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Abstract

We design new algorithms for approximating 2CSPs on graphs with bounded threshold
rank, that is, whose normalized adjacency matrix has few eigenvalues larger than ¢, smaller
than —¢, or both. Unlike on worst-case graphs, 2CSPs on bounded threshold rank graphs can
be (1 + O(e))-approximated efficiently. Prior approximation algorithms for this problem run
in time exponential in the threshold rank and 1/e. Our algorithm has running time which is
polynomial in 1/¢ and exponential in the threshold rank of the label-extended graph, and near-
linear in the input size. As a consequence, we obtain the first (1 + O(e)) approximation for
MAX-CUT on bounded threshold rank graphs running in poly(1/¢) time. We also improve the
state-of-the-art running time for 2CSPs on bounded threshold rank graphs from polynomial
in input size to near-linear via a new comparison inequality between the threshold rank of
the label-extended graph and base graph. Our algorithm is a simple yet novel combination of
subspace enumeration and semidefinite programming.
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1 Introduction

Constraint satisfaction problems (CSPs) lie at the heart of algorithms, discrete optimization, com-
putational complexity, and more. Classic examples like 3-SAT and MAX-CUT appeared in Karp’s
original list of 21 NP-complete problems; the study of both algorithms and computational complex-
ity of CSPs for the last 50 years has been inextricably linked to breakthroughs like the PCP theorem,
constructions of error-correcting codes, algorithm design techniques like linear and semidefinite
programming, the dichotomy theorem, and the unique games theory, to name a few.

One fruitful avenue for algorithm development in the face of NP-hardness of general CSPs
has been the design of algorithms which perform well on CSPs whose constraints form a graph
or hypergraph with some beyond-worst-case structure. Early examples in this spirit are dynamic
programming algorithms for CSPs on bounded tree-width graphs [Kum92], message-passing
algorithms inspired by statistical physics for random CSPs [BMZ05], and greedy algorithms for
dense CSPs [AKK95, MS08].

A more recent line of work focuses on CSPs whose constraint graphs exhibit spectral structure—
one or two-sided expansion, or more generally, having low threshold rank, that is, having few large
eigenvalues. This generalizes the dense graph setting, and so far led to the subexponential algorithm
for unique games [ABS15], efficient algorithms for (list-)decoding high-rate error-correcting codes
[JOST20,]ST21], new approximate counting and sampling algorithms [Ris16,]KR19], new regularity
lemmas [OGT13], and more generally the insight that CSPs are computationally tractable when
their constraint graphs exhibit “local to global” phenomena [BRS11]. These works focus on 2CSPs
to make things conceptually simple; [A]T19] shows that insights from 2CSPs transfer to higher-arity
CSPs. The high-level questions addressed by these works and ours are:

For which MAX-2CSP instances can efficient algorithms find close-to-optimal assignments?
What are the fastest algorithms to do so?

To go further we need some notation. To an instance ¢ of an n-variable 2CSP we associate an
n-vertex undirected graph G with an edge i ~ j in G iff variables i and j participate in a constraint
together in ¢. Let A be the normalized adjacency matrix of G, with eigenvalues in [—1,1]. The
¢ threshold rank of A, denoted rank>(A), is the number of eigenvalues of value at least e. We
discuss some variants of threshold rank below.

Our Contributions. Our main contribution is a very simple but powerful approach to minimiza-
tion of quadratic forms x " Ax over the Boolean hypercube, solid hypercube, and more generally
over arbitrary convex subsets of R" admitting an efficient separation oracle, whose running time
is parameterized by the number of negative eigenvalues of A. Note that if A = 0, then mini-
mization of x " Ax is a convex problem which can be solved in polynomial time, so running time
parameterized by the number of negative eigenvalues of A is sensible.

We apply this approach to obtain two main algorithmic results for 2CSPs on low threshold rank
constraint graphs. The first result concerns perhaps the simplest 2CSP: MAX-CUT. MAX-CUT on
low threshold rank graphs was studied in [BRS11,0GT13], and the special case of dense graphs
was extensively studied in [AKK95, FDLV96, YZ14, FLP15, MSO08].



Our first main result is a (1 + O(e)) approximation algorithm for MAX-CUT on n-vertex,
m-edge graphs which runs in time (1/¢)°(ak<-<) . O(m + n), where rank<_. is the number of
eigenvalues of the normalized adjacency matrix less than —e. No prior work for MAX-CUT on
graphs satisfying any eigenvalue-based condition obtains a (1 + O(e)) approximation in poly(1/¢)
time; prior algorithms always incur an exponential dependence on 1/¢.

Our second main result is a new (1 + O(e)) approximation algorithm for general 2CSPs with
finite alphabet [g], where g € N, with running time (1/¢)0k-2/ ). O(m + n), where n is
the number of variables and m is the number of constraints/clauses. The previous state-of-the-
art algorithm by Barak-Raghavendra-Steurer [BRS11] obtains the same guarantee only in time
exp(O(ranks /€*)) - (mn)°1), relying on the sum-of-squares hierarchy. Thus, our algorithm is
the first for general 2CSPs on bounded threshold rank graphs to obtain near-linear running time;
indeed, this is true even in the setting of expanders, where rank-,. = 1. We discuss below some
interpretation of the parameter rank ., via higher-order Cheeger inequalities [LGT14].

Our Techniques, in Brief Our algorithms combine two key ingredients: subspace enumeration
and semidefinite programming (SDP). Both have been used extensively in algorithms for CSPs,
but the way we combine them is novel. Prior subspace enumeration algorithms were limited to
nearly-satisfiable instances, and prior SDP-based algorithms (a) did not achieve poly(1/¢) running
time for MAX-CUT and (b) did not achieve near-linear running time for (1 + O(e)) approximation
with respect to m and n. Unlike prior algorithms for CSPs based on SDPs, ours solves a series of
very simple SDPs, one for each element of a discretization of a subspace constructed from the
underlying CSP.

