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Motivation

Motivating Problem
Given a high-dimensional probability distribution µ, efficiently sample a point from µ.

Useful in various downstream tasks:
optimization
inference
integration. . .
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Example distribution: strongly log-concave distribution

Distribution µ over Rn , with density µ(x) ∝ e−V(x) , with V strongly convex (∇2V ⪰ αId uniformly).

Classical result that such distributions can be efficiently sampled from. (see Chewi [Che23])
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How do we sample?

Markov Chain Monte Carlo!
Design a Markov chain P with stationary distribution µ.
Run it for T = poly(n) time starting at x0. Output xT .
Hopefully, the random output xT is distributed according to µ.

P mixes (from x0) in time T if dTV (xT , µ) is tiny.
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What Markov chain?
For distributions supported on Rn , Langevin diffusion is a canonical Markov chain for µ(x) ∝ e−V(x)

:

Xt+δ − Xt = −δ∇V(Xt) +
√

2δ gt
↑

N (0,Id)

for δ infinitesimal

Definition can be modified for distributions supported on the sphere, say.

Figure from Yuansi Chen
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Mixing times

Mixing is shown by proving that for any distribution ν,

distance (Pν∥µ) ⩽
(

1 − 1
poly(n)

)
distance (ν∥µ) .

There are now many many ways to show this:
Coupling [BDJ96, BD97a]
Path coupling [Jer95, BD97b, BD97c]
Canonical paths [JS89, JSV04, HMMR05]
Curvature considerations/Bakry–Émery theory [BÉ06, Vil09, EHMT17, CMS24]
Zerofreeness [LY52, Bar16a, Bar16b, CLV24]
Correlation decay [DSVW04, Wei04, Wei06, CLV21, CLMM23]
Spectral independence [ALGV19, ALG21, Liu23, AJK+24]
Entropic independence [AJK+21a, AJK+21b, CCYZ24]
Stochastic localization [EKZ22, CE22, AKV24, LMRW24]
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Reevaluating the basics

Mixing is shown by proving that for any distribution ν,

distance (Pν∥µ) ⩽
(

1 − 1
poly(n)

)
distance (ν∥µ) .

. . . Cannot always guarantee this for all ν! Could I show mixing from some problem-specific initialization?

Most previous work [LS93, Lov99, LV23, AEGP23] has been restricted to sampling from convex bodies.

Maybe if I initialize with equal mass in each cluster, I do
mix.

Is there a more principled approach to designing “good initializations”?
How do we prove rapid mixing from non-worst-case initializations?
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Simulated annealing

Say I have distribution µ(x) ∝ e−V(x) .

In simulated annealing, consider µβ(x) ∝ e−βV(x) . Sampling is
easy at small β, possibly difficult at β = 1.

Slowly increase β from 0 to 1, so µβ provides a good initialization for the Markov chain at µβ+δ .
Used very often in practice!

β = 0.1

How do we prove rapid mixing from non-worst-case initializations?
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Simulated annealing

Say I have distribution µ(x) ∝ e−V(x) . In simulated annealing, consider µβ(x) ∝ e−βV(x) . Sampling is
easy at small β, possibly difficult at β = 1.

Slowly increase β from 0 to 1, so µβ provides a good initialization for the Markov chain at µβ+δ .
Used very often in practice!

β = 0.4
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easy at small β, possibly difficult at β = 1.
Slowly increase β from 0 to 1, so µβ provides a good initialization for the Markov chain at µβ+δ .

Used very often in practice!

β = 0.6
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Simulated annealing

Say I have distribution µ(x) ∝ e−V(x) . In simulated annealing, consider µβ(x) ∝ e−βV(x) . Sampling is
easy at small β, possibly difficult at β = 1.
Slowly increase β from 0 to 1, so µβ provides a good initialization for the Markov chain at µβ+δ .

Used very often in practice!

β = 0.8
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1 Results
Sampling from spherical spin glasses
Sampling from data-based initializations

2 Techniques
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Spherical 4-spin glass

Set
H(σ) =

γ

N3/2 ⟨G, σ⊗4⟩

for σ ∈
√

N · SN−1 for G a random rank-4 tensor (Gi1,...,i4 ∼ N (0, 1)), and set µ(σ) ∝ eH(σ) .

