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Abstract

Motivated by the community detection problem in Bayesian inference, as well as the recent
explosion of interest in spin glasses from statistical physics, we study the classical Glauber dy-
namics for sampling from Ising models with sparse random interactions. It is now well-known
that when the interaction matrix has spectral diameter less than 1, Glauber dynamics mixes in
O(n log n) steps. Unfortunately, such criteria fail dramatically for interactions supported on ar-
guably the most well-studied sparse random graph: the Erdős–Rényi random graph G(n, d/n).
There is a scarcity of positive results in this setting due to the presence of almost linearly many
outlier eigenvalues of unbounded magnitude.

We prove that for the Viana–Bray spin glass, where the interactions are supported on G(n, d/n)
and randomly assigned ±β, Glauber dynamics mixes in n1+o(1) time with high probability as

long as β 6 O
(

1/
√

d
)

, independent of n. We further extend our results to random graphs
drawn according to the 2-community stochastic block model, as well as when the interactions
are given by a “centered” version of the adjacency matrix. The latter setting is particularly
relevant for the inference problem in community detection. Indeed, we build on this result
to demonstrate that Glauber dynamics succeeds at recovering communities in the stochastic
block model in a companion paper [LMR+24].

The primary technical ingredient in our proof is showing that with high probability, a sparse
random graph can be decomposed into two parts — a bulk which behaves like a graph with
bounded maximum degree and a well-behaved spectrum, and a near-forest with favorable pseu-
dorandom properties. We then use this decomposition to design a localization procedure that
interpolates to simpler Ising models supported only on the near-forest, and then execute a
pathwise analysis to establish a modified log-Sobolev inequality.
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1 Introduction

In this paper, we tackle the problem of algorithmically sampling from the Gibbs distribution of an
Ising model, the quintessential model in statistical mechanics. These are probability distributions
of the form

µβ(σ) = µβJ,h(σ) ∝ exp
(

β

2
σ⊤ Jσ + 〈h, σ〉

)
, ∀σ ∈ {±1}n,

where J ∈ Rn×n is a symmetric interaction matrix, h ∈ Rn is an external field vector, and β > 0 is the
inverse temperature, which scales the interaction strengths. There is a vast literature devoted to their
study due to their numerous intimate connections with physics, statistical inference, combinatorial
optimization, and the study of constraint satisfaction problems in theoretical computer science; see
e.g., [EKPS00,WJ08,MM09,Tal11,MNS15,FV17] and references therein. We consider the following
fundamental question.

Question. Under what conditions on β, J, and h is (approximately) sampling from µβ computa-
tionally tractable?

This question has a long and rich history, and there is now a good understanding in the worst-
case setting. Sampling from µβ is easy if at least one of the following conditions hold:

• J is entrywise nonnegative (and all entries of h have the same sign), i.e., the model is ferro-

magnetic [JS93].

• The interaction strengths are sufficiently weak, e.g., Dobrushin’s condition β maxi ∑j|Jij| < 1
is satisfied [Dob68, BD97].

Conversely, if one lets J = −AG where AG is the adjacency matrix of a d-regular graph G, then
there is a precise critical threshold βc(d) ≈ 1/d such that the sampling problem is NP-hard when
β > βc(d) via reduction from MAXCUT [SS12], which corresponds to the β → +∞ limit. Notably,
nearly-linear time samplers exist when β < βc(d) [CLV21, AJK+21b], and so the problem can
exhibit sharp computational phase transitions.

Motivated by the stochastic block model from the study of community detection, as well as
the theory of spin glasses in statistical physics, we focus on the average-case setting where J is a
random matrix and the goal is to successfully sample from µβ with probability 1− on(1) over the
randomness of J. Furthermore, since our aim is to obtain fast samplers, we consider Glauber dy-

namics (or the Gibbs sampler), a natural Markov chain over {±1}n used ubiquitously both in theory
and in practice. Its evolution is described as follows: in each step, we select a uniformly random
coordinate i ∈ [n], and resample its assignment σi conditioned on all remaining coordinates σ−i.

A recent line of work [BB19, EKZ22, CE22, KLR22, BBD23, AJK+24] has identified that having
spectral diameter bounded as

(Spectral Condition) β · (λmax(J)− λmin(J)) < 1 (1)

is sufficient to ensure that Glauber dynamics mixes in O(n log n) steps. More generally, polynomial-
time samplers exist if βJ only has O(1) many “outlier” eigenvalues exceeding 1; see [KLR22] for
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a precise statement. These types of conditions are appealing since many classical random matrix
ensembles (e.g., GOE(n), the uniformly random d-regular graph, etc.) have tame bulk spectra. The
spectral condition Eq. (1) is also sharp for rapid mixing of Glauber dynamics, as witnessed by the
Curie–Weiss model where J = 1

n 11⊤. Stronger evidence for hardness of sampling when Eq. (1)
fails was recently given [Kun23].

1.1 Diluted spin glasses

Unfortunately, existing spectral criteria like Eq. (1) fail badly for interaction matrices supported
on the edges of arguably the most well-studied sparse random graph: the Erdős–Rényi random
graph G ∼ G(n, d/n) with bounded average degree d 6 O(1). For instance, consider the set-
ting where all entries of J are supported on a graph G, and randomly assigned ±1 (or N (0, 1))
independently. By varying the choice of G, this recovers several famous models of spin glasses in
statistical physics, e.g., the Sherrington–Kirkpatrick model when G = Kn, and the Edwards–Anderson

model when G = Zd. When G ∼ G(n, d/n), sometimes known as the Viana–Bray model (see e.g.,
[Mon98, MP01, MP03, GT04]), such matrices automatically have Ω(n1−o(1)) many eigenvalues of
magnitude ω(1) with high probability due to an abundance of “stars” with unusually high de-
grees, despite the overall sparsity of G. Hence, a direct application of existing results would yield
efficient samplers only when β 6 on(1). For comparison, if G is a uniformly random d-regular

graph, then Eq. (1) yields rapid mixing as long as β 6 O
(

1/
√

d
)

, independent of n.
In this work, we overcome the abundance of large eigenvalues and obtain almost-linear mix-

ing up to β 6 O
(

1/
√

d
)

, thus resolving the discrepancy between G(n, d/n) and the uniformly
random d-regular graph. As above, our first main result concerns mixing of Glauber dynamics for
a diluted spin glass given by randomly signing the edges of a sparse Erdős–Rényi graph.

Theorem 1.1. Fix a constant d > 1. There exists a universal constant C > 0 such that for all β 6 C/
√

d

the following is true. Let A be the random matrix such that each off-diagonal entry is equal to 0 with

probability 1− d/n, and is equally likely to be ±1 with the remaining probability. With high probability

over the draw of A, Glauber dynamics run on µβA mixes in time n1+on(1).

The bound on the constant C we obtain is equal to (3−
√

8)(1− od(1)) ≈ 0.17− od(1). We
expect that this bound can be improved using recent techniques for beating the spectral condition
(1) for the Sherrington–Kirkpatrick model [AKV24]. Based on replica-symmetry breaking predic-
tions from statistical physics, e.g., [GT04], we further conjecture that Glauber dynamics mixes in
polynomial time if d tanh2(β) < 1, and takes exponential time to mix above this threshold.

