice as ρa,b, and the partition function on the slice as

Za,b := Eσ∼ρa,b exp(HTAP(σ)) .

With this definition, the partition function of the original Hamiltonian is given by

Z = ΛN

∫
Za,brN−4

a,b d(a, b)

for some fixed number ΛN depending only on N.

Remark 7.25. To see why we scale by rN−4
a,b , observe that when HTAP is the constant-0 Hamiltonian,

the resulting distribution on the sphere should be uniform. The distribution restricted to each slice
must also be uniform. However, not all slices are weighted equally — slice that have smaller radii
must be downweighted accordingly, with this weighting proportional to rN−4

a,b for S(a, b).1

Use ν to refer to the distribution over (a, b) where dν(a, b) ∝ Za,brN−4
a,b d(a, b), and µa,b to refer

to the distribution µHTAP
restricted to S(a, b). Now, we can write µHTAP

as the following mixture:

µHTAP
= E(a,b)∼νµa,b .

We will need coarse understanding of the tails of ν, and fine understanding of the distribution
µa,b for small a and b.

Now, let us probe the distribution µa,b.

dµa,b

dρa,b
(σ) =

exp(HTAP(σ))

Eσ∼ρa,b exp(HTAP(σ))

Since S(a, b) can be naturally identified with SN−2, the first step to understanding µa,b is to express
it as a p-spin model on SN−2. To do so, we will verify that some Hamiltonian that gives rise to µa,b

1 The constant of proportionality here is something depending only on N.
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has a mixture function that is given by a polynomial in the overlap. We can write any σ ∈ S(a, b)
as:

σ =
√

N · v(a, b) +
√

1 − ∥v(a, b)∥ 2︸ ︷︷ ︸
ra,b

σ⊥

for σ⊥ ∈ SN orthogonal to m and x, and for v(a, b) in the span of m and x. Let Q be an isometric
linear transformation that maps SN−2 to SN ⊥ {m, x}. We can write HTAP(σ) = HTAP(v(a, b) +
ra,bQτ) (where τ ∈ SN−2). The following is a consequence of Lemma 7.23, and is proved in
Appendix B.

Corollary 7.26. For a fixed choice of a and b, the Gaussian process (HTAP(v(a, b) + ra,bQτ))τ∈SN−2
is

described by the following law.

• Let Ha,b be a spherical p-spin Hamiltonian with mixture function ξa,b given by:

ξa,b(s) := ξt

(
∥v(a, b)∥ 2 + r2

a,bs
)
− ξt

(
∥v(a, b)∥ 2

)
− s ·

r2
a,bξ ′t

(
qm ·

(
1 + a√

N

))2

ξ ′t(qm)
.

• Let V(a, b) := ξt

(
∥v(a, b)∥ 2

)
− ∥v(a, b)∥ 2 ·

ξ ′t

((
1+ a√

N

)
qm

)2

ξ ′t(qm)
+ ξ ′′t (qm)

γ′(qm)ξ ′t(qm)
· γ
((

1 + a√
N

)
qm

)2
.

The law of HTAP(v(a, b) + ra,bQτ) is the same as that of Ha,b(τ)+
√

N · ga,b +EµTAP
HTAP(v(a, b) + ra,bQτ)

where ga,b is a centered Gaussian of variance V(a, b) independent of Ha,b.

Now, HTAP is described by the collection (Ha,b, ga,b)a,b. This is not an independent collection of
random variables. The only structural properties of this collection we will use are:

• For each a, b ∈ R, we have Ha,b and ga,b are independent.

• For any a, b, we have ga,b = g0,0 + ĝa,b, where ĝa,b is a centered Gaussian of variance O
(

a4+b4

N2

)
.

We will first give an explicit form for v(a, b).

Fact 7.27. We have

√
N · v(a, b) = m ·

(
1 +

aqm − bq2
x√

N(qm − q2
x)

)
+

qmqx

qm − q2
x

x ·
(

b − a√
N

)
.

Lemma 7.28. There exists ε = ε(ξ) > 0 such that for all t ⩾ 0 and all |a|, |b| ⩽ εN1/10, the mixture
function ξa,b defined in Corollary 7.26 (recall this implicitly depends on t) is ε-strictly replica symmetric
(Condition 7.24).

Proof. We will first show ξ ′a,b(0) ⩽ N−4/5. We calculate:

ξ ′a,b(0) = r2
a,bξ ′t

(
∥v(a, b)∥2)− r2

a,bξ ′t

(
qm

(
1 + a√

N

))2

ξ ′t(qm)

⩽ ξ ′t

(
qm +

2aqm√
N

+ O
(

a2 + b2

N

))
−

ξ ′t

(
qm

(
1 + a√

N

))2

ξ ′t(qm)
.
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Here, the inequality follows from the fact that ∥v(a, b)∥2 = qm

(
1 + a√

N

)2
+ O

(
a2+b2

N

)
, ξ ′t is non-

decreasing, and r2
a,b ⩽ 1. Now, we have, using the O(1)-Lipschitzness of ξ ′t,

ξ ′t
(
∥v(a, b)∥2) = ξ ′t(qm) + ξ ′′t (qm) ·

2aqm√
N

+ O
(

a2 + b2

N

)
and

ξ ′t

(
qm

(
1 +

a√
N

))2

= ξ ′t(qm)
2 +

2aqm√
N

· ξ ′′t (qm) · ξ ′t(qm) + O
(

ξ ′t(qm) ·
a2 + b2

N

)
.

Thus ξ ′a,b(0) = O( a2+b2

N ). Setting ε sufficiently small ensures ξ ′a,b(0) ⩽ N−4/5. Next, we show
(ξa,b)∼1 satisfies Condition 7.15. Since ξ satisfies (SL), there exists sufficiently small ε = ε(ξ) such
that ξ ′′(q) ⩽ 1−ε

(1−q)2 for all q ∈ [0, 1). Then,

ξ ′′a,b(q) =
(

1 − ∥v(a, b)∥ 2
)2

ξ ′′t

(
∥v(a, b)∥ 2 +

(
1 − ∥v(a, b)∥ 2

)
q
)

⩽
(

1 − ∥v(a, b)∥ 2
)2

· 1 − ε(
1 − ∥v(a, b)∥ 2 −

(
1 − ∥v(a, b)∥ 2

)
q
)2

=
1 − ε

(1 − q)2 ⩽
1

(1 − q)2 − ε.

Integrating twice shows

(ξa,b)∼1(q) + q + log(1 − q) ⩽
1
2

εq2.

We are now ready to bound Cov(µHTAP
). First, recall that for any distribution µ over RN and

any vector v ∈ RN , we have Cov(µ) ⪯ Eσ∼µ(σ − v)(σ − v)⊤. Thus it suffices to bound

Eσ∼µHTAP
(σ − m)(σ − m)⊤

= E(a,b)∼νEσ∼µa,b(σ − v(a, b) + v(a, b)− m)(σ − v(a, b) + v(a, b)− m)⊤

⪯ 2E(a,b)∼νEσ∼µa,b(σ − v(a, b))(σ − v(a, b))⊤ + 2E(a,b)∼ν(v(a, b)− m)(v(a, b)− m)⊤ .
(10)

We will bound the spectral norm of each of the above terms below. We employ the following
statement for proving the desired bounds, proved in Section 8.

Theorem 7.29. Suppose ε > 0, and ξ is ε-strictly replica symmetric (Condition 7.24). Then, there exist
c = c(ε) and C = C(ε) such that the following hold with probability 1 − e−cN1/5

.

(a) We have ∇2HN(0) ⪯ (1 + ξ ′′(0)− ε2/8)IN and∣∣∣∣log ZN − Nξ(1)
2

− Nξ ′′(0)
4

− log(1 − ξ ′′(0))
2

+
1
2

log det
(
(1 + ξ ′′(0))IN −∇2HN(0)

)∣∣∣∣ ⩽ 1.

(b) The Gibbs measure satisfies ∥EµHN
σσ⊤∥op ⩽ C(1 + γ2

1N).
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Bounding the first term. Observe that:

Eσ∼µa,b(σ − v(a, b))(σ − v(a, b))⊤ = r2
a,bQa,bEτ∼µHa,b

ττ⊤Q⊤
a,b .

Thus, ∥∥∥Eσ∼µa,b(σ − v(a, b))(σ − v(a, b))⊤
∥∥∥ = r2

a,b

∥∥∥Eτ∼µHa,b
ττ⊤

∥∥∥ ⩽ Cr2
a,b(1 + a2 + b2) . (11)

where the inequality follows from Lemma 7.28 and Theorem 7.29.
Our next goal is to control the fluctuations of (a, b). By definition, if Ẑa,b is the partition function

of the distribution with Hamiltonian Ha,b defined by Ha,b(τ) = HTAP(v(a, b) + ra,bQτ), we have

ν(a, b) ∝ exp
(

log Ẑa,b + (N − 4) log ra,b + EµTAP
HTAP(v(a, b)) +

√
Nga,b

)
. (12)

We will show that (a, b) ∼ ν, conditioned on |a|, |b| ⩽ εN1/10 for ε as in Lemma 7.28, is subgaussian
with variance O(1). We will also show in Lemma 7.36 that ν places very little mass outside the set
|a|, |b| ⩽ εN1/10.

Lemma 7.30. Let ε be as in Lemma 7.28. On an event with probability 1 − e−cN1/5
, the following holds.

The density of (a, b) under ν, conditioned on |a|, |b| ⩽ εN1/10, is given by

ν(a, b) ∝ exp
(

NÊa,b +
√

Nga,b + Error(1)a,b + Error(2)a,b + ∆a,b

)
,

where |∆a,b| ⩽ 1 and

Êa,b =
ξa,b(1)

2
+ log ra,b +

1
N

EµTAP
HTAP(v(a, b))− ξt(1)

2

=
1
2

log r2
a,b − ξt(∥v(a, b)∥2)− r2

a,b ·
ξ ′t

(
qm

(
1 + a√

N

))2

ξ ′t(qm)


− γ(qx) ·

ξ ′t

(
qm

(
1 + a√

N

))
ξ ′t(qm)

·
((

1 +
b√
N

)
− qm · ξ ′′t (qm)

γ′(qm)
·
(

1 +
a√
N

))

+ ξt

(
qx

(
1 +

b√
N

))
+

γ
(

qm

(
1 + a√

N

))
γ′(qm)

·
(
(1 − qm)ξ

′′
t (qm) +

1
1 − qm

)
.

for the error terms

Error(1)a,b =

(
log Ẑa,b −

Nξa,b(1)
2

−
Nξ ′′a,b(0)

4
+

1
2

log det
(
(1 + ξ ′′a,b(0))Id −∇2HN(v(a, b))

))
− 4 log ra,b

and

Error(2)a,b =
Nξ ′′a,b(0)

4
− 1

2
log det

(
(1 + ξ ′′a,b(0))Id −∇2HN(v(a, b))

)
The above follows by expanding out all the terms in the expression (12) for the density of

ν and evaluating the term log Ẑa,b using Theorem 7.29, which applies because the models ξa,b

for |a|, |b| ⩽ εN1/10 are ε-strictly replica symmetric by Lemma 7.28. Because the conclusion of
Theorem 7.29 holds with probability 1 − e−cN1/5

, we may evaluate log Ẑa,b over a 1/poly(N)-net of
such (a, b) via a union bound, and then infer the estimate for all such a, b by a standard continuity
argument.
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Lemma 7.31. ∇Êa,b

∣∣∣
(a,b)=(0,0)

= 0.

Lemma 7.32. There exist constants η, ε > 0 such that for all |a|, |b| ⩽ ε
√

N, N∇2Êa,b ⪯ −ηId.

The above follow from routine calculations, which we defer to Appendix B.

Lemma 7.33. For every constant ι > 0, there is a constant c such that with probability 1 − e−cN , for all
a, b, we have |ga,b − g0,0| ⩽ ι a2+b2

√
N

.

Lemma 7.34. With probability 1 − e−cN1/5
, |Error(1)a,b | = O(1) uniformly for all |a|, |b| < εN1/10, for ε as

in Lemma 7.28.

Proof. We shall show this very high probability bound for a fixed a, b. Constructing a net over the
relevant a, b and performing a union bound over this net allows us to extend this to a uniform
bound for all a, b; we omit the details. We may write the error term as

Error(1)a,b = log Ẑa,b −
Nξa,b(1)

2
−

log
(

1 − ξ ′′a,b(0)
)

2

−
Nξ ′′a,b(0)

4
+

1
2

log det
(
(1 + ξ ′′a,b(0))Id −∇2Ha,b(0)

)
+ O(1).

Due to the bound on a and b, the above is O(1) with very high probability by Theorem 7.29(a). The
desideratum follows.

Lemma 7.35. For any sufficiently small ι > 0, with probability at least 1 − e−cN ,
∣∣∣Error(2)a,b − Error(2)0,0

∣∣∣ =
O (1) for all a, b < ιN1/4.

We relegate the proof of the above to the appendix Appendix B. The idea of the proof is that the
Hessian ∇2Ha,b(0) does not deviate too much for small variations in a, b – the first order terms in
the deviation end up being cancelled by the ξ ′′a,b(0)/2 term, while the second order terms are O(1).

Lemma 7.36. Let Eι be as in Lemma 7.21. With probability 1 − e−cN1/5
, either Eι does not hold, or the

following holds. For ε as in Lemma 7.28,

Pr(a,b)∼ν

[
|a| ⩽ εN1/10 and |b| ⩽ εN1/10

]
⩾ 1 − e−cN1/5

.

Proof. On the event Eι, we have

Pr(a,b)∼ν

[
|a| > ιN1/2 or |b| > ιN1/2

]
⩽ e−cN .

Thus, let
T =

{
(a, b) ∈ R2 : |a| ∈ [εN1/10, ιN1/2] or |b| ∈ [εN1/10, ιN1/2]

}
.

It suffices to show that Pr(a,b)∼ν[(a, b) ∈ T] ⩽ e−cN1/5
with probability 1− e−cN1/5

. Recall the density
of (a, b) ∼ ν is given by (12), and that EẐa,b = eNξa,b(1)/2. Thus, for Ê denoting expectation with
respect to the Ẑa,b alone,

Ê
∫

T
exp

(
log Ẑa,b + (N − 4) log ra,b + EµTAP

HTAP(v(a, b)) +
√

Nga,b

)
d(a, b)
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=
∫

T
exp

(
NÊa,b +

Nξt(1)
2

+
√

Nga,b − 4 log ra,b

)
d(a, b).

On the event in Lemma 7.33, we have, for any constant ι > 0,
√

Nga,b ⩽
√

Ng0,0 + ι(a2 + b2).

By Lemma 7.32,
NÊa,b ⩽ NÊ0,0 − η(a2 + b2).

Combining shows that

NÊa,b +
√

Nga,b − 4 log ra,b ⩽ NÊ0,0 +
√

Ng0,0 −
η

2
(a2 + b2) + O(1).

Combining shows

Ê
∫

T
exp

(
log Ẑa,b + (N − 4) log ra,b + EµTAP

HTAP(v(a, b)) +
√

Nga,b

)
d(a, b)

⩽ e−cN1/5
exp

(
NÊ0,0 +

Nξt(1)
2

+
√

Ng0,0

)
and therefore with probability 1 − e−cN1/5/2 over the Ẑa,b,∫

T
exp

(
log Ẑa,b + (N − 4) log ra,b + EµTAP

HTAP(v(a, b)) +
√

Nga,b

)
d(a, b)

⩽ e−cN1/5/2 exp
(

NÊ0,0 +
Nξt(1)

2
+
√

Ng0,0

)
(13)

On the other hand, Lemma 7.30 implies that with probability 1 − e−cN1/5
,

log Ẑ0,0 + (N − 4) log r0,0 + EµTAP
HTAP(v(0, 0)) +

√
Ng0,0

= NÊ0,0 +
Nξt(1)

2
+
√

Ng0,0 + Error(1)0,0 + Error(2)0,0 + O(1),

and Lemma 7.34 implies |Error(1)0,0 | = O(1) with probability 1 − e−cN1/5
. Furthermore, Lemma 8.3

below implies that |Error(2)0,0 | ⩽ N1/10 with probability 1 − e−cN1/5
. Thus

log Ẑ0,0 + (N − 4) log r0,0 + EµTAP
HTAP(v(0, 0)) +

√
Ng0,0

⩾ NÊ0,0 +
Nξt(1)

2
+
√

Ng0,0 − 2N1/10,

and standard continuity arguments imply that for T′ = {(a, b) : |a|, |b| ⩽ N−10},∫
T′

exp
(

log Ẑa,b + (N − 4) log ra,b + EµTAP
HTAP(v(a, b)) +

√
Nga,b

)
d(a, b)

⩾ e−3N1/10
exp

(
NÊ0,0 +

Nξt(1)
2

+
√

Ng0,0

)
.

Comparing with (13) implies the conclusion, after adjusting c.
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Lemma 7.37. With probability 1 − e−cN1/5
, either Eι does not hold or the following holds. There exists a

random variable X over R2 (coupled with ν) such that the following holds for (a, b) ∼ ν.