Extremely well-studied in statistical physics. Subject of 2021 Nobel Prize in Physics!
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Results: Sampling from spherical 4-spin models

0

γ ..
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H(σ) = 1
N3/2 ⟨G, σ⊗4⟩

µ(σ) ∝ eγH(σ) for σ ∈
√

N · SN−1

[AJ24]: GB Arous and A Jagannath. Shattering versus metastability in spin glasses.
[AJK+ 24]: N Anari, V Jain, F Koehler, HT Pham, and TD Vuong. Universality of spectral independence with applications to fast mixing in spin glasses.
[Ala24]: AE Alaoui. Near-optimal shattering in the ising pure p-spin and rarity of solutions returned by stable algorithms.
[AMS23a]: AE Alaoui, A Montanari, and M Sellke. Sampling from mean-field Gibbs measures via diffusion processes.
[AMS23b]: AE Alaoui, A Montanari, and M Sellke. Shattering in pure spherical spin glasses.
[CHS93]: A Crisanti, H Horner, and HJ Sommers. The spherical p-spin interaction spin-glass model: the dynamics.
[GJ19]: R Gheissari and A Jagannath. On the spectral gap of spherical spin glass dynamics.
[HMP24]: B Huang, A Montanari, and HT Pham. Sampling from Spherical Spin Glasses in Total Variation via Algorithmic Stochastic Localization.
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γPI

Prediction: Langevin mixes rapidly from worst-case init [GJ19]

γsh

Prediction: Langevin mixes rapidly from random init [CHS93]

Prediction: Sampling hard [CHS93, AMS23b, AJ24, Ala24]

Weak Poincaré Inequalities 11 / 26

H(σ) = 1
N3/2 ⟨G, σ⊗4⟩

µ(σ) ∝ eγH(σ) for σ ∈
√

N · SN−1

[AJ24]: GB Arous and A Jagannath. Shattering versus metastability in spin glasses.

[AJK+ 24]: N Anari, V Jain, F Koehler, HT Pham, and TD Vuong. Universality of spectral independence with applications to fast mixing in spin glasses.

[Ala24]: AE Alaoui. Near-optimal shattering in the ising pure p-spin and rarity of solutions returned by stable algorithms.

[AMS23a]: AE Alaoui, A Montanari, and M Sellke. Sampling from mean-field Gibbs measures via diffusion processes.

[AMS23b]: AE Alaoui, A Montanari, and M Sellke. Shattering in pure spherical spin glasses.
[CHS93]: A Crisanti, H Horner, and HJ Sommers. The spherical p-spin interaction spin-glass model: the dynamics.
[GJ19]: R Gheissari and A Jagannath. On the spectral gap of spherical spin glass dynamics.

[HMP24]: B Huang, A Montanari, and HT Pham. Sampling from Spherical Spin Glasses in Total Variation via Algorithmic Stochastic Localization.



Results: Sampling from spherical 4-spin models

0

γ ..

γPI

Prediction: Langevin mixes rapidly from worst-case init [GJ19]

γsh

Prediction: Langevin mixes rapidly from random init [CHS93]

Prediction: Sampling hard [CHS93, AMS23b, AJ24, Ala24]

Known: Langevin mixes rapidly from worst-case init [GJ19, AJK+24]

Known: Langevin mixes slowly from worst-case init [GJ19, AJ24]
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Results: Comparison to previous work

Theorem (HMRW)

Simulated annealing succeeds at sampling from µ to TV distance e−cN0.2 for γ < γSL.

Huang–Montanari–Pham [HMP24] show that algorithmic stochastic localization gets to O(N−c) TV
distance. This is intrinsic to the algorithm!
Simulated annealing is what is run in practice.
Algorithmic stochastic localization gets stuck at γSL, while we believe that simulated annealing
should work all the way down to γsh.
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Results: Sampling from data-based initializations

Let π = ∑K
i=1 piπi be a mixture of strongly log-concave distributions.

Given access to only the “score” ∇ log π (so you can run Langevin), cannot hope to sample without
additional information (it is difficult to “find” the clusters). Worst-case mixing fails!
Additional information: given a bunch of samples from π.

Theorem (HMRW)

Suppose min pi ⩾ p∗ . Let x1, x2, . . . , xm be sampled according to π. For m = Ω
(

1
p∗ε2

)
, with high

probability over the samples, Langevin diffusion initialized at 1
m ∑ δxi run for poly(n) time samples from

π to TV distance ε.

Improves on (doubly exponential) dependence on (1/p∗) from previous work by Koehler–Vuong [KV23].
This problem is studied in more detail in parallel independent work by Koehler–Lee–Vuong [KLV23].
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How do we show worst-case mixing?

Suppose I run Langevin diffusion initialized at ν0, with distribution νt at time t.

Let ft =
dνt
dµ be the

likelihood ratio at time t. Then,

χ2 (νt∥µ) = Eµ

[(
dνt

dµ
− 1

)2
]

= Var
µ
[ ft] .

Say I want to show that χ2 (νt∥µ) decays exponentially fast. Then, would like that

− d
dt

Var
µ
[ ft] ⩾

1
poly(n)

· Var
µ
[ ft] .