Our results extend immediately to sparse random graphs drawn from the stochastic block
model SBM(n, d, λ); see Theorem 4.1. Roughly speaking, the key feature of such graphs which
allows us to go beyond the spectral condition Eq. (1) is sparsity and localization of the eigenvectors
corresponding to large eigenvalues.

Remark 1.2. We further believe that our methods extend to the regime where d is slightly super-
constant, in particular when d < log n. In the setting where d > log n, the spectral condition

(Eq. (1)) can be used to bound the mixing time for β = O
(

1√
d

)
.

2



1.2 Centered graphs and community detection

Besides the spin glass setting, we also consider the centered setting, which is of particular relevance
to community detection. Let us recall the (2-community) stochastic block model, a heavily studied
Bayesian model of community detection. We refer interested readers to [Abb18] for further details
on the history and importance of the model.

• Let σ ∈ {±1}n be a signal vector drawn uniformly at random, which intuitively encodes the
ground truth community assignments. In the language of Bayesian inference, the uniform
distribution over {±1}n is the prior.

• Given σ, we draw a random graph G by including an edge between u, v ∈ [n] independently
with probability d+λ

√
d

n if σ(u) = σ(v), and with probability d−λ
√

d
n otherwise, where d, λ ∈

R are fixed constants.

The goal of statistical inference is to recover the true community assignments σ given access to the
noisy observation G. The entirety of this generative process induces a distribution over graphs
denoted SBM(n, d, λ), with the special case λ = 0 recovering the Erdős–Rényi graph G(n, d/n).
Note that having λ > 0 encourages the resulting random graph G to have more intracommunity
edges than intercommunity edges. The magnitude of λ controls the signal-to-noise ratio (SNR),
and is parameterized so that λ2 = 1 corresponds to the famous Kesten–Stigum threshold (see e.g.,
[DKMZ11, MNS15]).

It is well-known that the inference problem can be reduced to the problem of sampling from
the posterior distribution over {±1}n given G, which for large d is approximately given by the

Ising Gibbs measure µ(σ) ∝ exp
(

β
2 σ⊤

(
AG − d

n 11⊤
)

σ
)

, where β = β(d, λ) is some explicit func-

tion monotone increasing in λ.1 A natural and longstanding open problem in the field is giving
provable guarantees for recovering σ by simulating Glauber dynamics. One of the principal dif-
ficulties is that the regime λ > 1, where nontrivial recovery is information-theoretically possible,
is also well within the regime in which worst-case mixing of Glauber dynamics is exponential
in n. Hence, the vast majority of existing results in the literature give guarantees for algorithms
not based on Markov chains at all (such as belief propagation and spectral algorithms, see, e.g.,
[DKMZ11, Mas14, MNS14, AS15, BLM15, MNS15, MNS18, YP23] and references therein).

Towards understanding the performance of Glauber dynamics for inference, our second main
contribution concerns sampling from the Ising model corresponding to the centered adjacency
matrix J = AG − E[AG|σ].2 In a companion paper [LMR+24], we leverage this mixing result to
prove that with high probability over G, a polynomial number of steps of Glauber dynamics for a
rescaled version of the true posterior distribution achieves Ω(1) correlation with the ground truth
σ (or −σ) as long as λ exceeds a certain (reasonable) constant greater than 1.

1 Technically, it is given by β(d, λ, n) = 1
2 ln
(

d+λ
√

d
d−λ
√

d

)
− 1

2 ln
(

n−d+λ
√

d
n−d−λ

√
d

)
, which tends to β(d, λ) = 1

2 ln
(

d+λ
√

d
d−λ
√

d

)
≈

λ√
d

at an O(1/n) rate as n→ ∞ for fixed d, λ.
2 Note that (up to a diagonal shift), E[AG|σ] = d

n 11⊤ + λ
√

d
n σσ

⊤ and E[AG] =
d
n 11⊤, so the former contains an

uninformative eigenspace parallel to 1, as well as the signal σ.
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Theorem 1.3. Fix constants d > 1, λ > 0. There exists a universal constant C > 0 such that for

all β 6 C/
√

d the following is true. Let AG := AG − E[AG|σ] be the centered adjacency matrix of

G ∼ SBM(n, d, λ). With high probability over the draw of G, Glauber dynamics run on µβAG
mixes in

time n1+od(1).

1.3 Related work

We now survey some of the literature relevant to the study of Ising models and sampling via
Markov chains.

Sampling from spin systems on sparse random graphs. In the ferromagnetic case where J =

AG, Mossel & Sly [MS13] established a mixing time of n1+Θ(1/ log log n) for Glauber dynamics in
the regime d tanh(β) < 1 with high probability over G ∼ G(n, d/n). This is sharp as the mix-
ing time necessarily scales exponentially in n when d tanh(β) > 1. More recently, when J is
supported on G ∼ G(n, d/n) and has i.i.d. Gaussian entries, Efthymiou & Zampetakis [EZ24]
established almost-quadratic mixing of Glauber dynamics when β 6

√
2π/d, and conjectured

that their regime of β is optimal for rapid mixing. While Theorem 1.1 as stated only considers
random signs, we believe that an adaptation of our techniques refutes this conjecture. For related
results on the hardcore gas model (i.e., random independent sets) on G(n, d/n), see [EF23] and
references therein.

In a recent work, Bauerschmidt, Bodineau & Dagallier [BBD23] proved that the Kawasaki dy-
namics for the ferromagnetic Ising model with fixed magnetisation on a random d-regular graph

mixes rapidly for β < O
(

1/
√

d
)

.

Stochastic localization and sampling. A common strategy to analyze a Markov chain is to de-
compose the stationary distribution as a mixture of simpler distributions. To this end, we em-
ploy the stochastic localization process. This idea was first introduced in the context of studying
isoperimetry in convex bodies by Eldan [Eld13], and has since seen numerous applications. The
work of Eldan, Koehler & Zeitouni [EKZ22] introduced it to the study of Glauber dynamics for
Ising models, and used it to prove that any Ising model can be expressed as a “nice” mixture of
rank-1 Ising models, a fact that was key to establishing the spectral condition for rapid mixing of
Glauber dynamics. Later, Chen & Eldan [CE22] provided a different proof of the same result by
giving a stochastic localization process to decompose an Ising model into a mixture of product
distributions; see also [BB19], which proved a similar result using a similar decomposition.

A parallel line of work uses stochastic localization as an algorithmic technique for sampling
from spin glass models, rather than as a tool for analyzing Markov chains. This line began with
the work of El Alaoui, Montanari & Sellke [EAMS22] on an algorithm to sample from a distribu-
tion close to the Sherrington–Kirkpatrick model (SK model) in Wasserstein distance, when β < 1,
based on discretizing the stochastic localization process. In contrast, the spectral condition im-
plies that Glauber dynamics succeeds only when β < 1/4, albeit under the more stringent total
variation distance. Analogous results have also been obtained for using stochastic localization to
sample from mixed p-spin Ising models [EAMS23], parallel sampling algorithms [AHL+23], pos-
teriors of spiked matrix models [MW23], and spherical spin glasses [HMP24]. See [Mon23] for a

4



survey on recent developments, and connections to diffusion models in machine learning.