We view the simplicity of our algorithm and analysis as a contribution in itself. The entire
algorithm and analysis for a variant running in 7°(1) time rather than O(n + m) time spans only
a few pages, and the running time can be improved to O(n 4 m) by appeal to standard matrix
multiplicative weights techniques [Stel0a]. We manage to avoid the use of higher levels of convex
hierarchies such as sum-of-squares.

Our analysis relies on a new inequality relating the threshold rank of G to the threshold rank of
the so-called label-extended graph of a CSP instance ¢. We defer the formal definition, but in brief,
the label-extended graph for a CSP with n variables and alphabet size g is a graph with vertex
set [n] x [q], where vertex (i, a) represents “variable i is set to value a”. Prior works relating the
threshold rank of the label-extended graph to the threshold rank of G either apply only to restricted
classes of CSPs or lose polynomial factors in 7; ours incurs quantitative losses depending only
on the threshold value € and the alphabet size 4. Our proof of this inequality is actually a simple
generalization of an argument of [BRS11], recently reinterpreted in a closely-related setting by
[BHSV25].

! We discuss below the relationship between our work and algorithms for restricted classes of 2CSPs based on
regularity lemmas. In short, while near-linear-time regularity decompositions exist in prior work and give a plausible
alternative route to a near-linear time algorithm for general 2CSPs on low threshold rank graphs, no prior work carries
this out.



1.1 Results

Quadratic Optimization over the Hypercube. Our first result is an algorithm for quadratic
optimization over the hypercube when the coefficient matrix A has few negative eigenvalues.

Theorem 1.1 (Quadratic optimization). Let A € R"*" be an arbitrary symmetric matrix, scaled to have
||A||Op < 1, and let OPT = maXye (41} x " Ax. Set k = ranks¢(A). Then, there is an algorithm running

in time poly(n) - (%)O(k) that outputs a (random) vector X € {£1}" such that
Ex' AX > OPT — O(en).

Remark 1.2. While we state Theorem 1.1 for the case of optimization over {+£1}, our main insights
can be generalized to optimizing x " Ax over convex domains with efficient separation oracles when
A has few negative eigenvalues.

Note that if A has no positive eigenvalues and has a 0 diagonal, then max, ¢y x" Ax can be
performed via maximization of a concave function over a convex set, since it suffices to optimize
over x in the solid cube [—1,1]" and round the result greedily. Our result can be viewed as showing
that even if the optimization problem max,c[_y ) x " Ax is not convex, but the non-convexity is
restricted to a small-dimensional subspace, then we can still efficiently find an X which is close to
optimal. Intuitively, this is because one can perform limited brute-force search over the span of the
positive eigenvectors of A, and for each point in the span solve an associated convex optimization
problem.

MAX-CUT on Low Threshold Rank Graphs. One special case of the quadratic optimization
problem is when A is the negation of the normalized adjacency matrix of a regular graph. In this
case, we have the MAX-CUT problem. In fact, the ideas in Theorem 1.1 also extend to irregular
graphs, and the algorithm can be sped up using near-linear-time SDP solvers [Stel0a], to obtain the
following.

Theorem 1.3 ((1 + O(¢)) Approximation for MAX-CUT in poly(1/¢) Time). Let G be a graph on
vertex set [n] with m edges, with adjacency matrix A and diagonal degree matrix D. Let OPT be the size
of the largest cut in G. Set k = rank<_(D~Y2AD~1/2). In time (%)O(k) -O (n +m), one can output a
(random) cut attaining value (1 — O(e)) - OPT in expectation.

We now compare Theorem 1.3 to prior work. The problem of MAX-CUT on low threshold rank
graphs has been studied in several prior works, with various runtimes and notions of threshold
rank. These are summarized in the table below. Note that all parameters k are defined with respect
to the normalized adjacency matrix. The algorithms discussed in the table all produce (1 + O(e))
approximations to the maximum cut.

2 [OGT13] provides the running time 20(K2/€%) 4 poly(n) via a regularity decomposition of the graph. Using matrix
multiplicative weights to find the regularity decomposition via a fast SDP solver yields the running time we quote.
Matrix multiplicative weights-based SDP solvers appear first in [AK16]; the variant for regularity decompositions
appears in [JOST20].



Table 1: MAX-CUT on Low Threshold Rank Graphs

Paper Runtime Parameter k
[BRS11] 20(k/€%) . pO1) # of eigs in [¢2,1]
[GS11] nOk/e) # of eigs < —
[GS12] 2]‘/£ -nO1/e) # of eigs < —¢?
[OGT13] + [JST21]* | 20" 5/ € + O(n +m) | sum of squares of eigs not in the range [—e, ¢]
This work (1 ) O (n+m) # of eigs < —

Similar to [GS11, G512], our runtime is parameterized by the number of eigenvalues of the
(normalized) adjacency matrix which are smaller than —poly(e).However, compared to [GS11,
(GS12], our running time has an exponentially better dependence on 1/¢. Regularity lemma-based
algorithms for MAX-CUT on low threshold rank graphs such as [OGT13] are instead parameterized
with k being as the sum of the squares of eigenvalues not in the range [—¢,¢]. Since all the
eigenvalues of the normalized adjacency matrix lie in the range [—1, 1], this could be much smaller
than the number of such eigenvalues. However, the sum of the squares of the eigenvalues not
in the range [—¢,¢] is at least O(&?) - (# of eigenvalues not in the range [—¢, ¢]); we also require
only control on the negative eigenvalues of A rather than positive and negative eigenvalues.
As a result, our exponential dependence on k and ¢ also improve on regularity lemma-based
approaches [OGT13,]ST21], although we incur an multiplicative dependence in runtime on the

O (n+m), (%)O(k) terms, as opposed to an additive dependence.