(a) With probability at least 1 − e−cN1/5
, X = (a, b).

(b) X has mean O(1) and is O(1)-subgaussian.

Proof. This is an immediate corollary of Lemmas 7.31 to 7.36, setting X to be the random variable
that is equal to (a, b) if |a|, |b| < εN1/10, and 0 otherwise.

We are now finally prepared to bound Cov(µ).

Lemma 7.22. Let x ∈ SN , let Sι be as in Lemma 7.21, and let m ∈ Sι. Then for an absolute constant K > 0,

PrHTAP∼µTAP,x,m [∥Cov(µHTAP
)∥ ⩾ K ∧ Eι] ⩽ e−cN1/5

.

Proof. Note that |a|, |b| ⩽ 2
√

N almost surely. Let X be as in Lemma 7.37. This lemma implies that
with probability at least 1 − e−cN1/5

over the randomness of the Hamiltonian,

E(a,b)∼ν

[
a2 + b2] = E[∥X∥2] + E(a,b)∼ν

[
1[X ̸= (a, b)](a2 + b2)

]
⩽ O(1) + Pr(X ̸= (a, b)) · 8N = O(1).

Thus, by plugging in (11) along with this observation into (10), we get that the following holds
with probability at least 1 − e−cN1/5

∥Cov(µ)∥ ⩽ 2CE(a,b)∼ν(1 + a2 + b2) + ∥2E(a,b)∼ν(v(a, b)− m)(v(a, b)− m)⊤∥
⩽ O(1) + 2E(a,b)∼ν∥v(a, b)− m∥ 2

⩽ O(1) + 2E(a,b)∼ν

[
O(a2 + b2)

]
⩽ O(1) .

8 High-probability covariance bound of replica symmetric spherical
spin glass

In this section we prove the main technical input to the proofs in Subsection 7.4. This takes the
form of a high-probability bound on the partition function and covariance matrix (in fact, second
moment matrix) of a spherical spin glass in the replica symmetric phase.

In this section, we let HN be defined as in (8), with a linear term corresponding to an external
field:

HN(σ) := ∑
p⩾1

γp

N(p−1)/2

N

∑
i1,...,ip=1

gi1,...,ip σi1 · · · σip .

We recall ξ∼1(q) = ∑p⩾2 γ2
pqp denotes the part of ξ without the linear term, and let

ξ∼2(q) = γ2
1q + ∑

p⩾3
γ2

pqp

denote the part of ξ excluding the degree 2 term.
The results in this section hold under the following condition, which we restate for reference.
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Condition 7.24 (ε-strict replica symmetry). We say ξ is ε-strictly replica symmetric if γ2
1 ⩽ N−4/5

and ξ∼1 satisfies Condition 7.15.

Throughout this section, we treat ε > 0 as a constant and let Oε(1) denote a quantity bounded
depending on ε.

Theorem 7.29. Suppose ε > 0, and ξ is ε-strictly replica symmetric (Condition 7.24). Then, there exist
c = c(ε) and C = C(ε) such that the following hold with probability 1 − e−cN1/5

.

(a) We have ∇2HN(0) ⪯ (1 + ξ ′′(0)− ε2/8)IN and∣∣∣∣log ZN − Nξ(1)
2

− Nξ ′′(0)
4

− log(1 − ξ ′′(0))
2

+
1
2

log det
(
(1 + ξ ′′(0))IN −∇2HN(0)

)∣∣∣∣ ⩽ 1.

(b) The Gibbs measure satisfies ∥EµHN
σσ⊤∥op ⩽ C(1 + γ2

1N).

In the below proofs, we allow the constants c and C to change from line to line, but they will
always be uniform in ε. We always set C sufficiently large depending on ε, and then c sufficiently
small depending on ε, C.

Theorem 7.29 will be proved through the following pair of propositions. We introduce the
degree-2 Hamiltonian

HN,2(σ) :=
γ2

N1/2

N

∑
i1,i2=1

gi1,i2 σi1 σi2 =
1
2
⟨∇2HN(0)σ, σ⟩. (14)

Similarly let HN,∼2(σ) = HN(σ)− HN,2(σ) be the non degree-2 part of HN(σ). Define the degree-2
Gibbs measure and partition function by

dµHN,2(σ) =
exp(HN,2(σ))

ZN,2
dρ(σ), ZN,2 =

∫
SN

exp(HN,2(σ))dρ(σ).

Throughout this section, we will let E denote expectation with respect to the disorder coefficients
gi1,...,ip , while ⟨·⟩ denotes averaging with respect to σ ∼ µHN (or several i.i.d. samples σ1, σ2, . . .
from this measure). Similarly, let ⟨·⟩2 denote Gibbs average with respect to µHN,2 .

Note that ∇2HN(0) depends on HN only through HN,2.

Proposition 8.1 (Concentration of degree-2 partition function; proved in Subsection 8.1). With
probability 1 − e−cN over HN,2, we have ∇2HN(0) ⪯ (1 + ξ ′′(0)− ε2/8)IN and∣∣∣∣log ZN,2 −

Nξ ′′(0)
2

− log(1 − ξ ′′(0))
2

+
1
2

log det
(
(1 + ξ ′′(0))I −∇2HN(0)

)∣∣∣∣ ⩽ 1/2.

The following is proved in Subsections 8.2 and 8.3.

Proposition 8.2. There is a HN,2-measurable event with probability 1 − e−cN1/5
on which the following

holds with probability 1 − e−cN1/5
over HN,∼2.

1. The partition functions ZN , ZN,2 satisfy∣∣∣∣log
ZN

ZN,2
− Nξ∼2(1)

2

∣∣∣∣ ⩽ 1/2.
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2. The Gibbs measure satisfies ∥⟨σσ⊤⟩∥op ⩽ C(1 + γ2
1N).

Proof of Theorem 7.29. Immediate from Propositions 8.1 and 8.2, since ξ(1) = ξ∼2(1) + 1
2 ξ ′′(0).

We also show the following concentration of the log determinant in Theorem 7.29.

Lemma 8.3 (Proved in Subsection 8.1). There exists a HN,2-measurable random variable X that the
following holds.

1. With probability 1 − e−cN , X = log det
(
(1 + ξ ′′(0))I −∇2HN(0)

)
− Nξ ′′(0)/2.

2. X has mean Oε(1) and is Oε(1)-subgaussian.

This implies the quantitative contiguity between the planted and null models, which we restate
below for convenience.

Proposition 7.16 (Quantitative contiguity). Under Condition 7.15, there exists c = c(ε) > 0 such that

for any event E , if µpl(E) = p, then µnull(E) ⩽ e−cN1/5
+ e

1
c

√
log 2

p p.

Proof. Let Egood be intersection of the event in Theorem 7.29, the event

X = log det
(
(1 + ξ ′′(0))I −∇2HN(0)

)
− Nξ ′′(0)/2

from Lemma 8.3, and the event X ⩽ t, for some t > 0 to be determined. Then, after adjusting
c = c(ε) as necessary,

µnull(Egood) ⩽ e−cN1/5
+ P(X > t) ⩽ e−cN1/5

+ e−c(t− 1
c )

2
+ .

Note that log EZN = Nξ(1)/2, while on the event Egood,

log ZN =
Nξ(1)− X + Oε(1)

2
⩾

Nξ(1)− t − 1
c

2
.

Thus EZN
ZN

⩽ e
1
2 (t+

1
c ). So,

µnull(E) ⩽ µnull(Egood) +
∫ EZN

ZN
1[HN ∈ E ∩ Egood]dµpl(HN)

⩽ e−cN1/5
+ e−c(t− 1

c )
2
+ + e

1
2 (t+

1
c )p.

We then take t = 1
c +

√
1
c log 1

p , so that this is bounded by

e−cN1/5
+

(
1 + e

1
c +
√

1
c log 1

p

)
p .

Further adjusting c proves the desired bound.
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8.1 Concentration of degree-2 partition function

We write A = 1
2∇2HN(0) =

√
ξ ′′(0)
2 M. It is straightforward to check that M is distributed as a

sample from GOE(N).

Fact 8.4. We have ξ ′′(0) ⩽ 1 − ε.

Proof. Writing (7) as
ξ∼1(q) + q + log(1 − q) ⩽ −εq2/2

and Taylor expanding around q = 0 implies the result.

Fact 8.5. With probability 1 − e−cN , ∇2HN(0) ⪯ (1 + ξ ′′(0)− ε2/8)I.

Proof. With probability 1 − e−cN , we have λmax(M) ⩽ 2 + ε2/8. Then,

λmax
(
(1 + ξ ′′(0)− ε2/8)I −∇2HN(0)

)
⩾ 1 + ξ ′′(0)− ε2/8 −

√
ξ ′′(0)(2 + ε2/8)

= (1 −
√

ξ ′′(0))2 − ε2(1 +
√

ξ ′′(0))/8

> ε2/4 − ε2/4 = 0

by Fact 8.4.

For γ ∈ (λmax(A),+∞), define

G(γ) = γ − 1
2N

log det(γI − A). (15)

Note that
G′(γ) = 1 − 1

2N
Tr(γI − A)−1

is continuous and increasing, with limγ↓λmax(A) G′(γ) = −∞ and limγ↑+∞ G′(γ) = 1. Thus G′ has a
unique root γ∗ in (λmax(A),+∞). The following lemma is a consequence of [HMP24, Lemma 7.3],
which is proved by an analysis of a Laplace transform of the free energy also used in [BL16].

Lemma 8.6. With probability 1 − e−cN over HN,2,

ZN,2 = (1 + O(N−c))

√
2

G′′(γ∗)
(2e)−N/2 exp(NG(γ∗)). (16)

Proof. Recalling (14), we have

HN,2(σ) =

√
ξ ′′(0)
2

⟨Mσ, σ⟩,

and Fact 8.4 implies the factor
√

ξ ′′(0)/2 is bounded away from 1/2. Then [HMP24, Lemma 7.3]
(with u = 0) implies the result.

Define γ0 = (1 + ξ ′′(0))/2. The next lemma shows that, although the variable γ∗ in (16) is
random, we may approximate it deterministically by γ0.

Lemma 8.7. For sufficiently large C depending on ε, and sufficiently small c depending on ε, C, with
probability 1 − e−cN the following holds for all γ ∈ [γ0 − N−1/2, γ0 + N−1/2].
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1. |G′(γ0)| ⩽ 1/(C
√

N).

2. | G′′(γ)
2/(1−ξ ′′(0)) − 1| ⩽ N−1/3.

Proof. Let dρsc(x) = 1
2π 1[|x| ⩽ 2]

√
4 − x2 dx denote Wigner’s semicircle law, and

f1(x) = 1 − 1
1 + ξ ′′(0)− 2

√
ξ ′′(0)x

, f2(x) =
2

(1 + ξ ′′(0)− 2
√

ξ ′′(0)x)2
.

For k ∈ [2], let

Lk =
∫

fk(x) dρsc(x).

We will show that with probability 1 − e−cN , for each k ∈ [2],∣∣∣G(k)(γ0)− Lk

∣∣∣ ⩽ 1
C
√

N
. (17)

Recall that M ∼ GOE(N). For f : R → R, define the spectral trace

Tr f (M) =
N

∑
i=1

f (λi(M)).

Note that G(k)(γ0) = N−1 · Tr fk(M). Define

f̃k(x) = fk(min(x, 2 + ε2/8)).

By the proof of Fact 8.5, 1 + ξ ′′(0)− 2
√

ξ ′′(0)x ⩾ ε2/8 for x ⩽ 2 + ε2/8, so f̃k is Oε(1)-Lipschitz.
Moreover, λmax(M) ⩽ 2 + ε2/8 with probability 1 − e−cN , and on this event Tr fk(M) = Tr f̃k(M).

By [GZ00, Lemma 1.2(b)], if we write Mi,i =
√

2/NZi,i, Mi,j =
√

1/NZi,j, then Tr f̃k(M)

is a Oε(1)-Lipschitz function of the standard gaussians (Zi,j)1⩽i⩽j⩽N . Thus Tr f̃k(M) is Oε(1)-
subgaussian, i.e.

P(|Tr f̃k(M)− E Tr f̃k(M)| ⩾ t) ⩽ 2e−t2/C

for some C = Oε(1). By [BY05, Theorem 1.1],

Tr f̃k(M)− NLk

converges in distribution to a gaussian with mean and variance Oε(1). Combined with subgaus-
sianity of Tr f̃k(M), this implies

|E Tr f̃k(M)− NLk| = Oε(1).

It follows that (after possibly increasing C = Oε(1)),

P(|Tr f̃k(M)− NLk| ⩾ t) ⩽ 2e−(t−C)2
+/C.

Thus

P(|G(k) − Lk| ⩾ t) ⩽ P(Tr fk(M) ̸= Tr f̃k(M)) + P(|Tr f̃k(M)− NLk| ⩾ Nt)

⩽ e−cN + 2e−(Nt−C)2
+/C.

51



Plugging in t = 1/(C
√

N) proves (17). Next, direct calculations show L1 = 0, L2 = 2
1−ξ ′′(0) . The

former directly implies conclusion (1), and the latter implies∣∣∣∣G′′(γ0)−
2

1 − ξ ′′(0)

∣∣∣∣ ⩽ 1
C
√

N
.

Moreover, on the probability 1 − e−cN event that λmax(M) ⩽ 2 + ε2/8, G(3)(γ) = Oε(1) for all
γ ∈ [γ0 − N−1/2, γ0 + N−1/2]. This implies the conclusion (2).

Lemma 8.3 is proved by the same method, and we present the proof here.

Proof of Lemma 8.3. Let

f0(x) = log
(

1 + ξ ′′(0)−
√

ξ ′′(0)x
)

.

An elementary calculation shows that

L0 :=
∫

f0(x) dρsc(X) = ξ ′′(0)/2.

Proceeding as in the above proof, we have

log det
(
(1 + ξ ′′(0))I −

√
ξ ′′(0)∇2HN(0)

)
= Tr f0(M).

If we take f̃0(x) = f0(min(x, 2 + ε2/8)), then Tr f0(M) = Tr f̃0(M) with probability 1 − e−cN . The
same proof shows Tr f̃0(M) is Oε(1)-subgaussian, and

|E Tr f̃0(M)− NL0| = Oε(1).

Thus we may take X = Tr f̃0(M)− NL0 = Tr f̃0(M)− Nξ ′′(0)/2.

Proof of Proposition 8.1. The assertion ∇2HN(0) ⪯ (1 + ξ ′′(0)− ε2/8)IN is proved in Fact 8.5. Sup-
pose the events in Lemmas 8.6 and 8.7 occur. Since γ∗ is the solution to G′(γ∗) = 0, we have

|γ0 − γ∗| ⩽ |G′(γ0)| ·
1 − ξ ′′(0)

2(1 − N−1/3)
⩽

1
C
√

N
.

So,

N|G(γ0)− G(γ∗)| ⩽
N
2
|γ0 − γ∗|2 sup

γ∈[γ0−N−1/2,γ0+N−1/2]

G′′(γ) ⩽
1

C2 · 2(1 + N−1/3)

1 − ξ ′′(0)
⩽

3
C2ε

.

Moreover, ξ ′′(γ0)/ξ ′′(γ∗) = 1 + O(N−1/3). Combining with Lemma 8.6 shows that, for some ∆
satisfying |∆| ⩽ 3

C2ε
,

ZN,2 = (1 + O(N−c))e∆

√
2

G′′(γ0)
(2e)−N/2 exp(NG(γ0))

= (1 + O(N−c))e∆
√

1 − ξ ′′(0)(2e)−N/2 exp(Nγ0)det
(

γ0 I − 1
2
∇2HN(0)

)−1/2

= (1 + O(N−c))e∆
√

1 − ξ ′′(0) exp
(

Nξ ′′(0)/2
)

det
(
(1 + ξ ′′(0))I −∇2HN(0)

)−1/2
.

Taking a logarithm and setting C sufficiently large concludes the proof.
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Finally, the following concentration estimates for samples from µHN,2 will be useful in the sequel.
This is proved similarly to [HMP24, Lemma 7.5], and we defer the proof to Appendix B.3.

Let v1, . . . , vN denote the (unit) eigenvectors of ∇2HN(0). These are well defined on the almost
sure event that all eigenvalues of ∇2HN(0) have multiplicity 1.

Proposition 8.8. With probability 1 − e−cN over HN,2, the following holds. Let σ, σ1, σ2 ∼ µHN,2 , and let
W = ⟨σ, vi⟩ for any i ∈ [N], or W = ⟨σ1, σ2⟩/

√
N. Then:

1. For any 0 ⩽ t ⩽ N1/5, P(|W| ⩾ t) ⩽ 3e−ct2
.

2. For any k ∈ 2N, there exists Ck > 0 independent of N such that ⟨Wk⟩2 ⩽ Ck.

In particular, part (2) implies ∥⟨σσ⊤⟩2∥op ⩽ C.

8.2 Conditional positive probability bounds for non degree-2 part

In this subsection, we prove the following propositions, which establish a weaker version of
Proposition 8.2 with positive instead of high probability.