2 Technical overview

We now describe how we prove Theorem 1.1 on the rapid mixing of Glauber dynamics for an Ising
model on a randomly signed sparse Erdős–Rényi graph. The proof of Theorem 1.3 for centered
stochastic block model graphs, while more involved, follows similar inspiration.

Modified log-Sobolev inequality. The rapid mixing of Glauber dynamics follows from a modi-

fied log-Sobolev inequality (MLSI), which is a functional inequality relating the global behavior of
any function to its “local differences” in the Markov chain; see, e.g., [BT06, Corollary 2.8] for the
connection between MLSI and mixing times. Concretely, for a function f : {±1}n → R>0 and
probability distribution µ, the quantities of interest to us are its:

• Local entropy. The local entropy of f is Eµ( f , log f ) := Ex,y

[
( f (x)− f (y)) · log f (x)

f (y)

]
where

x ∼ µ and y is sampled by taking a single step of the Glauber dynamics chain from x.

• Global entropy. The global entropy of f is Entµ[ f ] := Eµ f log f − Eµ f log Eµ f .

We say that Glauber dynamics for µ satisfies a modified log-Sobolev inequality (MLSI) if for any
function f : {±1}n → R>0:

Eµ( f , log f ) & Entµ[ f ],

where the & hides a poly(n) factor.
The following is the functional inequality we prove, which also implies rapid mixing.

Theorem 2.1 (Informal version of Theorem 4.1). Let A be the adjacency matrix of a randomly signed

graph G ∼ G(n, d/n). There exists a constant β = Ω(1/
√

d) such that µ = µβA satisfies an MLSI.

Remark 2.2. In fact, we show that the polynomial factor hidden by & in the above is n−1−o(1).
However, we do not stress this in the overview for the sake of simplicity.

The general strategy to prove this inequality in our setting is similar to that of [EKZ22,AJK+21a,
CE22], which prove similar inequalities for Glauber dynamics on other Ising models, and can be
summarized by the following.

Decompose µ into a mixture ρ over “simpler” distributions µz where µ = Ez∼ρµz, and
then establish the following chain of inequalities:

Eµ( f , log f ) >
↑

Conservation
of local
entropy

Ez∼ρEµz( f , log f ) &
↑

MLSI for
simple

distributions

Ez∼ρ Entµz [ f ] &
↑

Conservation
of entropy

Entµ[ f ] .

The first inequality is generic and does not use any properties of the structure of ρ; see, e.g.,
[AJK+21a, Page 19]. We reproduce the details here for completeness:

Eµ( f , log f ) = ∑
x∼y

1
n
· µ(x)µ(y)

µ(x) + µ(y)
· ( f (x)− f (y)) · log

f (x)

f (y)

5



= ∑
x∼y

1
n
· Ez∼ρ [µz(x)] · Ez∼ρ [µz(y)]

Ez∼ρ [µz(x)] + Ez∼ρ [µz(y)]
· ( f (x)− f (y)) · log

f (x)

f (y)

> ∑
x∼y

1
n
· Ez∼ρ

[
µz(x)µz(y)

µz(x) + µz(y)

]
· ( f (x)− f (y)) · log

f (x)

f (y)

= Ez∼ρ

[
Eµz( f , log f )

]
,

where the inequality follows from concavity of the function (a, b) 7→ ab
a+b in the nonnegative quad-

rant.
The second inequality relies on the MLSI for the component measures, which we hope are

easier to analyze. The third inequality necessarily relies on the properties of ρ. We now describe
our construction of a measure decomposition of µ when it is an Ising model with PSD interaction
matrix J and external field h, and then show how to establish the MLSI for the simple distributions,
and conservation of entropy.3

Measure decomposition. Our measure decomposition is based on the Hubbard–Stratonovich trans-

form, an algebraic trick to express a Gibbs distribution arising from a quadratic Hamiltonian as a
mixture of simpler distributions. The measure decomposition takes the following form.

Let M be a PSD matrix that we shall call a control matrix, let x ∼ µ, and let z :=
x + M−1/2g for g ∼ N (0, I) independent of x. Let ρ denote the distribution of z and
let µz denote the distribution of x|z.

We now perform a fairly mechanical calculation to determine the distribution of x|z, just to illus-
trate a favorable algebraic cancellation. Let P(x), P(z|x) and P(x, z) be the joint densities of x, z|x
and (x, z) respectively. We have:

Pr[x = x|z = z] ∝ P(x, z)

= P(x) · P(z|x)

∝ exp
(

1
2

x⊤ Jx + 〈h, x〉
)
· exp

(
−1

2
(z− x)⊤M(z− x)

)

∝ exp
(

1
2

x⊤(J −M)x + 〈h + Mz, x〉
)

.

Designing the control matrix The upshot of the above is that the measures µz are Ising models
with interaction matrix J −M and some external field depending on z. We would like to design
M such that

• It is relatively easy to prove an MLSI for an Ising model with interaction matrix J −M.

• The mixture ρ satisfies conservation of entropy.

3 We can assume that J � 0 without loss of generality, as adding an arbitrary diagonal matrix to J does not change
the Gibbs distribution.

6



Choosing M = J makes the interactions disappear altogether, and makes µz a product distri-
bution. This is desirable as every product distribution satisfies an MLSI. Indeed, this choice is
made in the work of Chen and Eldan [CE22, Corollary 51] where they prove an MLSI for Glauber
dynamics on Ising models when J has spectral diameter at most 1 (see Eq. (1)). They then use
the bound on the spectral diameter to prove conservation of entropy for the resulting product
decomposition of the Ising model.

Unfortunately, when J is a matrix associated with a sparse Erdős–Rényi graph, the abnormally
high-degree vertices cause a large number of outlier eigenvalues, which is a hurdle for their tech-
nique to establish conservation of entropy. Nevertheless, studying their technique motivates our
design of M.

Conservation of entropy. Recall that conservation of entropy for our decomposition refers to the
following functional inequality. For f : {±1}n → R>0:

Ez∼ρ Entµz [ f ] & Entµ[ f ] .

The strategy for doing this, as carried out in [EKZ22,CE22], is to chart a continuous path between
µ and µz and control the derivative of entropy along this path. Concretely, there is a stochastic
process (µt)06t61 on the space of probability distributions called stochastic localization with the
following properties; see [CE22, Proposition 39 and Lemma 40]:4

• µ0 = µ and µ1 = µz for z ∼ ρ.

• The function F(t) = E Entµt [ f ], where the expectation is taken over the randomness in the
choice of µt, satisfies the following lower bound on its derivative:

dF

dt

∣∣∣∣
t

> − sup
h

∥∥∥M1/2 ·Cov
(
µJ−tM,h

)
·M1/2

∥∥∥
op
· F(t) . (2)

If we can show for any h ∈ Rn and t ∈ [0, 1] that
∥∥M1/2 ·Cov

(
µJ−tM,h

)
·M1/2

∥∥
op 6 q for some

q > 0, then
F(1) > F(0) · exp(−q) ,

which, in more familiar terms, is

Ez∼ρ Entµz [ f ] > exp(−q) Entµ[ f ] .