General 2CSPs. In addition to fast algorithms for MAX-CUT, we give the first near-linear time
algorithm for general CSPs on low threshold rank graphs.

Theorem 1.4. Let G be a graph on [n] with m edges, with adjacency matrix A and degree diagonal D. For
each edge ij in G, let ¢;; : [q]* — {0, 1} be a predicate on alphabet size q that is not identically 0. Also
let OPT = max¢ g P(x) ‘= maxye (g Lijer(c) 9ij(Xi, %j). Set k = rank_2(D~/2AD~Y/2). In time

(%)O(k/€4) -O (n+m) - poly(q), one can find a random assignment X with E®(X) > OPT — O(eqm).

The main prior work that gave algorithms for general CSPs under threshold rank conditions
is [BRS11]. Our work matches the exponential dependence on k, ¢ (up to factors of log(1/¢))
of [BRS11] while improving the polynomial dependence on n and m to near-linear. The main
barrier to achieving a near-linear running time via prior algorithmic techniques was that the
algorithmic approaches that lead to O (1 + ) time (e.g., regularity lemmas [OGT13,]ST21]) also
lead to exponential dependence on the threshold rank of the label-extended graph (see Section 2).
Our main technical contribution to overcome this barrier is to bound the threshold rank of the
label-extended graph in terms of the threshold rank of G; combining this inequality with fast SDP
solvers using matrix multiplicative weights leads to the algorithm of Theorem 1.4.



Which Graphs Have Small Threshold Rank? As noted in prior work, many interesting families
of graphs have low threshold rank. Random graphs with degree d have threshold rank 1 for
e > c/+\/d; more generally, one-sided spectral expanders have positive threshold rank 1, and
two-sided spectral expanders have negative threshold rank equal to zero.

What about graphs beyond expanders? Focusing on the positive threshold rank case, graphs in
which all small sets are highly expanding have bounded threshold rank [Ste10b]. And higher-order
Cheeger inequalities like [LGT14] say that if a graph has no sparse k-way cut, then the k-th largest
eigenvalue of the normalized adjacency matrix is bounded from above, which yields a bound on the
threshold rank. Thus, our algorithm for 2CSPs is efficient on graphs satisfying this combinatorial
property.

Which graphs have small negative threshold rank—the setting of our MAX-CUT algorithm—is
less explored. Intuitively, a graph G with small rank<_.(A) should have “few” cuts which cut
significantly more than half of the edge set. But to our knowledge, dual Cheeger inequalities
like [Tre12] and higher-order dual Cheeger inequalities like [Liu15] only describe combinatorial
properties of G which imply bounds on rank_(;_)(A), the number of eigenvalues close to —1,
which could be much smaller than the number of eigenvalues less than —e. Thus we pose the
following problem: provide a combinatorial characterization of graphs G with few eigenvalues less than
—e.

Returning to general 2CSPs, if we apply a standard reduction [Kol10] from a general 2CSP
to a quadratic optimization problem, we get running times in terms of the threshold rank of
the so-called label-extended graph of the CSP. One of our key technical insights is in relating the
threshold rank of this graph to the threshold rank of the constraint graph A. We discuss this in
more detail in Section 4. A separate argument shows that for dense graphs G, the threshold rank of
the label-extended graph is at most O(g?/¢?), meaning that our algorithm also recovers the best
known running time for a PTAS for dense 2CSPs on constant-sized alphabets [Yar14, YZ14].

1.2 Techniques

Algorithm for Boolean Quadratic Optimization and MAX-CUT. Our algorithm is a novel
combination of prior SDP-based approaches and subspace enumeration techniques. We will sketch
the proof of Theorem 1.1 in the case where A has diag(A) = 0.> Recall that the canonical SDP
relaxation of the problem max,¢ (1} x| Ax is as follows:
max (A, X)
XeRm<n, X=0
s.t. diag(X)=1.

Equivalently, for reasons we will see in a moment, we could optimize over X € R"1<n+1;

max A, X
XG]Rn-HXVH—l,XtO < ’ [1’n+1]/[1/n+1}>

s.t. diag(X)=1,

3 This assumption is without loss of generality, since the diagonal contributes a constant amount to the objective on
any x € {£1}".



where X[y ;1] 1,141 is the bottom right n x n submatrix of X.

A solution to the second relaxation can be interpreted as an linear operator E : R[xy, ..., X<z —
R, which maps polynomials in x;, . . ., x,, of degree at most 2 to scalars; we call E a pseudoexpectation:
we can take Ex; = X, and Exix]- = X;; and extend linearly. In this language, the SDP above
becomes maxg E(x, Ax). While we will not use the full machinery associated with this point of view
and the corresponding Sum-of-Squares semidefinite hierarchy, we still use the pseudoexpectation
language for ease of exposition. Note that the PSD constraint ensures that the pseudoexpectation
of any square polynomial is non-negative, and notably that Exx " — (Ex)(Ex) " is a PSD matrix.

As a first attempt at an algorithm for quadratic optimization, consider the following naive
rounding scheme applied to the optimal E - round each x; independently by flipping a +1-valued
coin with expectation Ex;. Of course, by symmetry there is an optimal solution E for which Ex; = 0
for all 7, meaning that this rounding scheme will not give any nontrivial guarantees unless we
modify the SDP. But, to see how to modify the SDP, it will be helpful to further analyze this
rounding scheme.