Proposition 8.9. There is a HN,2-measurable event with probability 1 − e−cN1/5
on which, with probability

1 − N−1/15 over HN,∼2, ∣∣∣∣log
ZN

ZN,2
− Nξ∼2(1)

2

∣∣∣∣ = O(N−1/15).

Proposition 8.10. There is a HN,2-measurable event with probability 1− e−cN1/5
on which, with probability

1/2 over HN,∼2, ∥∥∥∥ ZN

ZN,2eNξ∼2(1)/2
⟨σσ⊤⟩ − ⟨σσ⊤⟩2

∥∥∥∥2

F
⩽ C(1 + γ4

1N2).

In conjunction with Propositions 8.8 and 8.9, the above immediately implies a positive probabil-
ity bound on the second moment matrix ⟨σσ⊤⟩.

Both propositions rely on the following truncation to ZN developed in [HS23], which allows
one to estimate ZN via the second moment method throughout the strictly RS regime. As shown
in the following lemma, this truncation does not significantly affect the first moment; at the same
time, it will force the second moment to be dominated by pairs of nearly-orthogonal points.

Lemma 8.11. The following holds for sufficiently small c > 0 depending on ε. Let

T = T(HN) :=
{

σ ∈ SN :
∫

SN

1[|R(σ, τ)| ⩾ N−2/5]eHN(τ) dρ(τ) ⩽ eNξ(1)/2−cN1/5
}

.

Then, we have:

E
∫

SN

1[σ ̸∈ T]eHN(σ) dρ(σ) ⩽ eNξ(1)/2−cN1/5
, (18)

E
∫

SN

1[σ ̸∈ T]eHN,2(σ) dρ(σ) ⩽ eNξ ′′(0)/4−cN1/5
, (19)

E
∫

SN

1[σ1 ̸∈ T, |R(σ1, σ2)| ⩽ 3N−2/5]eHN(σ
1)+HN(σ

2) dρ⊗2(σ1, σ2) ⩽ eNξ(1)−cN1/5
, (20)

E
∫

SN

1[σ1 ̸∈ T, |R(σ1, σ2)| ⩽ 3N−2/5]eHN,2(σ
1)+HN(σ

2) dρ⊗2(σ1, σ2) ⩽ eNξ(1)/2+Nξ ′′(0)/4−cN1/5
. (21)
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The proof of the above lemma is very similar to [HS23, Proposition 3.1] and [HMP24, Lemma
7.9], and we defer it to Appendix B.3. As a corollary, we can get control on the first two moments of
ZN with respect to the randomness in HN,∼2. To this end, let E∼2 denote expectation with respect
to HN,∼2.

Corollary 8.12. There is a HN,2-measurable event with probability 1 − e−cN1/5
on which the following

holds. For

T̃ = T̃(HN,∼2) :=
{

σ ∈ SN : ⟨1[|R(σ, τ)| ⩾ N−2/5]eHN,∼2(τ)⟩2 ⩽ eNξ∼2(1)/2−cN1/5
}

, (22)

where the Gibbs average is with respect to τ ∼ ⟨·⟩2, we have

E∼2

〈
1[σ ̸∈ T̃]eHN,∼2(σ)

〉
2
⩽ eNξ∼2(1)/2−cN1/5

,

E∼2

〈
1[σ ̸∈ T̃]

〉
2
⩽ e−cN1/5

,

E∼2

〈
1[σ1 ̸∈ T̃, |R(σ1, σ2)| ⩽ 3N−2/5]eHN,∼2(σ

1)+HN,∼2(σ
2)
〉

2
⩽ eNξ∼2(1)−cN1/5

,

E∼2

〈
1[σ1 ̸∈ T̃, |R(σ1, σ2)| ⩽ 3N−2/5]eHN,∼2(σ

2)
〉

2
⩽ eNξ∼2(1)/2−cN1/5

.

Proof. By Proposition 8.1 and Lemma 8.3, with probability 1 − e−cN2/5
over HN,2,

ZN,2 ⩾ eNξ ′′(0)/4−cN1/5/2.

On this event, for σ ∈ T where T is as in Lemma 8.11,〈
1[|R(σ, τ)| ⩾ N−2/5]eHN,∼2(τ)

〉
2
=

1
ZN,2

∫
SN

1[|R(σ, τ)| ⩾ N−2/5]eHN(τ) dρ(τ)

⩽ eNξ∼2(1)/2−cN1/5/2.

Here we recall ξ(1)/2 − ξ ′′(0)/4 = ξ∼2(1)/2. So, σ ∈ T̃(HN,∼2, c/2), where this denotes T̃ defined
with c/2 in place of c. Therefore T ⊆ T̃(HN,∼2, c/2).

By Markov’s inequality and Lemma 8.11, with probability 1 − e−cN1/5/4 over HN,2,

E∼2

∫
SN

1[σ ̸∈ T]eHN(σ) dρ(σ) ⩽ eNξ(1)/2−3cN1/5/4

On the intersection of these events,

E∼2

〈
1[σ ̸∈ T̃(HN,∼2, c/2)]eHN,∼2(σ)

〉
2
⩽ E∼2

〈
1[σ ̸∈ T]eHN,∼2(σ)

〉
2

=
1

ZN,2
E∼2

∫
SN

1[σ ̸∈ T]eHN(σ) dρ(σ)

⩽ eNξ∼2(1)/2−cN1/5/4.

The first conclusion follows by adjusting c, and the other two conclusions follow similarly.

For the rest of this subsection, we condition on a realization of HN,2 satisfying the following
good event.
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Definition 8.13. Let E2 denote the HN,2-measurable event that the events in Proposition 8.8
and Corollary 8.12 hold. This occurs with probability 1 − e−cN1/5

.

We can now prove Proposition 8.9.

Proof of Proposition 8.9. Let T̃ be as in Corollary 8.12. We can write

ZN

ZN,2
= ⟨eHN,∼2(σ)⟩2 = X1 + X2, (23)

where

X1 =
〈

1[σ ∈ T̃]eHN,∼2(σ)
〉

2
, X2 =

〈
1[σ ̸∈ T̃]eHN,∼2(σ)

〉
2

.

We will show that that X2 is much smaller than E∼2X1 with high probability, and then control the
fluctuations of X1. For all σ ∈ SN , E∼2[eHN,∼2(σ)] = eNξ∼2(1)/2, so Corollary 8.12 implies

(1 − e−cN1/5
)eNξ∼2(1)/2 ⩽ E∼2[X1] ⩽ eNξ∼2(1)/2. (24)

On the other hand, by Corollary 8.12 and Markov’s inequality, with probability 1 − e−cN1/5/2 over
HN,∼2,

X2 ⩽ eNξ∼2(1)/2−cN1/5/2, (25)

so X2 ⩽ e−cN1/5/2E∼2X1, as desired.
We now control the fluctuations of X1 by estimating

Var∼2[X1] := E∼2[X2
1 ]− E∼2[X1]

2.

Then, for σ1, σ2 ∼ µHN,2 ,

E∼2[X2
1 ] = E∼2

〈
1[σ1, σ2 ∈ T̃]eHN,∼2(σ

1)+HN,∼2(σ
2)
〉

2
⩽ E∼2[Y1] + E∼2[Y2],

where

Y1 =
〈

1[|R(σ1, σ2)| ⩽ N−2/5]eHN,∼2(σ
1)+HN,∼2(σ

2)
〉

2
,

Y2 =
〈

1[σ1 ∈ T̃, |R(σ1, σ2)| ⩾ N−2/5]eHN,∼2(σ
1)+HN,∼2(σ

2)
〉

2
. (26)

By the definition of T̃ and (24),

E∼2[Y2] ⩽ E∼2

〈
1[σ1 ∈ T̃]eHN,∼2(σ

1)
〉

2
eNξ∼2(1)/2−cN1/5

⩽ eNξ∼2(1)−cN1/5
. (27)

We further calculate

E∼2[Y1] = eNξ∼2(1)
〈

1[|R(σ1, σ2)| ⩽ N−2/5]eNξ∼2(R(σ1,σ2))
〉

2
.

Recall that in Theorem 7.29, we assumed γ2
1 ⩽ N−4/5. Thus, for |R| ⩽ N−2/5,

ξ∼2(R) = γ2
1R + O(R3) = O(N−6/5).

It follows that E∼2[Y1] ⩽ (1 + O(N−1/5))eNξ∼2(1).
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Combining the above estimates shows E∼2[X2
1 ] ⩽ (1 + O(N−1/5))eNξ∼2(1). Further combining

with the lower bound in (24) shows

Var∼2[X1] = O(N−1/5)eNξ∼2(1).

By Chebyshev’s inequality, with probability 1 − N−1/15/2,

|X1 − E∼2[X1]| = O(N−1/15)eNξ∼2(1)/2

Union bounding with the event in (25), and recalling (24), we conclude that with probability
1 − N−1/15,

ZN

ZN,2
= (1 + O(N−1/15))eNξ∼2(1)/2.

The above proof also implies the following estimate, which will be useful in the sequel.

Corollary 8.14. On the event E2 (Definition 8.13), with probability 1 − e−cN1/5
over HN,∼2,∫

1[|R(σ1, σ2)| ⩾ N−2/5}eHN(σ
1)+HN(σ

2) dρ⊗2(σ1, σ2) ⩽ Z2
N,2eNξ∼2(1)−cN1/5

.

Proof. Dividing through by Z2
N,2, it suffices to show, for σ1, σ2 ∼ µHN,2 ,〈

1[|R(σ1, σ2)| ⩾ N−2/5]eHN,∼2(σ
1)+HN,∼2(σ

2)
〉

2
⩽ eNξ∼2(1)−cN1/5

.

The left-hand side is bounded by Y2 + Y3, where Y2 is as in (26) and

Y3 :=
〈

1[σ1 ̸∈ T̃]eHN,∼2(σ
1)+HN,∼2(σ

2)
〉

2
=
〈

1[σ ̸∈ T̃]eHN,∼2(σ)
〉

2

〈
eHN,∼2(σ)

〉
2

.

By (27), E∼2[Y2] ⩽ eNξ∼2(1)−cN1/5
. By Corollary 8.12,

E∼2

〈
1[σ ̸∈ T̃]eHN,∼2(σ)

〉
2
⩽ eNξ∼2(1)/2−cN1/5

, E∼2⟨eHN,∼2(σ)⟩2 ⩽ eNξ∼2(1)/2.

So, the following estimates each hold with probability 1 − e−cN1/5/4 over HN,∼2:

Y2 ⩽ eNξ∼2(1)−cN1/5/2,
〈

1[σ ̸∈ T̃]eHN,∼2(σ)
〉

2
⩽ eNξ∼2(1)/2−3cN1/5/4,

⟨eHN,∼2(σ)⟩2 ⩽ eNξ∼2(1)/2+cN1/5/4.

The conclusion follows on the intersection of these events, after adjusting c.

We now turn to the proof of Proposition 8.10. By rotational invariance of gaussians, we may
assume ∇2HN(0) is diagonal while keeping the law of HN,∼2 unchanged. For i, j ∈ [N], define

Xi,j =
〈

σiσj

(
eHN,∼2(σ)−Nξ∼2(1)/2 − 1[i = j]

)〉
2

,

and note that this equals the (i, j) entry of the matrix appearing in Proposition 8.10. For σ ∈ RN

and i ∈ [N], let σ∼i ∈ RN−1 denote σ with coordinate i omitted. Similarly, for i ̸= j, let σ∼i,j ∈ RN−2
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denote σ with coordinates i and j omitted, and by slight abuse of notation let σ∼i,i = σ∼i. For
i, j ∈ [N] (possibly with i = j) define analogously to T̃

T̃i,j :=
{

σ ∈ SN :
〈

1[|R(σ∼i,j, τ∼i,j)| ⩾ 2N−2/5]eHN,∼2(τ)
〉

2
⩽ eNξ∼2(1)/2−cN1/5

}
, (28)

where we recall the Gibbs average is with respect to τ ∼ ⟨·⟩2. Then define

X̃i,j =
〈

1[|σi|, |σj| ⩽ log N, σ ∈ T̃i,j]σiσj

(
eHN,∼2(σ)−Nξ∼2(1)/2 − 1[i = j]

)〉
2

X̂i,j =

〈
1[|σ1

i |, |σ1
j |, |σ2

i |, |σ2
j | ⩽ log N, |R(σ1

∼i,j, σ2
∼i,j)| ⩽ 2N−2/5]

σ1
i σ1

j σ2
i σ2

j

(
eHN,∼2(σ

1)−Nξ∼2(1)/2 − 1[i = j]
) (

eHN,∼2(σ
2)−Nξ∼2(1)/2 − 1[i = j]

)〉
2
.

Note that X̂i,j is the contribution to X2
i,j coming from σ1, σ2 that are both not localized to coordinate

i or j and have small overlap. The following two lemmas reduce the task of controlling X2
i,j to

bounding E∼2X̂i,j. They are proved by manipulating the typicality truncations T̃ and T̃i,j similarly
to the proofs above; we defer these proofs to Appendix B.3.

Lemma 8.15. For each i, j ∈ [N], with probability 1 − e−c log2 N over HN,∼2,

X2
i,j ⩽ 2X̃2

i,j + e−c log2 N .

Lemma 8.16. For each i, j ∈ [N],

E∼2X̃2
i,j ⩽ E∼2X̂i,j + e−cN1/5

.

We now turn to bounding the E∼2X̂i,j. This is achieved by the following pair of propositions.

Proposition 8.17. For any i ∈ [N], we have E∼2X̂i,i ⩽ C(Nγ4
1 + N−1).

Proposition 8.18. For any distinct i, j ∈ [N], we have E∼2X̂i,j ⩽ C(γ4
1 + N−2).

Throughout the next two proofs, ⟨·⟩2 denotes expectation w.r.t. σ1, σ2 ∼ ⟨·⟩2, and we write
R = R(σ1, σ2), R∼i = R(σ1

∼i, σ2
∼i), and R∼i,j = R(σ1

∼i,j, σ2
∼i,j).

Proof of Proposition 8.17. By direct calculation,

E∼2X̂i,i = E∼2

〈
1[|σ1

i |, |σ2
i | ⩽ log N, |R∼i| ⩽ 2N−2/5]

(σ1
i )

2(σ2
i )

2
(

eHN,∼2(σ
1)−Nξ∼2(1)/2 − 1

) (
eHN,∼2(σ

2)−Nξ∼2(1)/2 − 1
)〉

2

=
〈

1[|σ1
i |, |σ2

i | ⩽ log N, |R∼i| ⩽ 2N−2/5](σ1
i )

2(σ2
i )

2
(

eNξ∼2(R) − 1
)〉

2
.

In view of Proposition 8.8, σ1
i and σ2

i are subgaussian of scale O(1) and R is subgaussian of scale
O(N−1/2). We will see that the above integral is dominated by |σ1

i | ≍ |σ2
i | ≍ 1 and |R| ≍ N−1/2, in
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which case Taylor expanding eNξ∼2(R) shows this integral has the desired scale. Formally, we can
write the above integral as Y(1)

i,i + Y(2)
i,i , where

Y(1)
i,i =

〈
1[|σ1

i |, |σ2
i | ⩽ log N, |R∼i| ⩽ 2N−1/2 log N](σ1

i )
2(σ2

i )
2
(

eNξ∼2(R) − 1
)〉

2

Y(2)
i,i =

〈
1[|σ1

i |, |σ2
i | ⩽ log N, 2N−1/2 log N ⩽ |R∼i| ⩽ 2N−2/5](σ1

i )
2(σ2

i )
2
(

eNξ∼2(R) − 1
)〉

2

are the contributions from |R∼i| smaller and larger than 2N−1/2 log N.
We first address Y(2)

i,i . Note that on the event in the indicator in Y(2)
i,i , |R| ⩽ 3N−2/5. Thus, as

γ2
1 ⩽ N−4/5,

N|ξ∼2(R)| ⩽ Nγ2
1R + O(NR3) = O(N−1/5).

It follows that |eNξ∼2(R) − 1| ⩽ 1. Then, by Cauchy–Schwarz,

Y(2)
i,i ⩽

〈
1[|R| ⩾ N−1/2 log N](σ1

i )
2(σ2

i )
2
〉

2

⩽
〈

1[|R| ⩾ N−1/2 log N]
〉1/2

2

〈
(σ1

i )
2(σ2

i )
2
〉1/2

2

⩽ e−c log2 N · O(1) = e−c log2 N , (29)

where we have used Proposition 8.8(1) for the tail probability and Proposition 8.8(2) for the
coordinate moments.