Our goal thus reduces to designing M such that
∥∥M1/2 · Cov

(
µJ−tM,h

)
·M1/2

∥∥
op is small, and that

it is easy to prove an MLSI for Ising models with interaction matrix J −M.
Intuitively, the large spectral norm of M itself can be blamed on the high-degree vertices. To

heuristically get a sense of where Cov
(
µJ−tM,h

)
might have large spectral norm, let us pretend J is

the interaction matrix of a tree, and consider the special case of h = 0 and t = 0. We remark that
the final proof will uniformly bound the covariance matrix for all external fields h ∈ Rn and times
t ∈ [0, 1] with high probability over the graph, although we omit the details here for the sake of
simplicity.

4 We refer the reader to [EAM22] for a nice exposition on stochastic localization and why it indeed charts such a path.
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Under this pretense, via standard formulas for correlations in tree graphical models,

Cov(µJ,0)i,j ≈ Ω

(
1√
d

)dist(i,j)

.

Let nℓ(i) denote the number of neighbors of vertex i at distance exactly ℓ from i. The entries of the
ith row corresponding to the distance-ℓ neighbors of a vertex i are at least (1/d)ℓ/2, and since the
operator norm of a matrix is at least the ℓ2 norm of any row, we have:

‖Cov(µJ,0)‖op & Ω

(√
nℓ(i)

dℓ

)
.

This can be huge if vertex i is abnormally high-degree, or more generally, if vertex i has an abnor-
mally large ℓ-neighborhood. In particular, if nℓ(i) > (Cd)ℓ for some appropriately chosen constant
C > 1, that would reflect in a blow-up in the spectral norm of Cov(µJ,0)Nℓ(i)

, the covariance matrix
restricted to the ℓ-neighborhood of i. The idea then is to consider M that is supported only on
rows and columns away from such “rogue” vertices i.

In particular, we partition the graph into two pieces, one piece with vertices close to the rogue
vertices, and another piece with vertices far away from rogue vertices, and design M to be sup-
ported on the rows and columns from the second piece.

Graph decomposition. Concretely, for a graph G:

• For each vertex v, define ℓ(v) as the smallest value of ℓ such that for all L > ℓ, the number of
vertices at distance 6 L from v is at most (d(1 + ε))L.

• Set H as
⋃

v∈V Bℓ(v)(v), where Bℓ(v)(v) is the radius ℓ(v) ball around v.

The above gives a natural partition of the graph G into B := G \ H, which we call the bulk, and H,
which we call the near-forest. The point of this decomposition is that all the rogue vertices reside
in the near-forest, and the vertices touched by edges in the bulk are “tame”; see Figure 1 for an
illustration. We prove the following in the context of sparse random graphs.

Lemma 2.3. For G ∼ G(n, d/n) and random signing c of the edges of G, there exists with high probability

a subgraph H and ε = O(log d/d)1/3 such that:

• Every connected component of H is a tree plus at most one additional edge.

• The diameter of each connected component of H is at most O
(

log n
ε3d

)
.

• For any vertex v and ℓ > 1, the size of Bℓ(v) is at most ∆ · (d(1 + ε))ℓ−1
for ∆ = o(log n).

• For any vertex v and ℓ > 1, the size of Bℓ(v) ∩ B is at most (d(1 + ε))ℓ where B is the set of all

vertices touched by an edge in G \ H.

• The spectral radius of the signed adjacency matrix of G \ H is at most 2
√

d(1 + ε).
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G

Legend

Bulk B

Near-forest H

Figure 1: An illustration of our graph decomposition (Lemma 2.3) for a sparse SBM with average
degree d = 3 and ε = 0.5. The bulk B (green) consists solely of vertices with degree at most
d(1 + ε) = 4.5. The near-forest H (shaded blue circles) comprise the local neighborhoods of high-
degree vertices (enlarged for emphasis) in G. The local neighborhoods of nearby high-degree
vertices can merge, as shown by the two blue circles in the top right. Nevertheless, with high
probability, all the connected components in H are trees with at most one additional edge.

We defer a discussion of the proof of this graph decomposition lemma to later in this overview,
and focus on the proof of mixing of Glauber dynamics for now.

The above statement motivates the choice of the control matrix as:

M := β ·
(

AG\H + 2
√

d(1 + ε) · IG\H

)
.

An outline of the proof is presented in Figure 2. We remark that other proofs of MLSIs that
utilize stochastic localization, such as that of (1), also follow a similar outline, albeit with many
steps being much simpler. We shall now concretely clarify our goals before proceeding.

• Recall that our goal in proving conservation of entropy was to give an upper bound on

Theorem 4.1

Theorem 1.1

Theorem 4.9
Graph decomposition

of stochastic block
models (Figure 1)

Conservation of
entropy

Theorem 4.8
MLSI bound

for near-forest

Lemma 3.31
Boundedness of
control matrix

from bulk

Theorem 4.6
Covariance bound

along path

Lemma 4.5
Covariance bound

for near-forest

Theorem 3.20

Localization

HS transform

Lemma 3.14

Figure 2: A flow chart outlining our proof of an MLSI for diluted spin glasses.
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∥∥M1/2 ·Cov
(
µJ−tM,h

) ·M1/2
∥∥

op.

• We would also like to prove that any Ising model with interaction matrix J −M satisfies an
MLSI. In light of Lemma 2.3, the structure of J−M is a “near-forest” where every connected
component is a low-diameter tree with at most one additional edge with “not too large” local
neighborhoods. Our goal is to prove an MLSI for such near-forest Ising models.

Covariance bound along localization path. Observe that
∥∥M1/2 ·Cov

(
µJ−tM,h

) ·M1/2
∥∥

op is at

most
∥∥Cov

(
µJ−tM,h

)
·M
∥∥

op. We show that this spectral norm is O(1).
For simplicity, in this overview, we focus on the special case when t = 0 and h = 0. Let us

denote Cov(µJ,0) as Q. First observe that:

‖Q ·M‖op 6 ‖Q‖op · ‖M‖op .

To obtain a handle on Q, we perform a trick identical to how we constructed our measure decom-
position, albeit for a completely different purpose now.

Let x ∼ µJ,0, and let z := x + M−1/2g for g ∼ N (0, I).5

We obtain a bound on Q by using Cov[z] � Cov[x], which lets us pass to giving a bound on Cov[z].
To this end, we prove that the distribution of z is strongly log-concave and give quantitative lower
bound on its strong log-concavity. A bound on the covariance then immediately follows from the
Brascamp–Lieb inequality, which says:

Suppose∇2 log f (y) � Γ for all y, where f is the density of z. Then, Cov[z] � Γ−1.

A standard calculation reveals that it suffices to give a lower bound in the PSD order on the matrix
M−M · Cov(µJ−M,0) ·M. Since M is supported only on the “bulk” B := G \ H, we can write this
as M − M · Cov(µJ−M,0)B · M, where Cov(µJ−M,0)B is the principal submatrix of the covariance
matrix on the rows and columns corresponding to non-isolated vertices in B.6 We now make the
observation

M−M ·Cov(µJ−M,0) ·M = M−M ·Cov (µJ−M,0)B ·M � M−M2 ·
∥∥Cov(µJ−M,0)B

∥∥
op ,

which motivates obtaining a bound on Cov(µJ−M,0)B. The spectral norm of M can be suitably
bounded using existing results on the spectra of sparse random graphs by a small enough constant
that scales linearly with β; see Section 3.5 for details. We will show that

∥∥Cov(µJ−M,0)B

∥∥
op 6 O(1).