Note that the solution produced has (in expectation) objective value (Ex) " A(Ex) and thus we
can write difference between the objective value of the SDP and the rounded objective value as:

(A, Exx") — (A, (Ex)(Ex)") = (A, Cov),

where Cov = ExxT — (Ex)(Ex)". We call this quantity the rounding error. Our goal is to bound it
from above.

We can decompose the rounding error in two parts: that incurred on the subspace spanned by
the eigenvalues of A that are less than € (which we refer to as A,), and that incurred on the part of
A with eigenvalues at least ¢ (which we refer to as A>,):

(A,Cov) = (A, Cov) + (A, Cov).

First off, the (A, Cov) part of the rounding error cannot be too large for any SDP solution
E. Since Cov is positive semidefinite, we can bound (A .., Cov) < ¢ - Tr(Cov) < en. Thus, for the
rounding to be successful — incurring error at most O(en) — we only require that the SDP solution E
satisfies (A, (EI)?/} < en. However, in general, the SDP solution associated with this optimization
problem might not have this property.

This brings us to a modified SDP relaxation of max,e+1y» x " Ax. Suppose that we knew a
vector v such that ||v — I1x*||?> < en, where IT is the projector to image of A, and x* is an optimal
solution to max, ¢ (11 X T Ax. This is not too much to assume, since by enumerating over at most
(1/¢)Orank=c(4)) yectors v in the subspace Im(Ax.), we can guess such a v. Then the following SDP
would still be a relaxation:

max E(x, Ax) s.t. E||TIx — 0||> < en. (1)

Crucially, if E is any pseudoexpectation for which there exists v such that E[|TTx — v||? < en,
then
(Ase, Cov) = (Ase, TICoVIT) < ||Ase|| - TrTICovIT < E||TT(x — Ex)|?.



Furthermore, using triangle inequality and PSD-ness of E, we have
E[|I1(x — Ex)||* < 2(E||ITx — o> + ||o — EILx[|*) < 4E|[I1x — o>.

Putting it together, we get that for any feasible E for (1), the rounding error is at most O(en).

This brings us to our final algorithm for Boolean quadratic optimization. Given A, enumerate
the image of A-.. For each v in the enumeration, solve (1) and round by sampling coordinates
independently. Output the best solution found in this way.

Since (up to an additive shift and rescaling) MAX-CUT on regular graphs is just maxx ' (—A)x,
where A is the normalized adjacency matrix, this gives our poly(1/¢) time algorithm for MAX-CUT
on regular graphs with few negative eigenvalues (Theorem 1.3). We note that this argument can be
generalized to irregular graphs and we defer this to Section 3.

Algorithm for General 2CSPs, and Threshold Ranks of Label-Extended Graphs Now we move
on to our algorithm for general 2CSPs with alphabet size [g]. It is by now standard to associate
an n-variable 2CSP instance ¢ with variables x1, ..., x, and constraints ¢;; : [q] x [q] = {0,1} a
label-extended graph M on vertex set [n] x [q], where (i, a) is adjacent to (j, b) if x; = a, x; = b satisfies
¢ij [Kol10]. Using largely the same algorithm and argument as in the Boolean case, we can obtain a
(1+ O(e)) approximation algorithm in time (1/¢)Crank=c(M)) . (57)0(1),

The prior work [BRS11] gives a (1 + O(e)) approximation algorithm for 2CSPs with running
time depending only on the threshold rank of the base graph G; their algorithm runs in time
exp(O(ranks 2 (G)/e*)(n)°(). We recover this running time (and later, unlike [BRS11], speed up to
near-linear time) by proving a new inequality relating rank.(M) to rank- . (G). Namely, we show
that rank>o. (M) < rank..2(G)/¢e* (Corollary 4.2). We actually observe that this bound follows
from a small adaptation of an argument by [BHSV25], itself adapted from [BRS11].

From Polynomial to Near-Linear Time The main contributor to the running time of our algorithm
is the time to solve the SDPs. To speed this up from (mn)°(!) time to O(m + n), we rely on the
matrix multiplicative weights framework as developed in [Stel0a], which gives a near-linear time
SDP solver for the basic SDP relaxation of CSPs. To adapt this approach to our setting, we just
need to enforce the additional constraint E||TTx — v||? < en when solving the SDP. This turns out
not to be too difficult. The key quantity governing the difficulty of enforcing a constraint in the
multiplicative weights framework is its “width”; in this case, the operator norm of the matrix which
forms the constraint. Enforcing this extra constraint turns out to be possible with only poly(7/¢)
width, meaning that the framework of [Ste10a] can solve our SDPs in time poly(g/¢) - O(m + n).

1.3 Related Work

SDP-based algorithms. Semidefinite programming and SDP hierarchies have been used to give
algorithms for CSPs under varying threshold rank conditions [BRS11, G511, GS12]. The work
of [BRS11] achieves similar approximation guarantees to that of our work, but incurs a polynomial
as opposed to near-linear dependence in runtime on the size of the input. For restricted classes of
CSPs (including MAX-CUT), the work of Guraswami-Sinop [GS11,GS12] yields algorithms with



similar approximation guarantees. Furthermore, in the case of 3-coloring, recent work by Hsieh
utilizes SDP-based approaches to find proper 3-colorings on almost half the edges in 3-colorable
graphs with small threshold rank [Hsi25].

Subspace enumeration algorithms. Subspace enumeration has been an influential algorithm
design technique for CSPs, specifically Unique Games, and related problems such as small set
expansion [Kol10, ABS15]. These works give algorithms whose runtime depends on the threshold
rank of the label-extended graph. A key challenge in these approaches is bounding this quantity,
since the label-extended graph having bounded threshold rank is a stronger condition than the
constraint graph having bounded threshold rank. We discuss threshold rank bounds further in the
paragraph below.