Next we turn to Y(1)
i,i . On the event in the indicator in Y(1)

i,i , |R| ⩽ 3N−1/2 log N, so

N|ξ∼2(R)| ⩽ Nγ2
1R + O(NR3) = O(N−3/10 log N),

where we recall γ2
1 ⩽ N−4/5. Thus, Taylor expanding the exponential and ξ∼2,

Y(1)
i,i =

〈
1[|σ1

i |, |σ2
i | ⩽ log N, |R∼i| ⩽ 2N−1/2 log N](σ1

i )
2(σ2

i )
2

(
Nξ∼2(R) + 1

2 N2ξ∼2(R)2 + 1
6 N3ξ∼2(R)3) 〉

2
+ O(N−6/5 log8 N)

=

〈
1[|σ1

i |, |σ2
i | ⩽ log N, |R∼i| ⩽ 2N−1/2 log N](σ1

i )
2(σ2

i )
2

(
N(γ2

1R + γ2
3R3 + γ2

4R4) + 1
2 N2(γ2

1R + γ2
3R3)2 + 1

6 N3γ6
1R3
)〉

2
+ O(N−11/10 log9 N).

By exchangeability of (σ1
i ,−σ1

i ), (σ
2
i ,−σ2

i ), and (R∼i,−R∼i), all the odd degree in R terms vanish,
leaving

Y(1)
i,i = 1

2 N2γ4
1Q2 + (Nγ2

4 + N2γ2
1γ2

3)Q4 +
1
2 N2γ4

3Q6 + o(N−1),

and where we have introduced the notation

Qk :=
〈

1[|σ1
i |, |σ2

i | ⩽ log N, |R∼i| ⩽ 2N−1/2 log N](σ1
i )

2(σ2
i )

2Rk
〉

2
.

By Cauchy–Schwarz and Proposition 8.8, for each k ∈ {2, 4, 6},

Qk ⩽
〈
(σ1

i )
4(σ2

i )
4
〉1/2

2
⟨R2k⟩1/2

2 = O(N−k/2).

This implies Y(1)
i,i ⩽ C(Nγ4

1 + N−1). Combining with the bound (29) on Y(2)
i,i implies the result.
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Proof of Proposition 8.18. We calculate as above

E∼2X̂i,j ⩽ E∼2

〈
1[|σ1

i |, |σ1
j |, |σ2

i |, |σ2
j | ⩽ log N, |R∼i,j| ⩽ 2N−2/5]

σ1
i σ1

j σ2
i σ2

j eHN,∼2(σ
1)+HN,∼2(σ

2)−Nξ∼2(1)
〉

2

=
〈

1[|σ1
i |, |σ1

j |, |σ2
i |, |σ2

j | ⩽ log N, |R∼i,j| ⩽ 2N−2/5]σ1
i σ1

j σ2
i σ2

j eNξ∼2(R)
〉

2
.

Our strategy for evaluating this will be similar as above, except that because this integral contains
σ1

i σ1
j σ2

i σ2
j instead of (σ1

i )
2(σ2

i )
2, we will need to expand the exponential more carefully to obtain

cancellations in these terms. Formally, we write the above integral as Y(1)
i,j + Y(2)

i,j for

Y(1)
i,j =

〈
1[|σ1

i |, |σ1
j |, |σ2

i |, |σ2
j | ⩽ log N, |R∼i,j| ⩽ 2N−1/2 log N]σ1

i σ1
j σ2

i σ2
j eNξ∼2(R)

〉
2

,

Y(2)
i,j =

〈
1[|σ1

i |, |σ1
j |, |σ2

i |, |σ2
j | ⩽ log N, 2N−1/2 log N ⩽ |R∼i,j| ⩽ 2N−2/5]σ1

i σ1
j σ2

i σ2
j eNξ∼2(R)

〉
2

.

Identically to the previous proof, on the event in the indicator in Y(2)
i,j we have N|ξ∼2(R)| =

O(N−1/5), so eNξ∼2(R) ⩽ 2. Then, by Cauchy–Schwarz and Proposition 8.8,

|Y(2)
i,j | ⩽ 2

〈
1[|R| ⩾ N−1/2 log N]|σ1

i σ1
j σ2

i σ2
j |
〉

2

⩽ 2⟨1[|R| ⩾ N−1/2 log N]⟩1/2
2

〈
(σ1

i )
4(σ2

i )
4
〉1/4

2

〈
(σ1

j )
4(σ2

j )
4
〉1/4

2

⩽ 2e−c log2 N · O(1) · O(1) = e−c log2 N .

To address Y(1)
i,j , define ∆i = σ1

i σ2
i /N and ∆j = σ1

j σ2
j /N, the contributions to R coming from the ith

and jth coordinate, respectively. Then, by exchangeability of (σ1
i ,−σ1

i ) and (σ1
j ,−σ1

j ),

4Y(1)
i,j =

〈
1[|σ1

i |, |σ1
j |, |σ2

i |, |σ2
j | ⩽ log N, |R∼i,j| ⩽ 2N−1/2 log N]

σ1
i σ1

j σ2
i σ2

j (e
Nξ∼2(R∼i,j+∆i+∆j) − eNξ∼2(R∼i,j+∆i−∆j) − eNξ∼2(R∼i,j−∆i+∆j) + eNξ∼2(R∼i,j−∆i−∆j))

〉
2
.

Note that on the event in this indicator, |R∼i,j ± ∆i ± ∆j| ⩽ 3N−1/2 log N. Define

κ(x) = eNξ∼2(x),

and note that

sup
|x|⩽3N−1/2 log N

κ(4)(x) = sup
|x|⩽3N−1/2 log N

(
Nξ

(4)
∼2(x) + 4N2ξ ′∼2(x)ξ(3)∼2(x) + 3N2ξ ′′∼2(x)2+

+ 6N3ξ ′∼2(x)2ξ ′′∼2(x) + N4ξ ′∼2(x)4
)

κ(x) = O(N6/5),

where we have used that sup|x|⩽3N−1/2 log N κ(x) ⩽ 2 and γ2
1 ⩽ N−4/5. Since |∆i|, |∆j| ⩽ N−1 log2 N

on the event in the indicator, for si, sj ∈ {±1},

eNξ∼2(R∼i,j+si∆i+sj∆j) = κ(R∼i,j) + κ′(R∼i,j)(si∆i + sj∆j) +
1
2 κ′′(R∼i,j)(si∆i + sj∆j)

2
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+ 1
6 κ(3)(R∼i,j)(si∆i + sj∆j)

3 + O(N6/5) · (2N−1 log2 N)4.

It follows that

eNξ∼2(R∼i,j+∆i+∆j) − eNξ∼2(R∼i,j+∆i−∆j) − eNξ∼2(R∼i,j−∆i+∆j) + eNξ∼2(R∼i,j−∆i−∆j)

= 4κ′′(R∼i,j)∆i∆j + O(N−14/5 log8 N),

and thus

Y(1)
i,j =

〈
1[|σ1

i |, |σ1
j |, |σ2

i |, |σ2
j | ⩽ log N, |R∼i,j| ⩽ 2N−1/2 log N]σ1

i σ1
j σ2

i σ2
j ∆i∆jκ

′′(R∼i,j)
〉

2

+ O(N−14/5 log12 N)

=

〈
1[|σ1

i |, |σ1
j |, |σ2

i |, |σ2
j | ⩽ log N, |R∼i,j| ⩽ 2N−1/2 log N]

(σ1
i σ1

j σ2
i σ2

j )
2
(

N−1ξ ′′∼2(R∼i,j) + ξ ′∼2(R∼i,j)
2
)

eNξ∼2(R∼i,j)

〉
2
+ o(N−2).

On the event in this indicator, eNξ∼2(R∼i,j) ⩽ 2, and therefore ξ ′∼2 and ξ ′′∼2 can be Taylor expanded to
obtain

Y(1)
i,j ⩽ Y(3)

i,j + Y(4)
i,j + o(N−2),

where

Y(3)
i,j = 6γ2

3N−1
〈

1[|σ1
i |, |σ1

j |, |σ2
i |, |σ2

j | ⩽ log N, |R∼i,j| ⩽ 2N−1/2 log N]

(σ1
i σ1

j σ2
i σ2

j )
2R∼i,jeNξ∼2(R∼i,j)

〉
2
,

Y(4)
i,j = EµHN,2

〈
1[|σ1

i |, |σ1
j |, |σ2

i |, |σ2
j | ⩽ log N, |R∼i,j| ⩽ 2N−1/2 log N]

(σ1
i σ1

j σ2
i σ2

j )
2
(

12γ2
4N−1R2

∼i,j + (γ2
1 + 3γ2

3R2
∼i,j)

2
)

eNξ∼2(R∼i,j)

〉
2

On the event in these indicators, we further have

|R2 − R2
∼i,j| = |R − R∼i,j||R + R∼i,j| ⩽ (|∆i|+ |∆j|) · 5N−1/2 log N = O(N−3/2 log3 N). (30)

From this it readily follows that

Y(4)
i,j ⩽ 2

〈
1[|σ1

i |, |σ1
j |, |σ2

i |, |σ2
j | ⩽ log N, |R∼i,j| ⩽ 2N−1/2 log N]

(σ1
i σ1

j σ2
i σ2

j )
2
(

12γ2
4N−1R2 + (γ2

1 + 3γ2
3R2)2

)〉
2
+ o(N−2)

= 2γ4
1Q̃0 + (12γ2

1γ2
3 + 24γ2

4N−1)Q̃2 + 18γ2
3Q̃4 + o(N−2),

where

Q̃k =
〈

1[|σ1
i |, |σ1

j |, |σ2
i |, |σ2

j | ⩽ log N, |R∼i,j| ⩽ 2N−1/2 log N](σ1
i σ1

j σ2
i σ2

j )
2Rk
〉

2
.
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By Cauchy–Schwarz and Proposition 8.8, for each k ∈ {0, 2, 4},

Q̃k ⩽
〈
(σ1

i )
8(σ2

i )
8
〉1/4

2

〈
(σ1

j )
8(σ2

j )
8
〉1/4

2
⟨R2k⟩1/2

2 = O(N−k/2).

This implies Y(4)
i,j ⩽ C(γ4

1 + N−2). To control Y(3)
i,j , we recall that |Nξ∼2(R∼i,j)| = O(N−3/10 log N)

and Taylor expand the exponential:

Y(3)
i,j = 6γ2

3N−1
〈

1[|σ1
i |, |σ1

j |, |σ2
i |, |σ2

j | ⩽ log N, |R∼i,j| ⩽ 2N−1/2 log N]

(σ1
i σ1

j σ2
i σ2

j )
2R∼i,j(1 + Nξ∼2(R∼i,j))

〉
2
+ o(N−2)

= 6γ2
3N−1

〈
1[|σ1

i |, |σ1
j |, |σ2

i |, |σ2
j | ⩽ log N, |R∼i,j| ⩽ 2N−1/2 log N]

(σ1
i σ1

j σ2
i σ2

j )
2(R∼i,j + Nγ2

1R2
∼i,j + Nγ2

3R4
∼i,j)

〉
2
+ o(N−2).

By exchangeability of (R∼i,j,−R∼i,j), the contribution of the term R∼i,j vanishes. By (30), we can
further estimate R2

∼i,j with R2, obtaining

Y(3)
i,j = 6γ2

3

〈
1[|σ1

i |, |σ1
j |, |σ2

i |, |σ2
j | ⩽ log N, |R∼i,j| ⩽ 2N−1/2 log N]

(σ1
i σ1

j σ2
i σ2

j )
2(γ2

1R2 + γ2
3R4)

〉
2
+ o(N−2)

= 6γ2
1γ2

3Q̃2 + 6γ4
3Q̃4 + o(N−2) ⩽ C(γ2

1N−1 + N−2).

Combining all of the above estimates concludes the proof.

Proof of Proposition 8.10. By a union bound, the event in Lemma 8.15 holds for all i, j ∈ [N] with
probability 1 − e−c log2 N (over HN,∼2). On this event,∥∥∥∥ ZN

ZN,2eNξ∼2(1)/2
⟨σσ⊤⟩ − ⟨σσ⊤⟩2

∥∥∥∥2

F
=

N

∑
i,j=1

X2
i,j ⩽ 2

N

∑
i,j=1

X̃2
i,j + e−c log2 N . (31)

Combining Lemma 8.16 and Propositions 8.17 and 8.18 shows that

E∼2

N

∑
i,j=1

X̃2
i,j ⩽ 2C(N2γ4

1 + 1) + e−cN1/5
⩽ 3C(N2γ4

1 + 1).

Thus, with probability 2/3 over HN,∼2, ∑N
i,j=1 X̃2

i,j ⩽ 9C(N2γ4
1 + 1). Combining with (31) and taking

a final union bound shows that with probability 1/2 over HN,∼2,∥∥∥∥ ZN

ZN,2eNξ∼2(1)/2
⟨σσ⊤⟩ − ⟨σσ⊤⟩2

∥∥∥∥2

F
⩽ 18C(N2γ4

1 + 1) + e−c log2 N ⩽ 20C(N2γ4
1 + 1).

The result follows after adjusting C.
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8.3 From positive to very high probability

In this section, we boost the positive probability bound on the second moment matrix to a very high
probability bound. To this end, we will show that an appropriate proxy function for the second
moment matrix is very Lipschitz. This will imply the desired concentration by standard gaussian
concentration.

Let g ∈ RN+N3+N4+···+Np∗ be the vectorized collection of all gaussian interactions corresponding
to HN,∼2. Throughout, as in the previous subsection, we will condition on the event E2 from
Definition 8.13 over HN,2, which holds with probability 1 − e−cN1/5

. We define the following
functions of g:

F1(g) = B(1 + γ2
1N) ·

(
1 −

∣∣∣∣log
ZN

ZN,2
− Nξ∼2(1)

2

∣∣∣∣)
F2(g) = B(1 + γ2

1N)−
∥∥∥⟨σσ⊤⟩

∥∥∥
op

F(g) = max(min(F1(g), F2(g)), 0) ,

where B is a sufficiently large constant (specified in the proof of Lemma 8.19). If we can show that
with high probability over g, min(F1(g), F2(g)) ⩾ 0, then the conclusion follows. Indeed, from
F2(g) ⩾ 0, we immediately obtain

∥∥⟨σσ⊤⟩
∥∥
op

⩽ B(1 + γ2
1N). F1 allows control over the free energy

of the p-spin model in terms of that of the corresponding 2-spin model. This gives good control
over the overlaps (in a manner to be made precise shortly), which is crucial for establishing the high
probability statement. It is also important earlier in this section, in showing that the free energy of
the p-spin model concentrates well.

Towards this, we first start with the positive probability statement, which was essentially
established in the previous subsections.

Lemma 8.19. There exists a constant B > 0 such that with probability at least 1
3 , we have F(g) ⩾

B
2 (1 + γ2

1 N).

Proof. By Proposition 8.9, with probability 1 − O(N−1/15) over g, we have F1(g) ⩾ B
2 (1 + γ2

1N),
so ZN

ZN,2eNξ∼2(1)/2 ⩾ e−1/2. Intersecting this with the event from Proposition 8.10 implies that with

probability at least 1
3 , ∥∥∥⟨σσ⊤⟩

∥∥∥
op

⩽ e1/2
∥∥∥⟨σσ⊤⟩2

∥∥∥
op
+ e1/2

√
C(1 + γ4

1N2)

⩽
B
2
(1 + γ2

1N) ,

where we have used E2 to apply Proposition 8.8 and after appropriately picking B.

Let E denote the HN,2-measurable event from Corollary 8.14:{
g :
∫

1[|R(σ1, σ2)| ⩾ N−2/5}eHN(σ
1)+HN(σ

2) dρ⊗2(σ1, σ2) ⩽ Z2
N,2eNξ∼2(1)−cN1/5

}
,

which holds with probability 1 − e−cN1/5
over g. The key observation is that this gives us good

control on the overlaps.
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Lemma 8.20. On E , if F1(g) ⩾ 0, then for any 0 ⩽ p ⩽ log2 N, we have∥∥⟨σ⊗p⟩
∥∥2

F ⩽ O(N3p/5).

Proof. By splitting up the expectation based on whether |R(σ1, σ2)| ⩾ N−2/5, on E we have∥∥⟨σ⊗p⟩
∥∥2

F = ⟨NR(σ1, σ2)⟩p

⩽ N3p/5 + N2p 1
Z2

N

∫
1[|R(σ1, σ2)| ⩾ N−2/5}eHN(σ

1)+HN(σ
2) dρ⊗2(σ1, σ2)

⩽ N3p/5 + N2p Z2
N,2

Z2
N

eNξ∼2(1)−cN1/5
(Definition of E )

⩽ N3p/5 + N2pe1−cN1/5
,

where the last line used F1(g) ⩾ 0. Since p ⩽ log2 N, the above quantity is O(N3p/5), as desired.

The above is a crucial input to prove Lipschitzness of F on E .

Lemma 8.21. The function F is O((1 + γ2
1N)N−1/10)-Lipschitz restricted to E .

Before we prove this, let us see how it implies Proposition 8.2, restated for convenience.

Proposition 8.2. There is a HN,2-measurable event with probability 1 − e−cN1/5
on which the following

holds with probability 1 − e−cN1/5
over HN,∼2.

1. The partition functions ZN , ZN,2 satisfy∣∣∣∣log
ZN

ZN,2
− Nξ∼2(1)

2

∣∣∣∣ ⩽ 1/2.