The Ising model on near-forests. We now discuss how to control the spectral behavior of Cov(µH,h)

where H is a near-forest satisfying the conditions from Lemma 2.3, as well as how we prove the
MLSI for such Ising models.

5 Technically, M needs to be slightly modified by adding a tiny diagonal on the entries outside V(B), but we ignore
that consideration here.

6 We need the lower bound Γ to be strictly positive definite, which motivates the trick from the previous footnote of
adding a small scaling of the identity matrix to the V(H) block. However, we ignore this technicality for the present
discussion.
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Observe that Cov(µH,h) is a block diagonal matrix where each block corresponds to the covari-
ance matrix of the Ising model of a connected component F, which is a tree with at most one excess
edge. Each F has a specially identified boundary ∂F, which is the intersection of F with B. Thus,
it is sufficient to bound the spectral norm of each Cov(µF,h)∂F. Bounding the spectral norm of this
matrix entails the following steps:

• We reduce to proving a covariance norm bound to the case when F is a tree, the interactions
are nonnegative, and the external field is 0, but omit the description of this reduction in the
overview; see the proof of Lemma 4.5 for details.

• There is a simple explicit formula for the covariance matrix of an Ising model on a tree with
zero external field in terms of the interaction matrix: for a pair of vertices i and j, and the
unique path P between i and j, the covariance Cov(µF,0)i,j is equal to ∏e∈P tanh(Je).

• We use the trace moment method to bound the desired spectral norm. The explicit formula
from the previous point makes such a calculation tractable. When performing this calcula-
tion, one needs to count closed walks in the tree, and the bound on the size of balls in H

guaranteed by Lemma 2.3 lead us to the desired bound.

We now turn our attention to proving that the leftover near-forest in J −M satisfies an MLSI
for any choice of external field h. In order to make the discussion smoother and concretely point
out which models we show an MLSI for, we make the following definition (see Definition 4.3 for
a formal version).

Definition 2.4 ((∆, D)-pseudorandomness, informal). We say a graph H is (∆, D)-pseudorandom if
for every vertex v ∈ V(H), the number of vertices at distance at most ℓ from v is at most ∆ · Dℓ−1.

It suffices for us to prove an MLSI for (∆, D)-pseudorandom near-forests where ∆ = o(log n)

and D = d(1 + ε). To show an MLSI for pseudorandom near-forests, we reduce to exhibiting an
MLSI for pseudorandom trees; see Section 4.5 for details.

We prove the following for pseudorandom trees.

Theorem 2.5 (Informal version of Theorem 4.8). Suppose ∆ = o(log n) and 0 6 γ < 1 is an abso-

lute constant. Then, for any (∆, D)-pseudorandom tree H with interaction matrix J with all entries in(
− γ√

D
, γ√

D

)
and any external field h, Glauber dynamics for µJ,h satisfies an MLSI.

To prove the above, we employ the strategy of decomposing the measure into a mixture of
product distributions using stochastic localization. Recall from (2) that to control the derivative
of the entropy along the stochastic localization path, it suffices to control

∥∥M ·Cov
(
µJ−tM,h

)∥∥
op

where M is the control matrix of choice for stochastic localization. It is tempting to use J +λmin(J) ·
I as the control matrix. However, the exact choice of the control matrix requires care because the
parts of both this matrix and the covariance matrix that have high spectrum are on the same coor-
dinates. In fact, we need to engineer the control matrix so that its high-spectral norm part partially
cancels the corresponding part of the covariance matrix when they are multiplied. We refer the
reader to the proof of Lemma 4.19 for details. We spend the rest of the overview discussing how
we prove Lemma 2.3.
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Proving the existence of a graph decomposition for sparse random graphs. We next outline
how to prove Lemma 2.3, which establishes nice properties of the graph decomposition into bulk
and near-forest components for sparse stochastic block models. Before diving into the discussion,
we restate the lemma for convenience.

Lemma 2.3. For G ∼ G(n, d/n) and random signing c of the edges of G, there exists with high probability

a subgraph H and ε = O(log d/d)1/3 such that:

• Every connected component of H is a tree plus at most one additional edge.

• The diameter of each connected component of H is at most O
(

log n
ε3d

)
.

• For any vertex v and ℓ > 1, the size of Bℓ(v) is at most ∆ · (d(1 + ε))ℓ−1
for ∆ = o(log n).

• For any vertex v and ℓ > 1, the size of Bℓ(v) ∩ B is at most (d(1 + ε))ℓ where B is the set of all

vertices touched by an edge in G \ H.

• The spectral radius of the signed adjacency matrix of G \ H is at most 2
√

d(1 + ε).

As its name suggests, the bulk component has a tame spectrum, because every vertex in the
bulk has bounded degree by construction. On the other hand, because sparse random graphs
are locally tree-like, the near-forest component H consists of the union of balls around the high
degree vertices. Let us see how to push this further to prove the other two properties of the graph
decomposition.

To show that H is a near-forest, a crucial ingredient is the following structural property about
small sets in sparse random graphs from [BLM15, Lemma 30].

For G ∼ SBM(n, d, λ), with probability 1− o(1), any connected set of vertices with
fewer than 1

2 · logd n vertices has at most one cycle.

In fact, the above lemma can be used to rule out the existence of multiple cycles in any connected
set of vertices (in particular the components of H), as long as the diameter of this set is O(log n).
The idea is to rule out the existence of the second cycle by considering the small set of vertices
consisting of the two cycles, along with the shortest path between them. Because of the diameter
bound, the total size of this set is also O(log n), so the above lemma applies — if the hidden
constant in the diameter bound is small enough, then the lemma implies that this subgraph has at
most one cycle, a contradiction.

To summarize, we have boiled down the proof of Lemma 2.3 to showing the diameter bound.

Bounding the diameter of the near-forest. We illustrate the intuition behind such a statement
from the perspective of branching processes. Consider the following exploration process, which
simulates the ball-growing process that generates H.

At all stages of the exploration, we maintain a set of active vertices, unexplored vertices, and
inactive vertices. The active vertices represent the boundary of the connected component we are
currently exploring.

12



1. If there are no active vertices, select a vertex v which has not been explored yet. If all vertices
have been visited, terminate the process.

2. Select a vertex v in the active set, and iteratively query its radius-r neighborhoods.

3. If there is some vertex u at distance at most r which is r-heavy, that is, |Br(u)| > (d(1 + ε))r,
then expand out the active vertices to include u by growing a ball of radius 2 · ℓu around v.
Set all vertices on the interior of the active set to be inactive.

4. If no active vertices remain, this means that a new connected component of H has been fully
generated.

Analyzing the exploration process directly is challenging, but one natural approach is to consider
a branching process which simulates the above exploration process.

For simplicity, let us restrict to the case where G is a sparse random graph with constant aver-
age degree d. It is well known that for such a graph, the degree of any vertex v has Poisson tails,
in that for any s > 1, we have

Pr[deg (v) > sd] 6 exp(−Ω(sd log s)).

In particular, the maximum degree of G is Θ
(

log n
log log n

)
with high probability. In fact, using stan-

dard techniques from the theory of branching processes, we prove a similar bound (Lemma A.1)
for the sizes of radius-r neighborhoods of v:

Pr[|Br(v)| > (sd)r ] 6 exp(−Ω(dsr)).