Regularity lemmas. Regularity lemmas have been a key tool for giving fast algorithms for
constraint satisfaction and related problems. Their use dates back to early approximation schemes
for dense CSPs in the 90s and early 2000s [FK99, AdIVKKO02], and more recent work extended these
ideas by giving a regularity lemma for graphs with low threshold rank [OGT13]. Extensions of
this work to higher-arity CSPs have also been influential in the design of fast decoders for error
correcting codes with high rate [JST21].

Dense CSPs. Many prior works have studied approximation schemes for CSPs on graphs which
are either dense or pseudo-dense [FK99, AdIVKK02, ACOH"10, COCF10]. Note that all dense
and psuedo-dense graphs have low threshold rank, and thus our results and prior results on
approximation schemes for graphs with low threshold rank apply to a larger class of instances.

Dual higher-order Cheeger inequalities. Higher-order dual Cheeger inequalities [Tre12, Liul5]
give a relationship between the magnitude of A,,_; and combinatorial properties of the graph.
In particular, they can be used to show that graphs with this combinatorial property—that all
vertex-disjoint non-empty subsets Vi, ..., Vi must have at least one V; which is far from being a
bipartite connected component of the original graph—have eigenvalues other than A, _, ..., A,
bounded away from —1. However, this does not yield a combinatorial class of graphs which our
algorithm runs fast on since higher-order dual Cheeger inequalities are too quantitatively loose to
give bounds on rank<_..*

Threshold rank bounds. As discussed above, a line of prior work yielded algorithms for Unique
Games which runs in time parameterized by the threshold rank of the label-extended graph [Kol10,
ABS15]. Such work also studied the relationship between the threshold rank of the constraint
graph and the threshold rank of the label-extended graph. However, existing prior work all lose
polynomial factors in n [ABS15].

* This is due to the fact that the inequality becomes trivial when considering eigenvalues which are negative but very
close to 0.



2 Preliminaries

Threshold Rank and Label Extension. We first formally define the threshold rank of a matrix as
well as the label extended graph of a CSP.

Definition 2.1 (Threshold Rank). Let A € R"*" be a matrix with real eigenvalues, and let 0 < ¢ < 1.
The (one-sided) e-threshold rank of A, denoted rankx.(A) or rank<_, is the number of eigenvalues
of A which are at least ¢ or less than —e respectively.

Definition 2.2 (Label Extended Graph). Let G be a graph on [1] with adjacency matrix A. For each
edge ij in G let ¢;; : [q]> — {0,1} be a predicate on alphabet size q. The label extended graph G’ is
a graph with vertices {v;4 }ic[nac[q Such that there is an edge between (i, a) and (j, B) if and only
if Z] € G and (Pl']'(Dé, IB) =1.

Semidefinite programming and pseudodistributions. Although we do not use the full power of
the sum-of-squares programming hierarchy, we will still use the pseudoexpectation notation for
ease of exposition.

Definition 2.3 (Pseudodistribution). A pseudodistribution D of degree t is a function from R" to IR
with finite support such that .\ cupp(p) D(x) = 1and ¥ equpp(p) D(%) p(x)? > 0 for all polynomials

p(x) with deg(p(x)?) < t.

Definition 2.4 (Pseudoexpectation). Given a pseudodistribution D of degree t, the associated
pseudoexpectation Ep is the linear operator from the space of functions to R that is defined by f

mapping to EDf(x) = ersupp(D) D(x)f(x)

The non-negativity of the pseudoexpectation on squared polynomials implies the following
easy fact.

Fact 2.5. Let E be a degree t pseudoexpectation and let its pseudocovariance matrix be Cov = Exx| —
~ N\ /= \T __
(Ex) (Ex) . Then Cov = 0,

Definition 2.6 (Constrained pseudodistributions). Let A = {p; > 0,p» > 0,..., pr > 0} be asystem
of r polynomial inequality constraints of degree at most 4 in m variables. Let y be a degree-/
pseudodistribution over R”. We say that y satisfies A at degree ¢ > 1 if for every subset S C [7] and
every sum-of-squares polynomial g such that deg (q) + ¥;cs max (deg (p;),d) < £, EuqTics pi =
Further, we say that y approxzmately satisfies A if the above inequalities are satisfied up to add1t1ve
error E,qTics pi = —2~ ! 191l TTics|l pill, where ||-|| denotes the Euclidean norm of the coefficients
of the polynomial, represented in the monomial basis.

Note that when we have a pseudodistribution of degree 2 then there is an easy weak separation
oracle for the convex set of moment tensors of constrained pseudodistributions via checking that:
(1) the moment matrix is PSD, and (2) Ep; > 0 for all p; € A°. Furthermore, if A is explicitly bounded,
in that it contains a constraint of the form {||x||*> < 1}, the above observation in combination with
[GLS81] yields the following fact.

% There is also a weak separation oracle for pseudoexpectation of higher degree, see [Sho87, Par00].



Theorem 2.7 (Efficient optimization over pseudodistributions of degree 2). There exists an (m +
r)OMW_time algorithm that, given any explicitly bounded and satisfiable system A of r polynomial con-
straints in m variables, outputs a degree-2 pseudodistribution that satisfies A approximately, in the sense
of Definition 2.6.°

3 Algorithm and Analysis

3.1 Improving the runtime dependence on ¢
In this section, we shall describe our primary algorithm, with a running time depending on the
threshold rank of the label-extended graph.