2. The Gibbs measure satisfies ∥⟨σσ⊤⟩∥op ⩽ C(1 + γ2
1N).

Proof of Proposition 8.2. By Kirszbraun’s extension theorem, we can extend F to F̃ such that each
F̃ has the same Lipschitz constant as F and agrees with F on E . We can now apply gaussian
concentration to F̃ to conclude that

Pr
[
|F̃(g)− EF̃(g)| ⩾ B

4 (1 + γ2
1N)

]
⩾ 1 − e−cN1/5

. (32)

By Lemma 8.19, with probability at least 1
3 , we have F(g) ⩾ B

2 (1 + γ2
1N). Upon further intersection

with E (where F̃(g) = F(g)) and the event from (32), we conclude EF̃(g) ⩾ B
4 (1 + γ2

1N). Thus,

Pr[F(g) = 0] ⩽ Pr[E c] + Pr[F̃(g) = 0]

⩽ e−cN1/5
+ Pr

[
|F̃(g)− EF̃(g)| ⩾ B(1 + γ2

1N)

4

]
⩽ e−cN1/5

,

after adjusting c.
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Finally, let us prove the Lipschitz bound.

Proof of Lemma 8.21. The set E is a convex set in g. Indeed, eHN(σ) is a convex function of g, so the
LHS of the inequality E is convex in g, whereas the RHS does not depend on g, and sublevel sets of
convex functions are convex. Furthermore, F is absolutely continuous (hence differentiable almost
everywhere), so to prove F is Lipschitz on E it suffices to bound ∥∇F∥ on E , wherever it is defined.

The easier case is if min(F1(g), F2(g)) < 0. In this case, F(g) = 0 in an open neighborhood of g,
so ∇F(g) = 0 identically. Therefore, for the rest of the proof, assume min(F1(g), F2(g)) ⩾ 0. We
will compute the gradient of the Fi’s, and to simplify the calculation, we will take the gradient with
respect to gp ∈ RNp

corresponding to the degree-p disorder in HN,∼2.
For F1(g), note that its only dependence on g is via log ZN , we have∥∥∇gp F1(g)

∥∥ = B(1 + γ2
1N)

∥∥∇gp log ZN
∥∥ = B(1 + γ2

1N) ·
γp

N(p−1)/2

∥∥⟨σ⊗p⟩
∥∥

F,

and since F1(g) ⩾ 0, we can apply Lemma 8.20 to conclude that∥∥∇g log ZN
∥∥2 ≲ ∑

p∈[p∗]\{2}
γ2

pN−(p−1) · N3p/5

⩽ γ2
1 · N3/5 + ∑

p⩾3
γ2

pN1−2p/5

≲ γ2
1 · N3/5 + N−1/5 (33)

Since γ2
1 ⩽ N−4/5, we conclude that

∥∥∇g F1(g)
∥∥ ≲ (1 + γ2

1N)N−1/10, as desired.
Turning now to F2(g), we observe that

∥∥⟨σσ⊤⟩
∥∥
op

= ⟨⟨u, σ⟩2⟩, where u is the top eigenvector of
⟨σσ⊤⟩ with ∥u∥2 = 1. By the envelope theorem, we can evaluate the gradient with u fixed. For any
v ∈ RNp

with ∥v∥2 = 1, we will upper bound ⟨v,∇gp⟨⟨u, σ⟩2⟩⟩. Applying the quotient rule yields

⟨v,∇gp⟨⟨u, σ⟩2⟩⟩ =
〈
⟨u, σ⟩2⟨v,∇gp H(σ)⟩

〉
−
〈
⟨u, σ⟩2〉 〈⟨v,∇gp H(σ)⟩

〉
=

γp

N(p−1)/2

(〈
⟨u, σ⟩2⟨v, σ⊗p⟩

〉
−
〈
⟨u, σ⟩2〉 〈⟨v, σ⊗p⟩

〉)
.

Consider the first term
〈
⟨u, σ⟩2⟨v, σ⊗p⟩

〉
. Using Hölder’s inequality with q = 1 + log N and

q′ = 1 + 1
log N , we see

〈
⟨u, σ⟩2⟨v, σ⊗p⟩

〉
⩽
〈
⟨u, σ⟩2q′

〉1/q′ 〈
⟨v, σ⊗p⟩q〉1/q

⩽ N1/ log N 〈⟨u, σ⟩2〉 ⟨v⊗q,
〈
σ⊗pq〉⟩1/q

≲ (1 + γ2
1N)⟨v⊗q,

〈
σ⊗pq〉⟩1/q

⩽ (1 + γ2
1N) · N3p/10 ,

where in the second to last line we have used F2(g) ⩾ 0 to apply the bound
〈
⟨u, σ⟩2〉 ⩽ O(1+ γ2

1N),
and in the last line we have used F1(g) ⩾ 0, along with pq ⩽ O(log N), to apply Lemma 8.20. The
same argument upper bounds the contribution of the second term as O

(
(1 + γ2

1N)N3p/10). These
bounds (aside from the common factor of O(1 + γ2

1N), which we can pull out), exactly match the
ones used in the calculation as carried out for F1(g) in (33). Hence, the same argument ultimately
yields

∥∥∇g F2(g)
∥∥ ≲ (1 + γ2

1N)N−1/10, completing the proof.
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A Annealed Glauber dynamics on discrete domains

In this section, we collect the analogous results for weak functional inequalities for Glauber
dynamics.
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Definition A.1 (Weak Poincaré for the hypercube). We say π on {±1}n satisfies a (ρPI, ε)-weak
Poincaré inequality for Glauber dynamics if for all functions f ,

Varπ[ f ] ⩽
1

ρPI
· E( f , f ) + ε · osc( f )2.

Similarly, we say π satisfies a (ρLS, ε)-weak modified log-Sobolev inequality if for all functions f ,

Entπ[ f ] ⩽
1

ρLS
· E( f , log f ) + ε · osc(

√
f )2.

Remark A.2. The above definition is related to the continuous setting by using the discrete gradient,
which can be bounded by osc( f )2.

First, we will need a concavity property for the Dirichlet form for Glauber dynamics, which is
well-known. We provide a proof for the sake of self-containedness.

Fact A.3. Let π be a distribution on {±1}n, and π = Ez∼ρπz a measure decomposition of π. Then
Eπ( f , f ) ⩾ Ez∼ρEπz( f , f ).

Proof. For Glauber dynamics on the hypercube, we have

Eπ( f , f ) =
1
n ∑

∥x−y∥1=2

π(x)π(y)
π(x) + π(y)

( f (x)− f (y))2

=
1
n ∑

∥x−y∥1=2

Ez∼ρπz(x)Ez∼ρπz(y)
Ez∼ρπz(x) + Ez∼ρπz(y)

( f (x)− f (y))2

⩾ Ez∼ρEπz( f , f ),

where the last line follows from concavity of the map (a, b) 7→ ab
a+b for a, b > 0.

The following lemma transfers a true Poincaré inequality on π to a weak Poincaré inequality on
π′ for Glauber dynamics on the hypercube.

Lemma A.4. Let π, π′ be distributions on {±1}n such that π satisfies a ρPI-Poincaré inequality for Glauber
dynamics and dTV(π, π′) ⩽ δ. Then, π′ satisfies a weak (ρPI, 2δ)-Poincaré inequality for Glauber dynamics.

Proof. Again, there exists a coupling C of (π, π′) such that for (x, x′) ∼ C, Pr[x ̸= x′] ⩽ δ. The main
difference is that the Dirichlet form comparison can be bounded in terms of osc( f )2. Arguing as
before yields

Eπ′( f , f ) ⩾ Eπ( f , f )− δ · osc( f )2

⩾ ρPI · Varπ[ f ]− δ · osc( f )2

⩾ ρPI · Varπ′ [ f ]− δ · osc( f )2 (1 + ρPI) .

Remark A.5. The above two results also hold more generally if P is the Markov chain associated
to a Doob localization scheme (cf. [CE22, Section 2.3]), such as when P is Glauber dynamics for a
general product domain.

73



Lemma A.6. Let π be a distribution over {±1}n, and π = Ez∼ρπz a measure decomposition of π such that

• for all functions f , Ez∼ρVarπz [ f ] ⩾ CVarVarπ[ f ], and

• with probability 1 − η over z ∼ ρ, πz satisfies a (ρPI, δ)-weak Poincaré inequality with respect to
Glauber.

Then, π satisfies a
(

ρPICVar,
δ+η
CVar

)
-weak Poincaré inequality.

Proof. The proof is the same as that of Lemma 4.11, except in the Langevin case we have Eπ( f , f ) =
Ez∼ρEπz( f , f ), whereas here we apply Fact A.3 to get the desired inequality.

Finally, we record the following simple observation connecting weak functional inequalities in
discrete domains.

Fact A.7. Let π be a distribution on a finite state space Ω, and set Cπ = 1−2πmin
log(1/πmin−1) . If π satisfies a

(ρPI, ε)-weak Poincaré inequality, then π also satisfies a
(

4ρPICπ, ε
Cπ

)
-weak MLSI and a (ρPICπ, ε

Cπ
)-weak

LSI.

Proof. For finite state spaces, it is well-known that the LSI of the complete graph Markov chain
PK(π) has ρLS = 1−2πmin

log(1/πmin−1) (see e.g., [DSC96]). Furthermore, observe that EPK(π)
( f , f ) = Varπ[ f ].

Hence,

1
ρPI

E( f , f ) ⩾ Varπ[ f ]− ε · osc( f )2 (Weak PI)

⩾ CπEntπ[ f 2]− ε · osc( f )2, (LSI of PK(π))

which establishes the weak LSI. For the weak MLSI, one applies the inequality 4E( f , f ) ⩽
E( f 2, log f 2), whose proof reduces to checking the two-variable inequality 4(

√
u −

√
v)2 ⩽

(u − v) log u
v for positive u, v.

B Deferred calculations for spherical spin glasses

B.1 The TAP Hamiltonian

In this subsection, we will prove Lemma 7.23, which we restate for convenience.

Lemma 7.23. The law of Hamiltonian HTAP ∼ µTAP,x,m is described by a Gaussian process (HTAP(σ))σ∈SN

defined by

E HTAP(σ) = Nξt(R(x, σ))− ⟨x, v(σ)⟩ · ξ ′t(qx)−
ξ ′t(R(m, σ))

γ′(qm)
· ⟨m, σ⟩ ·

(
θ′(qm)−

1
1 − qm

)
1
N

Cov
(

HTAP(σ), HTAP

(
σ′)) = ξt

(
R(σ, σ′)

)
− R(σ, σ′)

ξ ′t(R(m, σ))ξ ′t(R(m, σ′))

ξ ′t(qm)

+
ξ ′′t (qm)

γ′(qm)ξ ′t(qm)
γ(R(m, σ))γ(R(m, σ′)),
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where

v(σ) :=
ξ ′t(R(m, σ))

ξ ′t(qm)

[
I − ξ ′′t (qm)

γ′(qm)
· mm⊤

N

]
σ

γ(q) := q · ξ ′t(q) .

To prove the above, we will need the following formulas for any p-spin Hamiltonian HN with
mixture function ξ.

Fact B.1. For any u, v, m ∈ RN , we have:

1
N

E⟨u,∇HN(m)⟩⟨v,∇HN(m)⟩ = R(u, v)ξ ′(R(m, m)) + R(m, u)R(m, v)ξ ′′(R(m, m)) .

Proof. Once we write the derivative as its definition as a limit, the order of the limit and the
expectation operator can be swapped by the dominated convergence theorem.

1
N

E⟨u,∇HN(m)⟩⟨v,∇HN(m)⟩ = 1
N

E lim
δ,ε→0

HN(m + δu)− HN(m)

δ
· HN(m + εv)− HN(m)

ε

=
1
N

lim
δ,ε→0

1
δε

E(HN(m + δu)− HN(m)) · (HN(m + εv)− HN(m))

= lim
δ,ε→0

1
δε
[ξ(R(m + δu, m + εv))− ξ(R(m + δu, m))− ξ(R(m, m + εv)) + ξ(R(m, m))]

= R(u, v)ξ ′(R(m, m)) + R(m, u)R(m, v)ξ ′′(R(m, m)) .

Fact B.2. For any u, v, m ∈ RN , we have:

1
N

E⟨u,∇HN(m)⟩HN(v) = R(u, v)ξ ′(R(m, v)) .

The proof of the above is analogous to the proof of Fact B.1, and hence omitted.We now prove
Lemma 7.23.

Proof of Lemma 7.23. The distribution of HTAP(σ) is the same as that of HN,t(σ)|x,∇FTAP(m) = 0.
Recall that HN,t(σ) = Nξt(R(x, σ)) + H̃(σ) where H̃(σ) is a centered Gaussian process. Next,
observe that conditioning on ∇FTAP(m) = 0 is the same as conditioning on

∇H̃(m) = −x · ξ ′t(qx)− m ·
(

θ′(qm)−
1

1 − qm

)
. (34)

Observe that (HTAP(σ))σ∈SN
is a Gaussian process, since it is obtained by conditioning on another

Gaussian process satisfying affine constraints. First, observe that we can write

HTAP(σ) = Nξt(R(x, σ)) + H̃TAP(σ) (35)

where H̃TAP(σ) = H̃(σ)|x,∇FTAP(m) = 0. To understand the behavior of H̃TAP(σ), we break H̃(σ)

into a sum of two terms: one term for its projection onto the space U :=
{〈

∇H̃(m), u
〉

: u ∈ RN
}

,

and the part that is orthogonal to U, and thus independent of ∇H̃(m). Concretely, let us write

H̃(σ) =
〈
∇H̃(m), v(σ)

〉
+
(

H̃(σ)−
〈
∇H̃(m), v(σ)

〉)
. (36)
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This is true for any v(σ), but we have set up the definition such that the second summand is
independent of ∇H̃(m). To verify this, since these two random variables are each mean 0, it
suffices to check that for any u ∈ SN ,

E
〈
∇H̃(m), u

〉(
H̃(σ)−

〈
∇H̃(m), v(σ)

〉)
= 0 .

By Facts B.1 and B.2, the left-hand-side of the above is:

R(u, σ)ξ ′t(R(m, σ))− R(u, v(σ))ξ ′t(qm)− R(m, u)R(m, v(σ))ξ ′′(qm) .

We would like v(σ) to be such that this is 0 for all u. Setting u orthogonal to m and σ shows that we
must have v(σ) in the subspace spanned by m and σ.

Suppose that v(σ) = ασ + βm. Then, plugging this into the above requires that

0 = R(σ, u)ξ ′t(R(m, σ))− (αR(σ, u) + βR(m, u)) ξ ′t(qm)− R(m, u) (αR(m, σ) + βqm) ξ ′′t (qm)

= R(σ, u)
(
ξ ′t(R(m, σ))− αξ ′t(qm)

)
− R(m, u)

(
βξ ′t(qm)− αR(m, σ)ξ ′′t (qm)− βqmξ ′′t (qm)

)
.

Since this is true for all u, each of these two terms must be 0. That is,

α =
ξ ′t(R(m, σ))

ξ ′t(qm)

and

β = −α · R(m, σ)ξ ′′t (qm)

ξ ′t(qm) + qmξ ′′t (qm)
,

so

v(σ) =
ξ ′t(R(m, σ))

ξ ′t(qm)

(
σ − m · R(m, σ)ξ ′′t (qm)

ξ ′t(qm) + qmξ ′′t (qm)

)
=

ξ ′t(R(m, σ))

ξ ′t(qm)

(
Id − R(m, σ)ξ ′′t (qm)

ξ ′t(qm) + qmξ ′′t (qm)
· mm⊤

N

)
σ

as defined.
Now returning to (36), when we condition on x and ∇FTAP(m) = 0, by plugging in (34), we

get

H̃TAP(σ) = −⟨x, v(σ)⟩ · ξ ′t(qx)− ⟨m, v(σ)⟩ ·
(

θ′(qm)−
1

1 − qm

)
+
(

H̃(σ)−
〈
∇H̃(m), v(σ)

〉)
(37)

We use Ĥ(σ) to denote the random variable H̃(σ) −
〈
∇H̃(m), v(σ)

〉
, whose distribution re-

mains unaffected by the conditioning, as this random variable is independent of x and the event
∇FTAP(m) = 0. Since Ĥ(σ) is centered, our expression for E HTAP(σ) follows from (35) and (37),
and the observation that

R(m, v(σ)) =
ξ ′t(R(m, σ))

γ′(qm)
· R(m, σ).
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It remains to compute N−1Cov(HTAP(σ), HTAP(σ
′)) for any σ, σ′ ∈ SN . Observe that this is equal

to N−1EĤ(σ)Ĥ(σ′). By Facts B.1 and B.2, we have that this is equal to:

ξt
(

R(σ, σ′)
)
− R(v(σ), σ′)ξ ′t(R(m, σ′))− R(v(σ′), σ)ξ ′t(R(m, σ))

+ R(v(σ), v(σ′))ξ ′t(qm) + R(m, v(σ))R(m, v(σ′))ξ ′′(qm) .