Observe how the above tail bound decays doubly exponentially in r. Using this, it is not too
difficult to show that the probability that a vertex is r-heavy also decays as exp (−Ω(dsr)). We
also remark that the proof strategy of this tail bound is key in proving that with high probability,
the size of any ball of radius ℓ is at most o(log n) · (d(1 + ε))ℓ−1, which is required to attain an
n1+o(1) mixing time.

The hope in a proof involving branching processes would be that although the number of
vertices at depth at most r is O(dr), the probability of any of these vertices being r-heavy de-
cays doubly exponentially with r, so the radius of the largest ball that captures the vertex under
consideration is very small — it has tail bounds that decay doubly exponentially, and has expec-
tation e−Ω(d). Consequently, the number of active vertices is likely to shrink in each step of the
exploration. Furthermore, the O(log n/d) diameter bound is tight using such a proof technique:
a vertex has slightly abnormal degree and is 1-heavy with probability e−Θ(d), so with probability
1/n, there are O(log n/d) such vertices that are all adjacent to each other.

However, this proof technique as stated is difficult to carry out, because the definition of heav-
iness involves not just subtrees rooted at the relevant vertex in the tree, but also subtrees rooted
at ancestors and siblings, which become difficult to handle. For this reason, the proof we give in
the body of the paper involves a more direct moment method for the diameter bound, but the
intuition remains the same. We now briefly describe the ideas involved therein.
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In our actual proof, we consider the associated cluster graph, which has as its vertex set those
vertices v that have ℓ(v) > 0, and edges between vertices if their corresponding balls intersect.
Our goal then is to bound the diameter of this new cluster graph, where each edge is assigned
weight equal to the sum of the radii of (the balls around) its endpoints. To do so, we consider the
probability that a fixed collection of vertices forms a long path. The key is that if these balls have
small radii, then they must intersect in a specific fashion. However, each of the balls are essentially
random (small!) subsets of the n vertices, so this is extraordinarily unlikely. On the other hand, if
the radii are somewhat large, the doubly exponential tail bound on the radius of heaviness kicks
in, which again makes this event very unlikely.

Organization. We begin in Section 3 with an overview of the numerous techniques we will re-
quire in our proof.

Section 4 is dedicated to proving the mixing time bound for the diluted spin glass. In Section 4.1,
we describe a graph decomposition, and state several results that will play a part in the proof. In
Section 4.2, before proving any of these results, we begin by putting them together to prove an
MLSI. In Section 4.3, we bound the covariances of Ising models supported on near-forests using
the trace method. In Section 4.4, we then use this bound to prove a covariance bound that is used
to show that entropy is conserved along the localization path. In Section 4.5, we prove a modified
log-Sobolev inequality for Ising models supported on near-forests, which we are left with at the
end of the localization scheme.

Many of the results and ideas from the previous section make a return in Section 5, where
we prove an MLSI for Ising models whose interaction matrix is a scaling of a centered adjacency
matrix. We begin with a high-level overview of the proof strategy in the centered setting. In
Section 5.3, we introduce some additional tools related to the spectral independence framework
that are required for the proof, and then instantiate these tools to prove an MLSI for the Ising
model obtained at the end of the localization scheme. In Section 5.4, we reuse many of the tools
introduced in the previous subsection to show that entropy is conserved along the path of the
localization scheme.

Finally, in Section 6, we prove that the decomposition of stochastic block models has the prop-
erties we claim.

3 Preliminaries

3.1 Notation

• Given a Markov chain P on Ω, and x ∈ Ω, Px is the distribution over Ω obtained by taking
one step of the Markov chain from x.

• Given σ ∈ {±1}n , σ⊕i ∈ {±1}n is defined as

(
σ⊕i
)

j
=

{
σj, j 6= i,

−σi, j = i.
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• Given a matrix M, we denote its operator norm by ‖M‖ = ‖M‖op.

• Given a distribution µ over Ω and a function f : Ω→ R>0,

Ent[ f ] = Entµ[ f ] := Eµ[ f log f ]− Eµ[ f ] log Eµ[ f ].

• For a random variable X over Rk, we use Cov[X] to denote the covariance E[XX⊤]−E[X]E[X]⊤.
For a probability distribution µ over Rk, we use Cov(µ) to denote the covariance of the asso-
ciated random variable with law µ.

• Given a connected graph G = (V, E), its tree-excess is |E| − |V|+ 1.

• Given a graph H, we use V(H) and E(H) to denote its vertex and edge sets respectively. We
use V ′(H) to refer to the subset of vertices of V(H) adjacent to at least one other distinct
vertex, the set of non-isolated vertices.

• For a matrix M ∈ Rn×n and a set of vertices S ⊆ [n], by MS we mean the n× n matrix where
every row and column outside S is zeroed out, i.e., the principal submatrix of M restricted to
S but preserving the dimension. If H is a graph on [n], then by MH ∈ Rn×n we mean MV′(H),
i.e., the restriction of M to the non-isolated vertices of H.

• We often abuse notation and identify probability measures µ with their density functions.

• Given a matrix C that is possibly not full-rank, and z ∼ N (0, I), we mean by C−1/2z the
distribution supported on Ker(C)⊥ with density at z proportional to exp

(
− 1

2 · z⊤Cz
)
.

3.2 Markov chains

In this section, we have a distribution µ over Ω, and shall look at how one can analyze Markov
chains with stationary distribution µ. Throughout, we work solely with time-reversible Markov
chains. First, we describe a natural Markov chain to sample from distributions over {±1}n.

Definition 3.1 (Glauber dynamics). Let Ω = {±1}n , and suppose that µ is supported on all of Ω.
The corresponding Glauber dynamics Markov chain P = Pµ is described by the following transition
law from any state σ:

• Choose index i uniformly at random from [n].

• Go to σ⊕i with probability
µ(σ⊕i)

µ(σ) + µ(σ⊕i)
, and stay at σ otherwise.

Fact 3.2. The Markov chain Pµ is ergodic and time-reversible (with respect to µ), so has µ as its stationary

distribution.

Our goal is to bound the “mixing time” of Glauber dynamics on certain distributions.
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Definition 3.3. Given a Markov chain P with stationary distribution µ, and a distribution ν that is
absolutely continuous with respect to µ, the associated mixing time initialized at ν is defined by

tmix(P, ε; ν) = min
{

t > 0 : dTV(Ptν, µ) < ε
}

.

We define the mixing time to be

tmix(P, ε) = max
x∈Ω

tmix(P, ε; δx).

It is well-known that the mixing time of Glauber dynamics (and Markov chains more generally)
can be controlled by log-Sobolev inequalities.

Definition 3.4 (Dirichlet Form). Given a distribution µ over {±1}n, a time-reversible Markov
chain P with stationary distribution µ, and functions f , g : {±1}n → R, the associated Dirichlet

form is defined as

E( f , g) = EP( f , g) := E
x∼µ
y∼Px

[( f (x)− f (y))(g(x) − g(y))] .