Theorem 3.1. Let M € """ be a symmetric matrix such that || M||,, < 1, and the n diagonal q X q
blocks of M are all identically 0. Also, let D € IR"*" be an arbitrary diagonal matrix with non-negative
entries and E = D ® Id,. Let k = ranks.(M). Consider the optimization problem

OPT := max®(y) = maxy' EY2MEY2y,
yecy yecy

where CJl is the subset of y € {0, 1}"7 such that each of the n blocks of y (each of size q) has exactly one 1.

There exists an algorithm running in time poly(n) - (%)O(k) that returns a random y € CJ with
E®(y) > OPT— O (e Tt D) .

Given this, our result on quadratic optimization over the hypercube follows near-immediately.
We restate it for convenience.

Theorem 1.1 (Quadratic optimization). Let A € R"*" be an arbitrary symmetric matrix, scaled to have
[Allop < 1, and let OPT = maXyc (41} x " Ax. Set k = ranks¢(A). Then, there is an algorithm running

© that outputs a (random) vector X € {£1}" such that

Ex' AX > OPT — O(en).

in time poly(n) - (%)O

Proof. We may assume without loss of generality that the diagonal entries of A are all 0, since they
contribute a constant when optimizing over the hypercube. The result then immediately follows
from Theorem 3.1 on settingqg =2, D =1Id,,and M = A ® <_11 _11> . |

The algorithm for Theorem 3.1 is described in Algorithm 1.

For the remainder of this section, suppose one has a pseudoexpectation E over boolean variables
(Vi )ic[n) ac|q, Satisfying the constraint that exactly one of the (y;).c|y is 1 for every i (this enforces
the requirement that y € Cj).

Finally, consider the product distribution ® over [q]" such that p (a1,..., &) = [Tjcjy Eyj,a]..
We also have the associated distribution v over C}/ induced by 1#®: in other words, the different
blocks are independent, and within each block, the probabilities of the different symbols are given
by the marginals under the pseudodistribution.

® Here, we assume that the bit complexity of the constraints in A is (m -+ +)°(1).
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Algorithm 1: Solving CSPs faster on bounded threshold rank graphs
Input: M € R"" with ranks¢(M) = kand ||M||,, <1, and PSD diagonal D € R"*"
1 IT < projection onto the top k-dimensional eigenspace of M
2 S « /e Tr D-net of v/Tr D - B~
3 E+«+ D®Id,.
1 forv e Sdo
5 | Find a degree-2 pseudoexpectation E over [g]" optimizing Ey ' E'/2ME!/2y, subject to
the constraints y;(1 — y;) = 0, Ljc[ Ygi+j = 1, and E[[TIEV2y — 0|3 < eTr D.
6 Round E to a (random) v, € [g]" by independently sampling each index (y,); according

to the marginals prescribed by E.

N

return the y, that maximizes ®(y)

Lemma 3.2. Let I1 be the projector onto the eigenspace of M with eigenvalues larger than e, and v € R
an arbitrary vector. Then,

E®(y) — By ®(y) < Tr D + 4E [[IE/2(y — o) H; .
Proof. Because the diagonal blocks of M are 0, we are interested in
Ey'EV2MEY2y — (Ey) T EL/2pfE1/2 (Ey) _ <E1/2ME1/2, a;v> )
where Cov = Eyy' — (Ey)(Ey) is the “pseudocovariance” of E. We now decompose A into its
different eigenspaces and bound each separately. We have
(EV2MEY?2,Cov) = (M., EV/2CovE"?) + (Ms,, EV/2CovE"/2)
< eTr (EV/CovE'/?) + (Ms,, E'/*CovE'/?)
< eTr (EV/*CovE"/?) + Tr (TIE!/2CovE'/21T)
Note that the first term is

8<E,a)?r>:siez[1;]DﬁEy(m slez[é D”D;Ey,,x — eTe(D),
w€[q]

utilizing that Eyéi 4+ S Eyqiﬂ' and }ic(g) Eyqiﬂ' = 1. Let m = Ey. The second trace may be bounded
as

— ~ 2
Tr (IIE'/2CovE!/211) = E HHEl/Zy - HE“zmH

2. (E |TEv2(y - v)Hi 4 |[TIEY2 (1m — v)||2>

<o gy

where the last inequality is Jensen’s, and the first is the almost-triangle inequality. n
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We may now prove the result in this section with suboptimal running time.

Proof of Theorem 3.1. We first observe that there exists some v € S such that the associated opti-
mizing pseudoexpectation has objective value at least OPT: indeed, consider an optimizer y € C/,
and observe that ||[TTE'/2y||3 < ||D1/21,||3 < Tr D since y has exactly one non-zero entry in each
g-length block, so there indeed exists a v € S such that | TIE!/?y — v||3 < & - Tr D. Then, the Dirac
distribution supported only on y has objective value OPT and satisfies our constraints for this v.
Lemma 3.2 implies that Algorithm 1 returns a point x such that E®(x) > OPT — O(eTr D), as
claimed. For the running time guarantee, we may use a standard SDP solver that runs in poly(#)
time to find the pseudoexpectation of interest for each v. Thus, the running time is just |S| - poly(n).
The bound on the size of S, and thus the running time, is folklore. |

3.2 Improving the runtime’s dependence on n for 2CSPs

O(k S . .
1) ® runtime in the previous section

In this section, we describe how to improve the poly(n,q) - (1
to a near-linear time algorithm when M corresponds to the normalized adjacency matrix of a
label-extended graph. This yields a near-linear time algorithm for arbitrary 2CSPs when the
threshold rank of the label-extended graph is small’. Furthermore, with a small modification, we
will show how to extend this to give a near-linear time algorithm for MAX-CUT on graphs where
the normalized negative adjacency matrix has small threshold rank.