Lemma
Turns out that for Langevin, − d

dt Varµ[ ft] = Eµ∥∇ ft∥2
2!
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Poincaré inequalities

Poincaré inequality
For all functions f ,

Eµ∥∇ f ∥2
2 ⩾

1
poly(n)

· Var
µ
[ f ] .

Poincaré inequalities imply rapid mixing from worst-case initializations!

Can be appropriately generalized to other Markov chains.
Poincaré inequalities are equivalent to the more familiar spectral gaps. All the techniques from earlier
show rapid mixing by proving Poincaré inequalities/showing large spectral gaps.
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An observation

This only cares about functions ft encountered along the trajectory of the chain!

Weak Poincaré inequality (WPI)
µ satisfies a WPI with error functional Defect if for all f ,

Eµ∥∇ f ∥2 ⩾ ρ

(
Var

µ
[ f ]− Defect( f )

)
.

If µ satisfies a WPI,

χ2 (νT∥µ) ⩽ e−ρTχ2 (ν0∥µ) + e−ρT
∫ T

0
ρeρt Defect( ft)dt .

If Defect is small (on average) along the trajectory of your Markov chain, it succeeds at sampling!
So far, not new [Aid98], even for sampling guarantees [RW01].

Weak Poincaré Inequalities 17 / 26
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Weak Poincaré inequalities

This only cares about functions ft encountered along the trajectory of the chain!

Weak Poincaré inequality (WPI)
µ satisfies a WPI with error functional Defect if for all f ,

Eµ∥∇ f ∥2 ⩾ ρ

(
Var

µ
[ f ]− Defect( f )

)
.

If µ satisfies a WPI,

χ2 (νT∥µ) ⩽ e−ρTχ2 (ν0∥µ) + e−ρT
∫ T

0
ρeρt Defect( ft)dt .

If Defect is small (on average) along the trajectory of your Markov chain, it succeeds at sampling!
So far, not new [Aid98], even for sampling guarantees [RW01].

Weak Poincaré Inequalities 17 / 26

[Aid98]: S Aida. Uniform positivity improving property, Sobolev inequalities, and spectral gaps.
[RW01]: M Röckner and FY Wang. Weak Poincaré inequalities and L2 -convergence rates of Markov semigroups



Weak Poincaré inequalities

This only cares about functions ft encountered along the trajectory of the chain!

Weak Poincaré inequality (WPI)
µ satisfies a WPI with error functional Defect if for all f ,

Eµ∥∇ f ∥2 ⩾ ρ

(
Var

µ
[ f ]− Defect( f )

)
.

If µ satisfies a WPI,

χ2 (νT∥µ) ⩽ e−ρTχ2 (ν0∥µ) + e−ρT
∫ T

0
ρeρt Defect( ft)dt .

If Defect is small (on average) along the trajectory of your Markov chain, it succeeds at sampling!
So far, not new [Aid98], even for sampling guarantees [RW01].

Weak Poincaré Inequalities 17 / 26

[Aid98]: S Aida. Uniform positivity improving property, Sobolev inequalities, and spectral gaps.
[RW01]: M Röckner and FY Wang. Weak Poincaré inequalities and L2 -convergence rates of Markov semigroups



Weak Poincaré inequalities

This only cares about functions ft encountered along the trajectory of the chain!

Weak Poincaré inequality (WPI)
µ satisfies a WPI with error functional Defect if for all f ,

Eµ∥∇ f ∥2 ⩾ ρ

(
Var

µ
[ f ]− Defect( f )

)
.

If µ satisfies a WPI,

χ2 (νT∥µ) ⩽ e−ρTχ2 (ν0∥µ) + e−ρT
∫ T

0
ρeρt Defect( ft)dt .

If Defect is small (on average) along the trajectory of your Markov chain, it succeeds at sampling!

So far, not new [Aid98], even for sampling guarantees [RW01].

Weak Poincaré Inequalities 17 / 26

[Aid98]: S Aida. Uniform positivity improving property, Sobolev inequalities, and spectral gaps.
[RW01]: M Röckner and FY Wang. Weak Poincaré inequalities and L2 -convergence rates of Markov semigroups



Weak Poincaré inequalities

This only cares about functions ft encountered along the trajectory of the chain!

Weak Poincaré inequality (WPI)
µ satisfies a WPI with error functional Defect if for all f ,

Eµ∥∇ f ∥2 ⩾ ρ

(
Var

µ
[ f ]− Defect( f )

)
.

If µ satisfies a WPI,

χ2 (νT∥µ) ⩽ e−ρTχ2 (ν0∥µ) + e−ρT
∫ T

0
ρeρt Defect( ft)dt .