Definition 3.5 (Modified log-Sobolev Inequality). Given a time-reversible Markov chain P on
{±1}n with stationary distribution µ, P is said to satisfy a modified log-Sobolev inequality (MLSI)
with constant C (possibly depending on n) if for any function f : {±1}n → R>0,

E( f , log f ) > C Ent[ f ].

In particular, CMLSI is the best (largest) such constant C.

Fact 3.6 ([BT06, Corollary 2.8]). Given a time-reversible Markov chain P with stationary distribution µ,

if P satisfies a modified log-Sobolev inequality with constant CMLSI, then

tmix(P, ǫ) 6
1

CMLSI

(
log log

1
µ∗

+ log
1
ǫ

)
,

where µ∗ = minx:µ(x)>0 µ(x).

Fact 3.7 ([Goe04, Lemma 2.5]). Let µ be a distribution on {±1}n, and (Ci)
k
i=1 a partition of [n] such that

there exist distributions µ(i) on {±1}Ci with µ =
⊗K

i=1 µ(i). For the Glauber dynamics Markov chain, if

each µ(i) satisfies an MLSI with constant ρ(i), then µ satisfies an MLSI with constant ρ = 1
n mini ρ(i)|Ci|.

We will also require the Holley-Stroock perturbation principle, which shows that MLSIs and
variances do not change too much if we multiply the densities by a constant.7

Lemma 3.8 ([HS86, p. 1186], see also [Led01, Lemma 1.2]). Let µ, ν be two probability measures over

{±1}n, and suppose that for some c > 1 (possibly depending on n), 1
c 6

ν(σ)
µ(σ)

6 c uniformly over all

σ ∈ {±1}n.

7 Their result works with log-Sobolev inequalities instead of modified log-Sobolev inequalities. Nevertheless, the
proof is easily adapted.
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1. Suppose Glauber dynamics for µ has MLSI constant at least CMLSI. Then, Glauber dynamics for ν

has MLSI constant at least CMLSI/c2.

2. For any function f ,
1
c
·Varµ[ f ] 6 Varν[ f ] 6 c ·Varµ[ f ].

Also note that if ν ∝ e− f and µ ∝ e−g, and ‖ f − g‖∞ 6 c̃, then e−2c̃ 6
ν(σ)
µ(σ) 6 e2c̃.

We make frequent use of the following simple observation about covariance matrices.

Observation 3.9. For any distribution µ on Rn with finite second moment, and vector v ∈ Rn,

v⊤Cov(µ)v = Var[〈v, x〉].

In particular,
sup

v∈Sn−1

supp(v)⊆S

Varx∼µ[〈v, x〉] = ‖Cov(µ)S‖.

3.3 Ising models

In this section, we have a symmetric interaction matrix J ∈ Rn×n and an external field h ∈ Rn.

Definition 3.10 (Ising model). The Ising model corresponding to J and h is the probability distribu-
tion µJ,h on {±1}n, where

µJ,h(σ) ∝ exp
(

1
2

σ⊤ Jσ + 〈h, σ〉
)

.

Its partition function is

ZJ,h := ∑
σ∈{±1}n

exp
(

1
2

σ⊤ Jσ + 〈h, σ〉
)

.

Observation 3.11. A simple observation we frequently make use of is that for any diagonal matrix
D, µJ,h = µJ+D,h.

We rely on a well-known trick that lets us decompose an Ising model into a mixture of simpler
Ising models.

Theorem 3.12 (Hubbard–Stratonovich transform). For any positive semidefinite matrix C in Rn×n:

µJ,h = Ez∼νµJ−C,Cz+h

where ν is a distribution over Rn with density

ν(z) ∝ exp
(
−1

2
z⊤Cz + log ZJ−C,Cz+h

)
.

Further, Cov
(
µJ,h
)
� Cov(ν).
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We will only use the HS transform with C being a positive definite matrix.

Proof. Let σ ∼ µJ,h and y ∼ N (0, I) be independent, and define z := σ + C−1/2y. The joint
probability density function p of (z, σ) satisfies:

p(z, σ) ∝ exp
(
−1

2
(z− σ)⊤C(z− σ) +

1
2

σ⊤ Jσ + 〈h, σ〉
)

= exp
(
−1

2
z⊤Cz + 〈Cz, σ〉+ 1

2
σ⊤(J − C)σ + 〈h, σ〉

)

This tells us:

µJ,h(σ) ∝

∫

Rn
p(z, σ)dz

∝

∫

Rn
exp

(
−1

2
z⊤Cz + 〈Cz, σ〉+ 1

2
σ⊤(J − C)σ + 〈h, σ〉

)
dz

=
∫

Rn
µJ−C,Cz+h(σ) · exp

(
−1

2
z⊤Cz + log ZJ−C,Cz+h

)
dz,

which completes the proof of the first part. The PSD inequality Cov
(
µJ,h
)
� Cov(ν) follows from

writing Cov(ν) as Cov
(
µJ,h
)
+ C−1. �

The Brascamp–Lieb inequality is relevant to bounding the covariance matrix of distributions
arising from the Hubbard–Stratonovich transform.

Theorem 3.13 (Brascamp–Lieb inequality). For any distribution with density ν ∝ exp(−V) for some

V : Rn → R, if there is a matrix Γ ≻ 0 such that ∇2V(z) � Γ uniformly, then Cov(ν) � Γ−1.

Using the Hubbard-Stratonovich transform with the Brascamp-Lieb inequality allows us to
bound covariances using the following lemma.

Lemma 3.14. Let M1 and M2 be interaction matrices in Rn×n, with M1 positive definite, and let h be an

external field in Rn. Suppose for some positive definite matrix Γ, the following holds for all z ∈ Rn:

M1−M1 ·Cov(µM2,M1z+h) ·M1 � Γ.

Then Cov(µM1+M2,h) � Γ−1.

Proof. First, observe that by applying Theorem 3.12 with C = M1, we obtain Cov(µM1+M2,h) �
Cov(ν) where ν(z) ∝ exp

(− 1
2 z⊤M1z + log ZM2,M1z+h

)
. It then suffices to bound Cov(ν). Towards

doing so, we show that ν is log-concave, and then use the Brascamp–Lieb inequality (Theorem 3.13).
We can verify that:

−∇2 log ν(z) = M1 −∇2 log ZM2,M1z+h = M1−M1 ·Cov(µM2,M1z+h) ·M1.

By assumption, for any z ∈ Rn, −∇2 log ν(z) � Γ ≻ 0, which establishes that ν is log-concave.
Consequently, by Theorem 3.13 we get Cov(ν) � Γ−1. �

To bound the above quantity, the following lemma will be useful.

Fact 3.15. Let L, M be symmetric matrices such that ‖M‖ 6 α and 0 ≺ η1 � L � 1−η2
α . Then,

L− LML � η1η2.
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3.4 Localization schemes

We will make use of stochastic localization to relate our Markov chain to simpler Markov chains
[Eld13, CE22]. We use a restricted form of stochastic localization, that we state below.

Definition 3.16 (Stochastic localization for Ising models). A stochastic localization scheme is a stochas-
tic process (µt)06t61 on the space of Ising models that is parameterized by a (possibly time-varying)
control matrix (Ct)06t61 and an initialization µJ,h, described by the following stochastic differential
equation.

d
(

µt

µJ,h

)
=

µt

µJ,h

〈
x− Eµt x, Ct · dBt

〉
(3)

where (Bt)06t61 is the standard Brownian motion in n dimensions.