The formula for the covariance can be obtained from the above by expanding v(σ).

Next, we look at the mixture function of these “TAP planted distributions on slices”.

Corollary 7.26. For a fixed choice of a and b, the Gaussian process (HTAP(v(a, b) + ra,bQτ))τ∈SN−2
is

described by the following law.

• Let Ha,b be a spherical p-spin Hamiltonian with mixture function ξa,b given by:

ξa,b(s) := ξt

(
∥v(a, b)∥ 2 + r2

a,bs
)
− ξt

(
∥v(a, b)∥ 2

)
− s ·

r2
a,bξ ′t

(
qm ·

(
1 + a√

N

))2

ξ ′t(qm)
.

• Let V(a, b) := ξt

(
∥v(a, b)∥ 2

)
− ∥v(a, b)∥ 2 ·

ξ ′t

((
1+ a√

N

)
qm

)2

ξ ′t(qm)
+ ξ ′′t (qm)

γ′(qm)ξ ′t(qm)
· γ
((

1 + a√
N

)
qm

)2
.

The law of HTAP(v(a, b) + ra,bQτ) is the same as that of Ha,b(τ) +
√

N · ga,b +

EµTAP
HTAP(v(a, b) + ra,bQτ) where ga,b is a centered Gaussian of variance V(a, b) independent of

Ha,b.

Proof. Let τ, τ′ ∈ SN−2, and

σ = v(a, b) + ra,bQτ and σ′ = v(a, b) + ra,bQτ′.

Recall from Lemma 7.23 that

N−1Cov
(

HTAP(σ), HTAP(σ
′)
)

= ξ ′t(R(σ, σ′))− R(σ, σ′)
ξ ′t(R(m, σ))ξ ′t(R(m, σ′)

ξ ′t(qm)
+

ξ ′′t (qm)

γ′(qm)ξ ′t(qm)
γ(R(m, σ))γ(R(m, σ′)).

By the definition of σ and σ′, we have R(m, σ) = R(m, σ′) = R(m, v(a, b)) =
(

1 + a√
N

)
qm, and

R(σ, σ′) = R
(
∥v(a, b)∥2 + r2

a,bR(τ, τ′)
)

, since Q is an isometry. As a result,

N−1Cov
(

HTAP(σ), HTAP(σ
′)
)

= ξ ′t(∥v(a, b)∥2 + r2
a,bR(τ, τ′))−

(
∥v(a, b)∥2 + r2

a,bR(τ, τ′)
) ξ ′t

((
1 + a√

N

)
qm

)2

ξ ′t(qm)

+
ξ ′′t (qm)

γ′(qm)ξ ′t(qm)
γ

((
1 +

a√
N

)
qm

)2

.

This may be written as

N−1Cov
(

HTAP(σ), HTAP(σ
′)
)
= ξa,b(R(τ, τ′)) + V(a, b).
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This implies that HTAP(σ) is equal to Ha,b(τ) + ga,b for some Gaussian process (Ha,b(τ))τ∈SN−2 ,
where ga,b is a centered Gaussian of variance V(a, b). To complete the proof, we must show that the
correlation structure of Ha,b can be achieved by a p-spin model with mixture function ξa,b. To do
this, it suffices to show that ξa,b is indeed a valid mixture function, in that ξ

(p)
a,b (0) ⩾ 0 for all p ⩾ 1,

and ξa,b(0) = 0. The latter of these is clearly true by construction. The former is easily seen to be
true for p ⩾ 2, since for such p,

ξ
(p)
a,b (0) = r2p

a,bξ
(p)
t (∥v(a, b)∥2) ⩾ 0

since ξt is a valid mixture function. For p = 1,

ξ ′a,b(0) = r2
a,b ·

ξ ′t
(
∥v(a, b)∥2)− ξ ′t

(
qm

(
1 + a√

N

))2

ξ ′t(qm)


(9)
⩾ r2

a,b ·

ξ ′t

(
qm

(
1 +

a√
N

)2
)
−

ξ ′t

(
qm

(
1 + a√

N

))2

ξ ′t(qm)


=

r2
a,b

ξ ′t(qm)
·
(

ξ ′t

(
qm

(
1 +

a√
N

)2
)

ξ ′t(qm)− ξ ′t

(
qm

(
1 +

a√
N

))2
)

⩾ 0.

In the first inequality above, we use the fact that ξ ′t is non-decreasing. The final inequality is an
application of Cauchy-Schwarz.

B.2 Understanding concentration around the codimension-2 slice

Next, we bound the variance of ga,b − g0,0.

Lemma 7.33. For every constant ι > 0, there is a constant c such that with probability 1 − e−cN , for all
a, b, we have |ga,b − g0,0| ⩽ ι a2+b2

√
N

.

Proof of Lemma 7.33. The strategy is to prove that for any a, b, a′, b′ ∈ R of magnitude ≪ N1/4, ga,b −
ga′,b′ is a Gaussian of variance O

(
·∥v(a, b)− v(a′, b′)∥4) = O

(
(a−a′)4+(b−b′)4

N2

)
. The desideratum

then immediately follows by applying Slepian’s lemma on (|ga,b − g0,0|)a,b comparing it to the
Gaussian process ⟨G, (v(a, b)− v(0, 0))(v(a, b)− v(0, 0))⊤⟩ for a standard Gaussian matrix G.

We carry out the calculation for a′, b′ = 0; the general case follows similarly. We have ga,b =

N−1/2
(

HTAP(
√

N · v(a, b))− EHTAP(
√

N · v(a, b))
)

, and g0,0 = N−1/2(HTAP(m)− EHTAP(m)).
Clearly, ga,b − g0,0 is a centered Gaussian process. As in the proof of Lemma 7.23, we have that the
distribution of HTAP(σ)− EHTAP(σ) is the same as that of

H̃(σ)−
〈
∇H̃(m), v(σ)

〉
,

where H̃ is a Hamiltonian distributed according to the mixture function ξt. Thus, the distribution
of ga,b − g0,0 is:

H̃(u(a, b))−
〈
∇H̃(m), v(u(a, b))

〉
− H̃(m) +

〈
∇H̃(m), v(m)

〉
.
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For brevity, we denote v(a, b) as m + ε. We express H̃(m + ε) in its Taylor expansion, and we get:

√
N(ga,b − g0,0) = ∑

i⩾1

1
i!

〈
Di H̃(m), ε⊗i

〉
−
〈
∇H̃(m), v(m + ε)− v(m)

〉
. (38)

Expanding out v(m + ε)− v(m) ultimately yields:

v(m + ε)− v(m) = ε + R(m, ε)ε
ξ ′′t (qm)

γ′(qm)
− R(m, ε)2ξ ′′t (qm)2

ξ ′t(qm)γ′(qm)
m .

Plugging in the above into Eq. (38) gives:

√
N(ga,b − g0,0) = ∑

i⩾2

1
i!

〈
Di H̃(m), ε⊗i

〉
−
〈
∇H̃(m), ε

〉
R(m, ε)

ξ ′′t (qm)

γ′(qm)
−
〈
∇H̃(m), m

〉R(m, ε)2ξ ′′t (qm)2

ξ ′t(qm)γ′(qm)

We have an explicit expression for ε:

ε =
aqm − bq2

x√
N(qm − q2

x)
m +

qmqx

qm − q2
x

(
b − a√

N

)
x.

This explicit expression can be used to obtain the following bounds on the variances of the above
terms:

Var
[

1
i!

〈
Di H̃(m), ε⊗i

〉]
⩽

O
(
a2i + b2i)
Ni−1

Var
[〈

∇H̃(m), ε
〉

R(m, ε)
ξ ′′t (qm)

γ′(qm)

]
=

O
(
a4 + b4)

N

Var
[〈

∇H̃(m), m
〉R(m, ε)2ξ ′′t (qm)

ξ ′t(qm)γ′(qm)

]
⩽

O
(
a4 + b4)

N

The expression for
√

N(ga,b − g0,0) only involves a constant number of terms, and since the first

term enumerates over i ⩾ 2, and since |a|, |b| ⩽
√

N, we have an overall bound of
O(a4+b4)

N .
Dividing by

√
N gives the desired variance bound.

Lemma 7.31. ∇Êa,b

∣∣∣
(a,b)=(0,0)

= 0.

Proof. Recall

Êa,b =
1
2

log r2
a,b − ξt(∥v(a, b)∥2)− r2

a,b ·
ξ ′t

(
qm

(
1 + a√

N

))2

ξ ′t(qm)


︸ ︷︷ ︸

(I)

+ ξt

(
qx

(
1 +

b√
N

))
+

γ
(

qm

(
1 + a√

N

))
γ′(qm)

·
(
(1 − qm)ξ

′′
t (qm) +

1
1 − qm

)
︸ ︷︷ ︸

(II)
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− γ(qx)

ξ ′t(qm)
· ξ ′t

(
qm

(
1 +

a√
N

))
·
((

1 +
b√
N

)
− qm · ξ ′′t (qm)

γ′(qm)
·
(

1 +
a√
N

))
︸ ︷︷ ︸

(III)

.

Because

∥v(a, b)∥2 = qm

(
1 +

a√
N

)2

+
qmqx

qm − q2
x
·
(

a − b√
N

)2

,

we have

∇∥v(a, b)∥2∣∣
(a,b)=(0,0) = − ∇r2

a,b
∣∣
(a,b)=(0,0) =

(
2qm√

N
, 0
)

.

We also have r2
0,0 = 1 − qm and ∥v(0, 0)∥2 = qm. Let us start by computing the derivative with

respect to a. We have

√
N · ∂a(III)|(a,b)=(0,0) = ξ ′′t (qm) · qm ·

(
1 − qmξ ′′t (qm)

γ′(qm)

)
+ ξ ′t(qm) ·

(
−qm · ξ ′′t (qm)

γ′(qm)

)
=

qmξ ′′t (qm)

γ′(qm)

(
γ′(qm)− qmξ ′′t (qm)− ξ ′t(qm)

)
= 0.

Next,
√

N · ∂a(I)|(a,b)=(0,0)

=
1

r2
0,0

· (−2qm)− ξ ′t(∥v(0, 0)∥2) · (2qm)− (−2qm) ·
(

ξ ′t(qm)2

ξ ′t(qm)

)
− r2

0,0 ·
2ξ ′t(qm) · ξ ′′t (qm) · qm

ξ ′t(qm)

=
−2qm

1 − qm
− 2qmξ ′t(qm) + 2qmξ ′t(qm)− 2qm(1 − qm)ξ

′′
t (qm)

=
−2qm

1 − qm
− 2qm(1 − qm)ξ

′′
t (qm).

Finally,
√

N · ∂a(II)|(a,b)=(0,0)

=
γ′(qm) · qm

γ′(qm)
·
(
(1 − qm)ξ

′′
t (qm) +

1
1 − qm

)
= −1

2
·
√

N · ∂a(I)|(a,b)=(0,0)

as desired. The derivative with respect to b is much simpler, since the derivative of r2
a,b with

respect to b is 0 at (0, 0). Consequently, ∂b(I)|(a,b)=(0,0) = 0, ∂b(II)|(a,b)=(0,0) = qxξ ′t(qx) = γ(qx), and
∂b(III)|(a,b)=(0,0) = ξ ′t(qm), completing the proof.

Lemma 7.32. There exist constants η, ε > 0 such that for all |a|, |b| ⩽ ε
√

N, N∇2Êa,b ⪯ −ηId.

Proof. For ease of notation, define Ẽa,b = Ê√
Na,

√
Nb, r̃a,b = r√Na,

√
Nb, and ṽ(a, b) = v(

√
Na,

√
Nb).

As in the previous lemma, recall

Ẽa,b =
1
2

(
log r̃2

a,b − ξt(∥ṽ(a, b)∥2)− r̃2
a,b ·

ξ ′t (qm (1 + a))2

ξ ′t(qm)

)
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+ ξt (qx (1 + b)) +
γ (qm (1 + a))

γ′(qm)
·
(
(1 − qm)ξ

′′
t (qm) +

1
1 − qm

)
− γ(qx)

ξ ′t(qm)
· ξ ′t (qm (1 + a)) ·

(
(1 + b)− qm · ξ ′′t (qm)

γ′(qm)
· (1 + a)

)
.

Because the Hessian is Lipschitz in all the parameters involved, it suffices to prove the negative
definiteness of the Hessian at (0, 0), under the assumption that qm = qx = q, where q (formerly
denoted q∗(t)) satisfies ξ ′t(q) =

q
1−q . Under these constraints, we have γ(q) = qξ ′t(q) =

q2

1−q and

γ′(q) = ξ ′t(q) + qξ ′′t (q) =
q

1−q (1 + (1 − q)ξ ′′t (q)). Ẽa,b simplifies as

Ẽa,b =
1
2

(
log r̃2

a,b − ξt(∥ṽ(a, b)∥2)− r̃2
a,b ·

ξ ′t (q (1 + a))2

ξ ′t(q)

)
︸ ︷︷ ︸

(I)

+ ξt (q (1 + b)) +
γ (q (1 + a))

q
· 1 + (1 − q)2ξ ′′t (q)

1 + (1 − q)ξ ′′t (q)︸ ︷︷ ︸
(II)

− q (1 + b) · ξ ′t (q (1 + a)) + q2 (1 + a) · ξ ′′t (q)
γ′(q)︸ ︷︷ ︸

(III)

.

We have ∂2
b(III)

∣∣
(0,0) = 0, and

∂2
b(II)

∣∣
(0,0) = ξ ′′t (q) · q2.

We have that ∂br̃2
a,b

∣∣∣
(0,0)

= 0, and ∂2
b r̃2

a,b

∣∣∣
(0,0)

= −2q2

1−q . Consequently,

∂2
b(I)
∣∣
(0,0) =

1
2

(
1

r2
0,0

· ∂2
b r̃2

a,b
∣∣
(0,0) − ξ ′t(∥v(0, 0)∥2) · ∂2

b∥ṽ(a, b)∥2∣∣
(0,0) − ∂2

b r̃2
a,b
∣∣
(0,0) · ξ ′t(q)

)

=
−q2

(1 − q)2 .

It follows that

∂2
bÊa,b

∣∣∣
(0,0)

= ξ ′′t (q) · q2 − q2

(1 − q)2 .

Similarly, we have ∂a∂b(II)|(0,0) = 0, and

∂a∂b(III)|(0,0) = ξ ′′t (q) · q2.

We have that ∂a∂br̃2
a,b

∣∣∣
(0,0)

= −2q2

1−q . Consequently,

∂a∂b(I)|(0,0) =
1
2

(
1

r2
0,0

· ∂a∂br̃2
a,b
∣∣
(0,0) − ξ ′t(∥v(0, 0)∥2) · ∂a∂b∥ṽ(a, b)∥2∣∣

(0,0) − ∂a∂br̃2
a,b
∣∣
(0,0) · ξ ′t(q)

)

=
−q2

(1 − q)2 .
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It follows that

∂a∂bÊa,b

∣∣∣
(0,0)

= ξ ′′t (q) · q2 − q2

(1 − q)2 .

It remains to compute the second derivative with respect to a. We have

∂2
a(III)

∣∣
(0,0) = q3ξ ′′′t (q).

We also have

∂2
a(II)

∣∣
(0,0) = qγ′′(q) · 1 + (1 − q)2ξ ′′t (q)

1 + (1 − q)ξ ′′t (q)

= q · 1 + (1 − q)2ξ ′′t (q)
1 + (1 − q)ξ ′′t (q)

·
(
2ξ ′′t (q) + qξ ′′′t (q)

)
⩽ q2ξ ′′′t (q) + 2qξ ′′t (q).

We have ∂2
a r̃2

a,b

∣∣∣
(0,0)

= −
(

2q + 2q2

1−q

)
= − 2q

1−q and ∂ar̃2
a,b

∣∣∣
(0,0)

= −2q. Finally,

∂2
a(I)
∣∣
(0,0) =

1
r2

0,0
· −2q

1 − q
− 1

r4
0,0

· (−2q)2 − ξ ′t(q) ·
−2q
1 − q

− ξ ′′t (q) · (−2q)2 − −2q
1 − q

· ξ ′t(q)

− 2 · (−2q) · 2ξ ′t(q)ξ
′′
t (q)q

ξ ′t(q)
− (1 − q) · 2q2(ξ ′t(q)ξ

′′′
t (q) + ξ ′′t (q)

2)

ξ ′t(q)

=
−2q

(1 − q)2 − 4q2

(1 − q)2 − 4q2ξ ′′t (q) + 8q2ξ ′′t (q)− 2q2(1 − q)ξ ′′′t (q)− 2q2(1 − q) · ξ ′′t (q)
2

ξ ′t(q)

=
−2q(2q + 1)
(1 − q)2 + 4q2ξ ′′t (q)− 2q2(1 − q)ξ ′′′t (q)− 2q(1 − q)2ξ ′′t (q)

2.