If Defect is small (on average) along the trajectory of your Markov chain, it succeeds at sampling!
So far, not new [Aid98], even for sampling guarantees [RW01].

Weak Poincaré Inequalities 17 / 26

[Aid98]: S Aida. Uniform positivity improving property, Sobolev inequalities, and spectral gaps.
[RW01]: M Röckner and FY Wang. Weak Poincaré inequalities and L2 -convergence rates of Markov semigroups



Weak Poincaré inequalities for simulated annealing

A weak Poincaré inequality with Defect( f ) = ε ·

max f−min f
↓

osc( f )2 implies simulated annealing samples!

TV-close to true Poincaré =⇒ Defect = ε · osc( f )2.
Weak Poincaré inequalities can be proved using localiza-
tion schemes! (generalizations of spectral independence,
stochastic localization. . . )

A quick jargon-infested elaboration for the expert.
When using a localization scheme to prove fast mixing,

Bounded influence for all pinnings/control on all localization paths =⇒ Poincaré
Bounded influence for most pinnings/control on most localization paths =⇒ weak Poincaré

Weak Poincaré Inequalities 18 / 26

E∥∇ f ∥2
2 ⩾ ρ

(
Varµ [ f ]− Defect( f )

)
χ2 (

νT∥µ
)
⩽ e−ρT χ2 (

ν0∥µ
)
+ Et [Defect( ft )]
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Weak Poincaré inequalities from symmetry

Symmetric function =⇒ Defect = 0.
Approximately symmetric =⇒ Defect small.

Let π = ∑K
i=1 piπi be a mixture of strongly log-concave distributions.

Theorem (HMRW)

Suppose min pi ⩾ p∗ . Let x1, x2, . . . , xm be sampled according to π. For m = Ω
(

1
p∗ε2

)
, with high

probability over the samples, Langevin diffusion initialized at 1
m ∑ δxi run for poly(n) time samples from

π to TV distance ε.
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Proof: Sampling from data-based initializations
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Intuition

If the clusters were far apart, you expect to get about the
right fraction of points per cluster at the start.
Approximately symmetric initialization, Defect starts small.
Mass does not travel between clusters, Defect stays small.

Defect starts off small for the same reason.
Mass can travel between clusters, but it should do so in a
symmetric fashion.
Defect should stay small? (controlling this is essentially the
source of the doubly exponential dependence in previous work)
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Proving a weak Poincaré inequality

(proof on board) Will show

E∥∇ f ∥2
2 ≳ Var[ f ]−

K

∑
i=1

pi

(
Eπi [ f ]2 − Eπ [ f ]2

)
︸ ︷︷ ︸

Defect( f )

.

This is a random variable depending on the samples x1, . . . , xm . Would like to show that it is small with
high probability (over the samples) along the path of the Markov chain.
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Controlling the error

Defect( ft) =
K

∑
i=1

pi

(
Eπi [ ft]

2 − 1
)

.

(proof on board)

So Defect( ft) is small with high probability! We are done!
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Open Questions I: Sampling down to the shattering threshold

0

γ ..

γPI

Prediction: Langevin mixes rapidly from worst-case init [GJ19]

γsh

Prediction: Langevin mixes rapidly from random init [CHS93]

Prediction: Sampling hard [CHS93, AMS23b, AJ24, Ala24]

Langevin mixes rapidly from worst-case init [GJ19, AJK+24]

Langevin mixes slowly from worst-case init [GJ19, AJ24]γSL

Algorithmic stochastic localization samples [AMS23a, HMP24]

This work: simulated annealing samples

?

How do we close this gap? It seems like our proof strategy gets stuck...
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Open Questions II: Annealing for inference

Inference problem: Infer x ∼ {•, •}n after observing a sparse random graph with “community structure” x.

Connect vertices with probability d+λ
√

d
n if or

Connect vertices with probability d−λ
√

d
n if or

Annealing run on the posterior of the stochastic block model
appears to perform optimally... why?
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Open Questions III: Worst-case approximation algorithms from
non-worst-case initializations

For max-cut in a graph, SDPs provide a 0.878-approximation to the max-cut.

Conjecture (Folklore, inspired by Trevisan [Tre01])

On bounded degree graphs, should be able to approximate to 0.878 + Ω
(

1√
d

)
!

Hsieh–Kothari [HK22] do local updates to the SDP solution to get 0.878 + Ω
(

1
d2

)
.

Does running MCMC initialized at the SDP solution do anything?
Our framework describes how to get sampling guarantees from non-worst-case initializations... can we
say anything about inference/optimization guarantees?
(Liu–Mohanty–Raghavendra–R–Wu [LMR+24] describes how to do this from worst-case initializations)
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Thank you! Questions?

Feel free to email at amit_r@mit.edu.
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