Theorem 3.3 (Fast Algorithm for 2CSPs with Small Label-Extended Threshold Rank). Let G be
a graph on [n] with m edges, with adjacency matrix A and degree diagonal D. For each edge ij in G, let
@ij : [q)* — {0,1} be a predicate on alphabet size q that is not identically 0 and let M be the label-extended
graph associated with the constraint graph A and constraints @;;. Let E = D ®1d,;. Also let OPT =
maXye(g P(x) = maxee (g Lijer(c) Pij(Xi, xj). Set k = ranks¢(E~Y/2ME~1/2). Then, Algorithm 1

can be implemented in time O (n + m) - (1)O(k) -poly(q) and finds an assignment X with ®(X) > OPT —

€
O(eg?m).

Note that the main bottleneck for runtime in Algorithm 1 is solving the SDP. The approximation
guarantees of our algorithm will follow via the analysis in the proof of Theorem 3.1 and thus it
suffices to show that we can find an (approximate) solution to the SDP in Algorithm 1 in near-linear
time. We utilize existing techniques from [Ste10a], which give a fast SDP solver that runs in time

poly(k,q,1/¢) - O(n 4+ m). Since our setup is very similar to theirs and our improved runtime
largely follows from prior work, we will only sketch the main differences in the proof.

Proof of Theorem 3.3. Note that the approximation guarantees of the theorem follow from Theo-
rem 3.1, provided that we can quickly find an approximate SDP solution where on average con-
straints are approximately satisfied® and our additional constraint holds up to accuracy & Tr(D) /100.
Below, we will briefly sketch the algorithm and analysis of the fast SDP solver.

7In Section 4 we will give runtime guarantees in terms of the threshold rank of the constraint graph by comparing
these two quantities.

8 As noted in [Ste10a] if they are approximately satisfied on average, then by [RS09] we can modify the solution to
satisfy all constraints exactly at the expense of decreasing the objective value by eg?m.
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We will find an (approximate) solution to the relevant SDP in near-linear time via matrix
multiplicative weights, as in [Stel0a]. Note that we can represent all the relevant moments of our
pseudo expectation via the following matrix:

() (0 )
E(l —y 1 —y.
Van Van

Observe that the bottom right gn x gn submatrix is a PSD matrix with trace 1 and corresponds
directly to the SDP solution computed in prior work [Stel0a]. Note that via [Stel0a] we can find
such a matrix which optimizes the objective function in near-linear time, without taking into
account our additional constraint. The main remaining piece is to show that we can also enforce
our new constraint in the matrix multiplicative weights solver. The two ingredients towards this
will be to show that (a) the new constraint is low-width and (b) we can efficiently detect violations
of the constraint only given access to a sketch of the proposed “feasible” solution.

First, EH |[TIEY2x —v||? < e Tr(D) is indeed a low-width constraint. The hyperplane correspond-
ing to this constraint has operator norm O(Tr(E)), while we need the constraint to be satisfied up
to £¢/100 - Tr(D) slack. Thus, the width of the constraint is O(g/¢).

We now describe how to efficiently detect a violation of the constraint given a sketched version
of the solution. Recall that every iteration we are given W; € R°8(#)%(#") such that W' W is the
sketched SDP solution. Note that in order to detect the violation of the constraint in the sketched
SDP, we only need to know IT'(E')'/2WTW(E')'/2IT, where IT' is the projection of the last 1
coordinates to the relevant subspace and E'isa (n+ 1) x (n + 1) dimensional block matrix with
E in the lower right block, Id; in the top left block, and zeros elsewhere’ Note that this is a low
rank matrix, since IT has rank k -+ 1. Thus, if we just compute BIT'W;, where B € R(k+1)x" simply
is a change of basis, then by looking at (BIT'W;) T (BIT'W;) we can determine if W' W satisfies the
constraint. The fact that it suffices to check whether the solution would be satisfied by the sketch
follows from prior analysis.

Furthermore, we can efficiently compute (BIT'W;) T (BIT'W;). It suffices to be able to compute
BIT in near-linear time, and this matrix can be constructed quickly given the relevant top eigen-
vectors of M. Furthermore, note that instead of having Il be the projection to the eigenspaces
with eigenvalues at least ¢, it also suffices to have I1 be the projection to some subspace which
includes all eigenvectors with eigenvalues at least 2¢ and has dimension at most ranks.(M).'
Thus, it suffices to find a collection of at most rank=.(M) vectors such that every eigenvector with
eigenvalue at least 2¢ is in close to the span. We can compute this via the power method—note that
between 2¢ and ¢ there must exist a gap between two eigenvectors, and thus it suffices to take log n
iterations of a top-k power method. Each iteration takes time O(kq?*m) since M has at most g°m
non-zero entries.

Finally, we will argue that we can implement our rounding algorithm when only given access
to the sketched solution, without computing the full gn x gn solution matrix. In order to round the
solution, it suffices to know Ey, since this defines the marginal distribution on each coordinate, and

11" is not equal to I since our submatrix also includes an initial row and column for the expectation.
10'We simply lose a factor of 2 in the approximation guarantee, which still yields a O(eg?m) additive approximation.
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we can then independently round each coordinate. However, this is a 1 x g7 submatrix of W' W
which can be reconstructed in O(gn) time from the Gram vectors. n

Theorem 1.3 ((1 + O(e)) Approximation for MAX-CUT in poly(1/¢) Time). Let G be a graph on
vertex set [n] with m edges, with adjacency matrix A and diagonal degree matrix D. Let OPT be the size
of the largest cut in G. Set k = rank<_.(D~V2AD~1/2). In time (%)O(k) -O (n 4 m), one can output a
(random) cut attaining value (1 — O(e)) - OPT in expectation.