Therefore,

∂2
a Êa,b

∣∣∣
(0,0)

⩽ −q3ξ ′′′t (q) + q2ξ ′′′t (q) + 2qξ ′′t (q)−
q(2q + 1)
(1 − q)2

+ 2q2ξ ′′t (q)− q2(1 − q)ξ ′′′t (q)− q(1 − q)2ξ ′′t (q)
2

=
−q(2q + 1)
(1 − q)2 + 2qξ ′′t (q) + 2q2ξ ′′t (q)− q(1 − q)2ξ ′′t (q)

2.

To conclude, let us check that the Hessian is negative definite. Because ξ ′′t (q) · q2 − q2

(1−q)2 < 0 by
the SL condition (SL), it suffices to check that

∂2
a Êa,b

∣∣∣
(0,0)

< q2ξ ′′t (q)−
q2

(1 − q)2 .

This is true if and only if

q(1 − q)2ξ ′′t (q)
2 − q(q + 2)ξ ′′t (q) +

q(q + 1)
(1 − q)2 > 0.

It is not difficult to see that this is true if ξ ′′t (q) is less than the smaller root of the above quadratic,
which is equal to

(q + 2)−
√
(q + 2)2 − 4(q + 1)

2(1 − q)2 =
1

(1 − q)2 .

This is true by the SL condition (SL), concluding the proof.
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Next, we shall prove Lemma 7.35. Recall the definition

Error(2)a,b =
Nξ ′′a,b(0)

4
− 1

2
log det

(
(1 + ξ ′′a,b(0))Id −∇2Ha,b(0)

)
,

where ∇2Ha,b(0) is equal to the restriction of r2
a,b ·∇2HTAP(v(a, b)) restricted to the codimension-2

subspace orthogonal to m and x.

Lemma 7.35. For any sufficiently small ι > 0, with probability at least 1 − e−cN ,
∣∣∣Error(2)a,b − Error(2)0,0

∣∣∣ =
O (1) for all a, b < ιN1/4.

Let us start by computing the correlation structure of the random matrices ∇2Ha,b(0). Note

that ∇2Ha,b(0) is an (N − 2)-dimensional GOE matrix scaled by
√

ξ ′′a,b(0).

Fact B.3. For σ1, σ2,

1
N

E⟨∇2HTAP(σ
1), u1 ⊗ u2⟩⟨∇2HTAP(σ

2), v1 ⊗ v2⟩

= ξ ′′t

(
R(σ1, σ2)

)
·
(

R(u1, v2) · R(u2, v1) + R(u1, v1) · R(u2, v2)
)

.

In particular,
1
N

E⟨∇2HTAP(σ
1),∇2HTAP(σ

2)⟩ = ξ ′′t

(
R(σ1, σ2)

)
.

The above follows from calculations similar to those involved in the proofs of Facts B.1 and B.2;
we omit the details.

Proof of Lemma 7.35. We shall prove the statement for a fixed a, b; a union bound over a, b implies
the boundedness for all a, b ⩽ ιN1/4.

Recalling that ∇2Ha,b(0) = r2
a,b∇2HTAP(

√
N · v(a, b)) is a GOE matrix scaled by

√
ξ ′′a,b(0). By

Fact B.3,

1
N

E⟨∇2Ha,b(0),∇2H0,0(0)⟩ = r2
a,b · r2

0,0 ·
1
N

E⟨∇2HTAP(
√

N · v(a, b)),∇2HTAP(
√

N · v(0, 0))⟩

= r2
a,b · r2

0,0 · ξ ′′t (⟨v(a, b), v(0, 0)⟩) .

For comparison, we have

1
N

E∥∇2Ha,b(0)∥
2
F = ξ ′′a,b(0) = r4

a,b · ξ ′′t
(
∥v(a, b)∥2) .

For succinctness of notation, let(
α1 ρ

ρ α2

)
=

(
r4

0,0ξ ′′t (∥v(0, 0)∥2) r2
a,br2

0,0ξ ′′t (⟨v(a, b), v(0, 0)⟩)
r2

a,br2
0,0ξ ′′t (⟨v(a, b), v(0, 0)⟩) r4

a,bξ ′′t (∥v(a, b)∥2)

)

be the covariance structure of the scaled GOE matrices ∇2H0,0(0) and ∇2Ha,b(0). It is not difficult

to see that α2 = α1 + O
(

a2+b2

N

)
, and ρ is between α1 and α2. Also note that α1 = ξ ′′0,0(0) and

α2 = ξ ′′a,b(0). Then, for some choice of GOE matrices G and G̃, we may write

∇2H0,0(0) =
√

α1G
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∇2Ha,b(0) =
ρ√
α1

G +

√
α2 −

ρ2

α1
G̃.

We thus have

2
(

Error(2)0,0 − Error(2)a,b

)
=

Nα1

2
− Nα2

2
− log det

(1 + α1) Id −
√

α1G︸ ︷︷ ︸
M1


+ log det

(1 + α2)Id − ρ√
α1

G −

√
α2 −

ρ2

α1
G̃

 .

We may write the matrix inside the final log det as

(1 + α2)Id − ρ√
α1

G −

√
α2 −

ρ2

α1
G̃

= ((1 + α1)Id −
√

α1G) + (α2 − α1)Id −
(

ρ√
α1

−
√

α1

)
G︸ ︷︷ ︸

M2

−

√
α2 −

ρ2

α1
G̃︸ ︷︷ ︸

M3

.

The difference of the two log det terms is thus equal to

log det

Id + M−1/2
1 M2M−1/2

1 + M−1/2
1 M3M−1/2

1︸ ︷︷ ︸
M

 .

Observe that M3 is a scaled GOE matrix independent of M1 (and M2). Taylor expanding the above,
we shall control the trace and Frobenius norm of M. It may be verified that the higher-order terms,
corresponding to higher Schatten norms, are O(1). To control the trace and Frobenius norm, we
shall essentially control their values in expectation. Standard concentration arguments for GOE
matrices, along the lines of Lemma 8.6 using [GZ00, Lemma 1.2(b) and Corollary 1.6(b)], allow
us to assume (with probability 1 − e−cN) that the eigenvalues of G are distributed according to
the semicircular distribution up to some small Wasserstein perturbation. That is, with probability
1 − e−cN , denoting by λi(G) the eigenvalues of G,

Tr M−1/2
1 M2M−1/2

1 = ∑
1⩽i⩽N

(α2 − α1)−
(

ρ√
α1
−√

α1

)
λi(G)

(1 + α1)−
√

α1λi(G)

= N ·
∫ (α2 − α1)−

(
ρ√
α1
−√

α1

)
u

(1 + α1)−
√

α1u
dµsc(u) + O(1)

= N(α2 − ρ) + O(1),

where the final equality follows from the standard semicircle integral
∫ 1

x−u dµsc(u) =
1
2

(
x −

√
x2 − 4

)
. On the other hand, because G̃ is independent of G,

Tr M−1/2
1 M3M−1/2

1 = O(1)
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with probability 1− e−cN . Let us next control the Frobenius norms of these matrices. Again, because
G̃ is independent of G, with very high probability,

∥M∥ 2
F = O(1) + ∥M−1/2

1 M2M−1/2
1 ∥ 2

F + ∥M−1/2
1 M3M−1/2

1 ∥ 2
F.

The first squared Frobenius norm is equal to

∑

 (α2 − α1)−
(

ρ√
α1
−√

α1

)
λi(G)

(1 + α1)−
√

α1λi(G)

2

.

Let ι such that (1 + α1)− (2 + ι)
√

α1 > ι (this uses strict replica symmetry). Then, with probability
1 − e−cN , |λi(G)| ⩽ 2 + ι for all i. Conditioned on this event happening, and recalling that
α2 − α1 = O

(
a2+b2

N

)
, the above is O(a2+b2)2

N . This is O(1) for all choices of a, b ⩽ ιN1/4.

We must next control the squared Frobenius norm of M−1/2
1 M3M−1/2

1 . Let us condition on a
typical realization of M1: all its eigenvalues are smaller than 2 + ι in magnitude, and the empirical
spectral distribution is Wasserstein-close to the semicircle law in the same sense as the previous
section (where we controlled the trace), in that

∑
1

(1 + α1)−
√

α1λi(G)
= N ·

∫ 1
(1 + α1)−

√
α1u

dµsc(u) + O(1) = N + O(1)

Because M3 is independent of M1, it suffices to control the expected Frobenius norm of the matrix –
the true realization concentrates around its expectation to additive O(1) factors. It is not difficult to
see that this expectation is equal to

1
N

·
(

α2 −
ρ2

α1

)
·
(

∑
1

(1 + α1)−
√

α1λi(G)

)2

= N ·
(

α2 −
ρ2

α1

)
·
(∫ 1

(1 + α1)−
√

α1u
dµsc(u)

)2

+ O(1)

= N ·
(

α2 −
ρ2

α1

)
+ O(1).

Putting the pieces together and returning to the Taylor expansion, we get that with very high
probability,

2
(

Error(2)0,0 − Error(2)a,b

)
=

Nα1

2
− Nα2

2
+ log det (Id + M)

= O(1) +
Nα1

2
− Nα2

2
+ Tr (M)− 1

2
∥M∥ 2

F

= O(1) + N ·
(

α1

2
− α2

2
+ (α2 − ρ)− 1

2

(
α2 −

ρ2

α1

))
= O(1) + N ·

(
α1

2
− ρ +

ρ2

2α1

)
= O(1) +

N
2
· (α1 − ρ)2

α1
.

Because α1 − ρ = O
(

a2+b2

N

)
, this is O(1) for a, b ⩽ ιN1/4, completing the proof.
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B.3 Moment calculations for covariance bounds

We first prove subgaussian concentration for the covariance of the degree-2 part.

Proof of Proposition 8.8. Part (2) follows from part (1) by a standard tail integration argument. In-
deed, the random variable W is bounded by N1/2, so the contribution to E[Wk] from the event
|W| ⩾ N1/5 is bounded by

Nk/2P(|W| ⩾ N1/5) ⩽ Nk/2e−cN2/5
,

which is vanishing for any constant k. So, we focus on proving part (1). In the case W =

⟨σ1, σ2⟩/
√

N, this is a special case of [HMP24, Lemma 7.5] (where we take u = 0). We consider the
case W = ⟨σ, vi⟩. Recall that

HN,2(σ) = ⟨Aσ, σ⟩ =
√

ξ ′′(0)
2

⟨Mσ, σ⟩

where M ∼ GOE(N). For 0 ⩽ s ⩽ N1/5 log N, we will evaluate∫
eHN,2(σ) dρ(σ) and

∫
eHN,2(σ)+s⟨vi ,σ⟩ dρ(σ)

using [HMP24, Lemma 7.3]. We recall the function G : (λmax(A),+∞) defined in (15), which we
copy below for convenience, and define G̃ by

G(γ) = γ − 1
2N

log det(γI − A), G̃(γ) = G(γ) +
s2

4N(γ − λi(A))
.

Recall from below (15) that G′ has a unique root γ∗ on (λmax(A),+∞). By the same argument, G̃′

has a unique root γ̃∗ on the same interval. As argued in the proof of Lemma 8.6, the conditions of
[HMP24, Lemma 7.3] apply. Applying this lemma with u = 0 and u = svi, respectively, shows that
with probability 1 − e−cN ,∫

eHN,2(σ) dρ(σ) = (1 + O(N−c))

√
2

G′′(γ∗)
(2e)−N/2 exp(NG(γ∗)),

∫
eHN,2(σ)+s⟨vi ,σ⟩ dρ(σ) = (1 + O(N−c))

√
2

G̃′′(γ̃∗)
(2e)−N/2 exp

(
NG̃(γ̃∗)

)
. (39)

Suppose further the probability 1 − e−cN event in Lemma 8.7 holds. As argued in the proof of

Proposition 8.1, |γ∗ − γ0| ⩽ 1
C
√

N
. Also, with probability 1 − e−cN , λmax(A) ⩽

√
ξ ′′(0)
2 (2 + ε2/8).

We will show that on the intersection of these events |γ∗ − γ̃∗| = O(N−3/5 log2 N). First note
that

γ∗ − λmax(A) ⩾ γ0 − λmax(A)− 1
C
√

N
⩾

1 + ξ ′′(0)− (2 + ε2/8)
√

ξ ′′(0)
2

− 1
C
√

N
⩾ ε2/32

is bounded below by a constant, as in the proof of Fact 8.5. Since G′(γ∗) = 0 and G̃′(γ) =

G′(γ)− s2

4N(γ−λi(A))2 , we have γ̃∗ ⩾ γ∗ and so γ̃∗ − λi(A) is also bounded below by a constant.

Thus, as s ⩽ N1/5 log N, we have

0 ⩾ G̃′(γ∗) = − s2

4N(γ − λi(A))2 = O(N−3/5 log2 N).
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By direct computation,

G̃′′(γ) = G′′(γ) +
s2

8N(γ − λi(A))2 .

Since γ̃∗ ⩾ γ∗, we have γ − λi(A) is bounded below by a constant for all γ ∈ [γ∗, γ̃∗]. We claim
that γ̃∗ ∈ [γ0 − N−1/2, γ0 + N−1/2]. Combining both conclusions of Lemma 8.7, we obtain that
G′′(γ) ⩾ Ωε(1) for γ ∈ [γ0 − N−1/2, γ0 + N−1/2], and consequently the desired claim on γ̃∗ holds.

We thus have G̃′′(γ) = Oε(1) in the same interval, and consequently we can conclude the
stronger statement |γ∗ − γ̃∗| = O(N−3/5 log2 N). Furthermore, since G̃(3)(γ) = Oε(1), the same
logic allows us to also conclude

G̃′′(γ̃∗)/G̃′′(γ∗) = 1 + O(N−3/5 log2 N).

By Taylor expanding G̃ around γ̃∗, we see

N|G̃(γ∗)− G̃(γ̃∗)| ⩽
N
2
|γ∗ − γ̃∗|2 sup

γ∈[γ0−N−1/2,γ0+N−1/2]

G′′(γ) = O(N−1/5 log4 N).

The above two displays allow us to replace instances of γ̃∗ with γ∗ in (39), yielding

∫
eHN,2(σ)+s⟨vi ,σ⟩ dρ(σ) = (1 + O(N−c))

√
2

G̃′′(γ∗)
(2e)−N/2 exp

(
NG̃(γ∗)

)
,

and thus

⟨es⟨vi ,σ⟩⟩2 =

∫
eHN,2(σ)+s⟨vi ,σ⟩ dρ(σ)∫

eHN,2(σ) dρ(σ)

= (1 + O(N−c))

√
G′′(γ∗)

G̃′′(γ∗)
exp

(
N(G̃(γ∗)− G(γ∗))

)
= (1 + O(N−c)) exp

(
s2/(4(γ∗ − λi(A)))

)
= (1 + O(N−c)) exp

(
cs2),

where the last two steps again use that γ∗ − λi(A) is bounded away from 0. The tail estimate on
W = ⟨vi, σ⟩ now follows from a standard Chernoff bound.

We next turn to Lemma 8.11, proving each part in turn.

Proof of Lemma 8.11, Eq. (18). We reproduce Eq. (18) below for convenience:

E
∫

SN

1[σ ̸∈ T(HN)]eHN(σ) dρ(σ) ⩽ eNξ(1)/2−cN1/5
.

The proof follows [HS23, Proposition 3.1], except with more precise control of overlaps between
N−2/5 and a small constant. By symmetry of the sphere, for any deterministic x ∈ SN ,

E
∫

SN

1[σ ̸∈ T(HN)]eHN(σ) dρ(σ) = E
[
1[x ̸∈ T(HN)]eHN(x)

]
. (40)

Let µpl(·|x) denote the planted model (Definition 7.8) conditional on spike x. A Gaussian change of
measure calculation implies that the right-hand side of (40) equals

eNξ(1)/2PHx,I
N ∼µpl(·|x)[x ̸∈ T(Hx,I

N )].
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Thus it suffices to show
PHx,I

N ∼µpl(·|x)[x ̸∈ T(Hx,I
N )] ⩽ e−cN1/5

.

Recall (Remark 7.14) that a sample Hx,I
N ∼ µpl(·|x) can be generated by

Hx,I
N (σ) = Nξ(R(x, σ)) + H̃N(σ), (41)

where H̃N ∼ µnull. Furthermore, from the definition, x ∈ T(Hx,I
N ) is equivalent to∫

SN

1[|R(x, τ)| ⩾ N−2/5]eHx,I
N (τ) dρ(τ) ⩽ eNξ(1)/2−cN1/5

(42)

We will show this occurs with probability at least 1 − e−cN1/5
. Let ψ denote the probability density

of R(x, τ) ∈ [−1, 1], where τ is sampled from the Haar measure on SN . Then it is known that

ψ(q) =
1

Zψ
(1 − q2)(N−3)/2

where Zψ = Θ(N−1/2). Define the codimension-1 band

Band(q) = Band(q; x) := {τ ∈ SN : R(x, τ) = q}

and let
Zx,I(q) =

∫
Band(q)

eHx,I
N (τ) dρq(τ),

where ρq is the Haar measure on Band(q), normalized so that ρq(Band(q)) = ψ(q). Then the
left-hand side of (42) is equal to ∫

N−2/5⩽|q|⩽1
Zx,I(q)dq.