Given the proof of Theorem 3.3, the proof of Theorem 1.3 follows via some small modifications.

Proof of Theorerm 1.3. We aim to apply Theorem 3.3, but with a small twist. Note that we can write
the objective value corresponding to the MAX-CUT in Theorem 3.1 as follows:

1 +n T(_ L -1

where M}, is the label-extended graph of the CSP with constraint graph A and every constraint
being trivially satisfied. Since the first term has a fixed value for every y € C}, it is equivalent
to optimizing the second term, or the quadratic optimization problem associated with M =
1 —
-1 1
incurs a small rounding error for k = rank>,(M) = O (rank<_,(A)) when utilizing the matrices
(and associated projections to the top eigenspaces) described in the prior line. Furthermore, since
the original formulation of the objective corresponds to a quadratic optimization associated with

the label-extended graph of a CSP, we can apply Theorem 3.3 to show that Algorithm 1 can be

implemented in O (1 + m) - (1 O poly(g) time since the relevant SDPs are equivalent (up the

this y " My fixed additive shift) to optimization on the label-extended graph of a CSP. u

~D712AD" 12 and E = D ® Id,. Thus, by Theorem 3.1 we have that Algorithm 1

4 Threshold Rank of the Signed and Label-Extended Adjacency Matrix

We prove the following theorem relating the threshold rank of real-valued signings of adjacency
matrices to the threshold rank of the underlying adjacency matrix. The proof is a small adaptation
of an argument from [BHSV25], which is itself an adaptation of an argument from [BRS11].

Theorem 4.1. Suppose A € RLG" is symmetric with ||A|| < 1. Let B € R™ " be symmetric with
|Bij| < Ajjforalli,j. If rank>.(A) <, then for any o > 0,

B) < .

rank2 2

T(l—(T)-HT(
Corollary 4.2. Let A € REY" with ||Al| < 1. For some q € IN, let B € C"7*™ be such that for any
i,j S [Tl] and IX,IB S [q], B(i,tx),(j,ﬁ) =0 ZfAZ] =0, and |B(i,oc),(j,ﬁ)‘ < Ai]'. 1f1'al’1k>1—(A) < s, then

(B) < — -

rar11<>[7 - 2

(1—0)+0o
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In particular, for any & > 0, setting 0 = T = €2,

ranks (A
rank24¢(B) < ?2().
Proof. This immediately follows on instantiating Theorem 4.1 with %A ® 1q1{;r and %B . n

Given this final ingredient, we may prove our result Theorem 1.4 on near-linear time algorithms
for general 2CSPs on bounded threshold rank graphs, restated for convenience.

Theorem 1.4. Let G be a graph on [n]| with m edges, with adjacency matrix A and degree diagonal D. For
each edge ij in G, let ¢;; : [q]* — {0, 1} be a predicate on alphabet size q that is not identically 0. Also
let OPT = maxyeq P(x) = maxye (g Lijer(c) ¢ij(Xi, xj). Set k = rank.»(D~Y2AD~1/2). In time
(%)OU{M) -O (14 m) - poly(q), one can find a random assignment X with E®(X) > OPT — O(egm).

Proof. Let B € R™*" be the normalized adjacency matrix of the label-extended graph: For i, j € [n]
and o, B € [q], B(in) (i p) = (D"2AD~Y/2);if {i, j} is an edge and ¢;j(«, B) = 1, and is 0 otherwise.
Now instantiate Theorem 3.3 with M = %B, the scaled degree diagonal E = gD ® Id,, and the
error parameter as 2¢. To conclude, the 2e-threshold rank of %B can be bounded in terms of the
¢>-threshold rank of A using Corollary 4.2. n

[BHSV25] proves Theorem 4.1 in the case that B is —A. We show that with minor changes the
same proof allows B to have complex entries. The only change needed to the argument which
proves [BHSV25, Corollary 4.2], is the following lemma which substitutes for [BHSV25, Lemma
4.4].

Lemma 4.3 (Adapted from [BHSV25, Lemma 4.4]). Suppose A € RL" is symmetric with || Al| <1

Let B € R"*" be symmetric with |B;;| < Aj; for all i, j: in particular, B] = 0if Ajj = 0. Suppose that
rank> ) (B) > t for some A > 0 and t a positive integer. Then there exists V € RP*" such that
1

(A VIVY = A2, |[VTV|2 < 7 Tr(V'V)=1.

Proof, adapted from [BHSV25]. Let {uy,...,u;} be t orthonormal eigenvectors of B whose corre-
sponding eigenvalues are at least A. Let U € R"*! have sth column equal to u;/+/t. We record for
later that ,

(Buu'y=Yy_ ?<B,usuz> > A,

s<t

1

juut|z = |lutult = T

Tr(UU") =Tr(U'U) =1

We denote the i-th row of U by w;, and let v; = w?z/ ||w;]| if w; # 0 and v; = 0 otherwise. Let V be

the matrix whose i-th column is v;. We will show that V satisfies the conclusions of the lemma.
For the first conclusion, note that

2
1/ wz,w] Bi]'
ZBij<wirwj>> = g \/ lwillllwj]|
<z-,j Sl VA

15




w;, W;) |B;j|2
A / ] w;
(E JszHnw]n) (Z 2, il

L]
(w;, w;)?
<\ LA Al |
(; ey )\ & Al
.w>2
< A— I TI'(UUT)
(Z z]Hwi||||w]||)

where for the last line we used that || A|| < 1. This gives the conclusion that (A, VV'T) > A2 The
remaining conclusions follow exactly the arguments in [BHSV25], Lemma 4.4. u
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