An application of Guerra’s interpolation as in [HS23, Lemma 3.3] shows that for any q ∈ [−1, 1]
and constant η > 0, with probability 1 − e−cN ,

1
N

log Zx,I(q) ⩽
1
2
(ξ(1) + ξ(|q|) + |q|+ log(1 − |q|)) + η.

Since ξ∼1 is ε-strictly replica symmetric and γ2
1 ⩽ N−4/5, this implies

1
N

log Zx,I(q) ⩽
ξ(1)

2
− εq2

4
+ 2η.

Let δ > 0 be small depending on ε, and η small depending on δ. This implies that for any |q| ⩾ δ,
with probability 1 − e−cN ,

1
N

log Zx,I(q) ⩽
ξ(1)

2
− εδ2

8
.

Taking a union bound over a N−1-net of |q| ⩾ δ as in [HS23, Lemma 3.4] implies that with
probability 1 − e−cN , ∫

δ⩽|q|⩽1
Zx,I(q)dq ⩽ eNξ(1)/2−cN . (43)
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We address the remaining range of q by a first moment bound. Note that

E
∫

N−2/5⩽|q|⩽δ
Zx,I(q)dq = eNξ(1)/2

∫
N−2/5⩽|q|⩽δ

eNξ(q)ψ(q)dq. (44)

Recall from Fact 8.4 that ξ ′′(0) ⩽ 1 − ε. Thus, for sufficiently small δ, for all |q| ⩽ δ,

ξ∼1(q) +
1
2

log
(
1 − q2) ⩽ −εq2/4.

Thus, for all N−2/5 ⩽ |q| ⩽ δ,

1
N

log
(

eNξ(q)ψ(q)
)
= ξ(q) +

1
N

log ψ(q) = γ2
1q + ξ∼1(q) +

1
2

log
(
1 − q2)+ O(N−1 log N)

⩽ γ2
1q − εq2/4 + O(N−1 log N) ⩽ −εN−4/5/8.

Combining with (44) shows

E
∫

N−2/5⩽|q|⩽δ
Zx,I(q)dq ⩽ eNξ(1)/2−cN1/5

,

so by Markov’s inequality, with probability 1 − e−cN1/5/2,∫
N−2/5⩽|q|⩽δ

Zx,I(q)dq ⩽ eNξ(1)/2−cN1/5/2.

Combining with (43) proves (42) after adjusting c.

Proof of Lemma 8.11, Eq. (19). By the same argument leading to (42), it suffices to prove∫
SN

1[|R(x, τ)| ⩾ N−2/5]eHx,II
N (τ) dρ(τ) ⩽ eNξ(1)/2−cN1/5

(45)

holds with probability at least 1 − e−cN1/5
, where now

Hx,II
N (σ) = Nγ2

2R(x, σ)2 + H̃N(σ),

i.e. we have replaced the spike in Hx,I
N with only its degree-2 part. Then Hx,II

N (σ) ⩽ Hx,I
N (σ) almost

surely for all σ such that R(x, σ) ⩾ 0, so (42) implies∫
SN

1[R(x, τ) ⩾ N−2/5]eHx,II
N (τ) dρ(τ) ⩽ eNξ(1)/2−cN1/5

with probability 1 − e−cN . Moreover, by symmetry of the degree-2 spike,∫
SN

1[R(x, τ) ⩾ N−2/5]eHx,II
N (τ) dρ(τ)

d
=
∫

SN

1[R(x, τ) ⩽ −N−2/5]eHx,II
N (τ) dρ(τ).

This implies (45) and thus (19).
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Proof of Lemma 8.11, Eq. (20). This follows from a slightly more complex form of the same strategy,
where the planted Hamiltonian now has two spikes. For x1, x2 ∈ SN , let

Hx1,x2,III
N (σ) = Nξ(R(x1, σ)) + Nξ(R(x2, σ)) + H̃N(σ).

By the same gaussian change of measure argument as above, the expectation in the left-hand side
of (20) equals

eNξ(1)
∫

1[|R(σ1, σ2)| ⩽ 3N−2/5]P(σ1 ̸∈ T(Hσ1,σ2,III
N ))dρ⊗2(σ1, σ2).

Thus it suffices to show that for all x1, x2 ∈ SN with |R(x1, x2)| ⩽ 3N−2/5,∫
SN

1[|R(x1, τ)| ⩾ N−2/5]eHx1,x2,III
N (τ) dρ(τ) ⩽ eNξ(1)/2−cN1/5

(46)

with probability at least 1 − e−cN1/5
. Let λ = R(x1, x2) ∈ [−3N−2/5, 3N2/5] and

x2 = λx1 +
√

1 − λ2x2
⊥,

where x2
⊥ ∈ SN and R(x1, x2

⊥) = 0. Let ψ2 denote the probability density of (R(x1, τ), R(x2
⊥, τ)) ∈

[1, 1]2, where τ is sampled from the Haar measure on SN . It is known that

ψ2(q) =
1[q2

1 + q2
2 ⩽ 1]

Zψ2

(1 − q2
1 − q2

2)
(N−4)/2

where Zψ = Θ(N−1). Define the codimension-2 band

Band(q1, q2) = Band(q1, q2; x1, x2) := {τ ∈ SN : R(x1, τ) = q1, R(x2
⊥, τ) = q2}.

and let
Zx1,x2,III(q1, q2) =

∫
Band(q1,q2)

eHx1,x2,III
N (τ) dρq1,q2(τ),

where ρq1,q2 is the Haar measure on Band(q1, q2), normalized so that ρq1,q2(Band(q1, q2)) = ψ2(q1, q2).
Then the left-hand side of (46) is equal to∫

1[|q1| ⩾ N−2/5]Zx1,x2,III(q1, q2)d(q1, q2). (47)

Note that

1
N

log Zx1,x2,III(q1, q2) = ξ(q1) + ξ
(

λq1 +
√

1 − λ2q2

)
+

1
N

log
∫
Band(q1,q2)

eH̃N(τ) dρq1,q2(τ).

Let q̃ = q̃(q1, q2) :=
√

q2
1 + q2

2. Applying Guerra’s interpolation as in [HS23, Lemma 3.3] shows that

for any η > 0, with probability 1 − e−cN

1
N

log
∫
Band(q1,q2)

eH̃N(τ) dρq1,q2(τ) ⩽
1
2
(ξ(1)− ξ(q̃) + q̃ + log(1 − q̃)) + η.

and thus

1
N

log Zx1,x2,III(q1, q2) ⩽ ξ(q1) + ξ
(

λq1 +
√

1 − λ2q2

)
+

1
2
(ξ(1)− ξ(q̃) + q̃ + log(1 − q̃)) + η
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⩽ ξ∼1(|q1|) + ξ∼1(|q2|) +
1
2
(ξ(1)− ξ∼1(q̃) + q̃ + log(1 − q̃)) + 2η.

Since ξ∼1 only includes terms that are degree 2 or larger, ξ∼1(|q1|) + ξ∼1(|q2|) ⩽ ξ∼1(q̃). Thus the
last display is bounded by

1
2
(ξ(1) + ξ∼1(q̃) + q̃ + log(1 − q̃)) + 2η ⩽

ξ(1)
2

− εq̃2

4
+ 2η.

Arguing as in the proof of equation (18) then shows that for any δ > 0 depending only on ε,∫
1[q̃(q1, q2) > δ]Zx1,x2,III(q1, q2)d(q1, q2) ⩽ eNξ(1)/2−cN (48)

with probability 1 − e−cN . The remaining part of the integral (47) has expectation

E
∫

1[|q1| ⩾ N−2/5, q̃(q1, q2) ⩽ δ]Zx1,x2,III(q1, q2)d(q1, q2)

= eNξ(1)/2
∫

1[|q1| ⩾ N−2/5, q̃(q1, q2) ⩽ δ]eNξ(q1)+Nξ(λq1+
√

1−λ2q2)ψ2(q1, q2)d(q1, q2). (49)

Recall γ2
1 ⩽ N−4/5. For all (q1, q2) in this indicator,

1
N

log
(

eNξ(q1)+Nξ(λq1+
√

1−λ2q2)ψ2(q1, q2)
)

= ξ(q1) + ξ
(

λq1 +
√

1 − λ2q2

)
+

1
2

log
(
1 − q̃2)+ O(N−1 log N)

⩽ 2N−4/5q̃ − 1
2
(1 − ξ ′′(0))q̃2 + O(q̃3 + N−1 log N)

⩽ − εq̃2

2
+ 2N−4/5q̃ + O(q̃3 + N−1 log N).

Since N−2/5 ⩽ q̃ ⩽ δ, for δ sufficiently small depending on ε this is bounded by −cN−4/5. Combin-
ing with (49) shows that with probability 1 − e−cN1/5

,∫
1[|q1| ⩾ N−2/5, q̃(q1, q2) ⩽ δ]Zx1,x2,III(q1, q2)d(q1, q2) ⩽ eNξ(1)/2−cN1/5

.

Further combining with (48) completes the proof.

Proof of Lemma 8.11, Eq. (21). This is proved identically to equation (20), except with spiked Hamil-
tonian

Hx1,x2,IV
N (σ) = Nγ2

2R(x1, σ)2 + Nξ(R(x2, σ)) + H̃N(σ),

i.e. the spike involving x1 is replaced with just its degree-2 component. The same argument applies
and we omit details.

We turn to the proofs of Lemmas 8.15 and 8.16. The following fact will be useful in the proofs of
both lemmas.

Fact B.4. If σ ∈ SN satisfies |σi|, |σj| ⩽ log N and σ ̸∈ T̃i,j, then σ ̸∈ T̃.
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Proof. Consider any τ ∈ SN satisfying |R(σ∼i,j, τ∼i,j)| ⩾ 2N−2/5. Since |τi|, |τj| ⩽ N1/2,

|R(σ, τ)| ⩾ |R(σ∼i,j, τ∼i,j)| −
|σi||τi|+ |σj||τj|

N
⩾ N−2/5.

Thus the expectation over τ in (22) is larger than the expectation over τ in (28), and so σ ̸∈ T̃.

Proof of Lemma 8.15. We can write Xi,j = X̃i,j + X̃(1)
i,j + X̃(2)

i,j , where

X̃(1)
i,j =

〈
1[|σi|, |σj| ⩽ log N, σ ̸∈ T̃i,j]σiσj

(
eHN,∼2(σ)−Nξ∼2(1)/2 − 1[i = j]

)〉
2

,

X̃(2)
i,j =

〈
1[|σi| ∨ |σj| > log N]σiσj

(
eHN,∼2(σ)−Nξ∼2(1)/2 − 1[i = j]

)〉
2

.

By using (a + b)2 ⩽ 2a2 + 2b2, we deduce that

X2
i,j ⩽ 2X̃2

i,j + 2(X̃(1)
i,j + X̃(2)

i,j )
2,

so the rest of the proof is dedicated to showing that |X̃(1)
i,j + X̃(2)

i,j | ⩽ e−c log2 N with probability

1 − e−c log2 N . To do so, we will simply apply Markov to control |X̃(1)
i,j | and |X̃(2)

i,j |.
By Fact B.4 and using |σi|,

∣∣σj
∣∣ ⩽ √

N,

|X̃(1)
i,j | ⩽ N

〈
1[|σi|, |σj| ⩽ log N, σ ̸∈ T̃i,j]

(
eHN,∼2(σ)−Nξ∼2(1)/2 + 1[i = j]

)〉
2

⩽ N
〈

1[σ ̸∈ T̃]
(

eHN,∼2(σ)−Nξ∼2(1)/2 + 1[i = j]
)〉

2
.

By the first two equations from Corollary 8.12, E∼2|X̃(1)
i,j | ⩽ e−cN1/5

. Furthermore,

E∼2|X̃(2)
i,j | ⩽ NE∼2

〈(
1[|σi| > log N] + 1[|σj| > log N]

) (
eHN,∼2(σ)−Nξ∼2(1)/2 + 1[i = j]

)〉
2

⩽ 2N
〈
1[|σi| > log N] + 1[|σj| > log N]

〉
2 ⩽ e−c log2 N

by Proposition 8.8(1). By Markov’s inequality, with probability 1 − e−c log2 N , |X̃(1)
i,j | + |X̃(2)

i,j | ⩽
e−c log2 N , after adjusting c as necessary. This concludes the proof.

Proof of Lemma 8.16. We can write X̃2
i,j = X̂i,j + X̂(1)

i,j − X̂(2)
i,j , where

X̂(1)
i,j =

〈
1[|σ1

i |, |σ1
j |, |σ2

i |, |σ2
j | ⩽ log N, σ1, σ2 ∈ T̃i,j, |R(σ1

∼i,j, σ2
∼i,j)| > 2N−2/5]

σ1
i σ1

j σ2
i σ2

j

(
eHN,∼2(σ

1)−Nξ∼2(1)/2 − 1[i = j]
) (

eHN,∼2(σ
2)−Nξ∼2(1)/2 − 1[i = j]

)〉
2
,

X̂(2)
i,j =

〈
1[|σ1

i |, |σ1
j |, |σ2

i |, |σ2
j | ⩽ log N, (σ1 ̸∈ T̃i,j ∨ σ2 ̸∈ T̃i,j), |R(σ1

∼i,j, σ2
∼i,j)| ⩽ 2N−2/5]

σ1
i σ1

j σ2
i σ2

j

(
eHN,∼2(σ

1)−Nξ∼2(1)/2 − 1[i = j]
) (

eHN,∼2(σ
2)−Nξ∼2(1)/2 − 1[i = j]

)〉
2
.
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By the same argument as before, it suffices to control E∼2|X̂(1)
i,j | and E∼2|X̂(2)

i,j |. Note that almost
surely,

|X̂(1)
i,j | ⩽ N2

〈
1[|σ1

i |, |σ1
j |, |σ2

i |, |σ2
j | ⩽ log N, σ1, σ2 ∈ T̃i,j, |R(σ1

∼i,j, σ2
∼i,j)| > 2N−2/5](

eHN,∼2(σ
1)−Nξ∼2(1)/2 + 1

) (
eHN,∼2(σ

2)−Nξ∼2(1)/2 + 1
)〉

2
⩽ N2(X̂(3)

i,j + X̂(4)
i,j )

where

X̂(3)
i,j =

〈
1[σ1 ∈ T̃i,j, |R(σ1

∼i,j, σ2
∼i,j)| > 2N−2/5]eHN,∼2(σ

1)+HN,∼2(σ
2)−Nξ∼2(1)

〉
2

,

X̂(4)
i,j =

〈
1[|σ1

i |, |σ1
j |, |σ2

i |, |σ2
j | ⩽ log N, |R(σ1

∼i,j, σ2
∼i,j)| > 2N−2/5]

(eHN,∼2(σ
1)−Nξ∼2(1)/2 + eHN,∼2(σ

2)−Nξ∼2(1)/2 + 1)
〉

2
.

By definition of T̃i,j,

X̂(3)
i,j ⩽

〈
1[σ1 ∈ T̃i,j]eHN,∼2(σ

1)−Nξ∼2(1)/2−cN1/5
〉

2
,

and thus E∼2X̂(3)
i,j ⩽ e−cN1/5

. Furthermore,

X̂(4)
i,j ⩽

〈
1[|R(σ1, σ2)| > N−2/5](eHN,∼2(σ

1)−Nξ∼2(1)/2 + eHN,∼2(σ
2)−Nξ∼2(1)/2 + 1)

〉
2

,

and thus
E∼2X̂(4)

i,j ⩽ 3
〈

1[|R(σ1, σ2)| > N−2/5]
〉

2
⩽ e−cN1/5

by Proposition 8.8(1). Combining shows E∼2|X̂(1)
i,j | ⩽ e−cN1/5

. Similarly

|X̂(2)
i,j | ⩽ N2

〈
1[|σ1

i |, |σ1
j |, |σ2

i |, |σ2
j | ⩽ log N, (σ1 ̸∈ T̃i,j ∨ σ2 ̸∈ T̃i,j),

|R(σ1
∼i,j, σ2

∼i,j)| ⩽ 2N−2/5]
(

eHN,∼2(σ
1)−Nξ∼2(1)/2 + 1

) (
eHN,∼2(σ

2)−Nξ∼2(1)/2 + 1
)〉

2

By Fact B.4, on the indicator in this expectation, σ1, σ2 ∈ T̃. Moreover

|R(σ1, σ2)| ⩽ |R(σ1
∼i,j, σ2

∼i,j)|+
|σ1

i ||σ2
i |+ |σ1

j ||σ1
j |

N
⩽ 3N−2/5.

Thus

|X̂(2)
i,j | ⩽ 2N2

〈
1[σ1 ̸∈ T̃, |R(σ1, σ2)| ⩽ 3N−2/5](

eHN,∼2(σ
1)−Nξ∼2(1)/2 + 1

) (
eHN,∼2(σ

2)−Nξ∼2(1)/2 + 1
)〉

2

and Corollary 8.12 implies E∼2|X̂(2)
i,j | ⩽ e−cN1/5

.
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