While (3) may appear rather mysterious at first, the measures µt take on a natural form.

Fact 3.17 ([CE22, Facts 13 and 14]). The distribution µt is the Ising model µJt,ht
where Jt = J −

∫ t
0 C2

s ds

and ht =
∫ t

0 Cs · dBs + C2
s Eµs [x] · ds. Further, µt is a martingale, in that for any set A ⊆ {±1}n ,

E[µt(A)|µs] = µs(A) for 0 6 s 6 t 6 1.

The following is a mild generalization of [CE22, Proposition 39 and Lemma 40] that tells us
entropy conservation for stochastic localization; this stronger version is implicitly proved in [CE22,
Lemma 40].

Lemma 3.18. Consider a stochastic localization process (µt)t>0 with respect to (possibly time-varying)

control matrix (Ct)t>0, started at an Ising model µ0 = µJ,h. Suppose that for every h′ ∈ Rn and t ∈ [0, 1],
∥∥Ct · Cov

(
µJt ,h′

)
· Ct

∥∥ 6 αt.

Then, for any positive-valued ϕ,

E
[
Entµ1 [ϕ]

]
> exp

(
−
∫ 1

0
αt dt

)
· Entµ J,h [ϕ].

The following result articulates how the measure decomposition provided by stochastic local-
ization is instrumental in proving a modified log-Sobolev inequality for the Glauber dynamics
Markov chain.

Theorem 3.19 ([CE22, Theorem 47]). Let J be an interaction matrix and h be an external field. Let

(µt)06t61 be a stochastic localization scheme initialized at µJ,h. Suppose that

1. We have the entropy conservation inequality

E[Entµ1 [ f ]]

Entµ J,h [ f ]
> ε

for all f : Ω→ R+.

2. Almost surely,

CMLSI(Pµ1) > δ.
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Then, µJ,h has an MLSI coefficient at least εδ.

Using the above two results easily yields the following.

Theorem 3.20. Let M1, M2 be matrices in Rn×n with M1 positive semidefinite, and suppose that for every

external field h′ ∈ Rn and t ∈ [0, 1],

1.
∥∥∥M1/2

1 ·Cov(µ(1−t)M1+M2,h′) ·M1/2
1

∥∥∥ 6 q, and

2. Glauber dynamics for µM2,h′ satisfies CMLSI(µM2,h′) > δ,

then, for any external field h ∈ Rn,

CMLSI(µM1+M2,h) > δ · e−q.

Proof. We will use Theorem 3.19 by choosing the stochastic localization to be that with control
matrix M1/2

1 . The desired statement follows once we verify that the following are true:

1.
E
[
Entµ1 [ f ]

]

Entµ J,h [ f ]
> e−q for every f : {±1}n → R+, and

2. CMLSI(µ1) > δ almost surely.

Item 1 follows from Lemma 3.18, and Item 2 is true by assumption, which completes the proof. �

3.5 Graphs

For the rest of this section, let G be a graph on n vertices and m edges, and let c be a weight
function on this graph. We will use Ac to denote the adjacency matrix of G, weighted according
to c, and Dc as the weighted degree function where Dc[i, i] = ∑j 6=i Ac[i, j].

Definition 3.21 (Nonbacktracking matrix). The nonbacktracking matrix Bc is a 2m × 2m matrix in-
dexed by directed edges in G where:

Bc[uv, xy] =

{
c(xy) if v = x and u 6= y

0 otherwise.

We will use BG to refer to the unweighted nonbacktracking matrix, i.e., when c(xy) is equal to 1 for
every edge in G.

The nonbacktracking matrix is related to a matrix known as the Bethe Hessian, and we use
this relationship to obtain information about the spectrum of the adjacency matrices of bounded
degree subgraphs of a random graph arising from the stochastic block model.

Definition 3.22 (Bethe Hessian). The Bethe Hessian is defined as: BHc := Dcĉ − Aĉ + I where
ĉ = c

1−c2 . When all the weights are equal to t, the Bethe Hessian can be written as:

BHG(t) :=
(DG − I)t2 − At + I

1− t2 .
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The following is a classic statement that relates the eigenvalues of the Bethe Hessian and those
of the nonbacktracking matrix; see, e.g., [FM17, Proof of Theorem 5.1]).

Lemma 3.23. For any α ∈ (0, 1), the spectral radius ρ(BG) 6 1
α if and only if BHG(t) ≻ 0 for all

t ∈ (−α, α).

A simple observation is that when G is a tree, its nonbacktracking matrix is nilpotent, and
hence its spectral radius is equal to 0, which gives us the following consequence.

Corollary 3.24. When G is a tree, for all t ∈ (−1, 1), we have BHG(t) ≻ 0.

We define A
(s)
G as the n × n matrix where the i, j entry contains the number of length-s non-

backtracking walks between i and j. The following is a classic fact; see, e.g., [ST96, Equation (2.1)].

Fact 3.25. BHG(t)
−1 = ∑

s>0
A
(s)
G ts.

We will need to understand the spectrum of the nonbacktracking matrix of a random graph
drawn from the stochastic block model, as well as random graphs with randomly signed edge
weights. For the sequel, let G ∼ SBM(n, d, λ) with hidden community vector σ ∈ {±1}n, and
assume d > 1. Consider the adjacency matrix centered after conditioning on σ, i.e., the matrix
AG := AG − E[AG|σ]. Let c be the weight function on the edges of the complete graph prescribed
by AG.

The following bounds on the nonbacktracking matrix of a random graph drawn from the
stochastic block model are effectively due to [BLM15], but the exact form we will need is the
version in [LMR22].

Lemma 3.26 (Consequence of [LMR22, Theorem 7.4]). For ε > 0:

|λ|max(Bc) 6 (1 + ε) ·
√

d

with probability 1− on(1).

By an identical argument to the proof of [FM17, Theorem 5.1], the following is true.

Lemma 3.27. For any t ∈
(
− 1√

d
, 1√

d

)
, BHc·t � 0 with probability 1− on(1).

Recalling that the centered adjacency matrix is given by AG = AG−EAG|σ, and using the fact

that the entries of EAG|σ are of magnitude O
(

d
n

)
, and the fact that all degrees in G are at most

O(log n) with high probability, we get the following relationship.

Corollary 3.28. For any t ∈
(
− 1√

d
, 1√

d

)
, we get that with probability 1− on(1):

(DG − I)t2 − AGt + E[AG|σ] · t(1− t2) + I(1 + o(1)) � 0.

Further, by using the fact that ‖E[AG|σ‖] 6 d · (1 + o(1)), we get:

B̃HG(t) := (DG − I)t2 − AGt + I ·
(
1 + d|t|3 + o(1)

)
� 0 .

21



We are finally ready to prove the main result about the spectrum of the bulk in our decompo-
sition.

Lemma 3.29. Let S ⊆ [n] such that the degree of every vertex in S within G is at most (1 + ε)d, and

suppose that
√

d(1 + ε) + 1
1+ε 6

√
d(1 + ε). Then

∥∥(AG

)
S

∥∥ 6 2
√

d(1 + ε)

with probability 1− on(1). Consequently, the spectral diameter of
(

AG

)
S

is at most 4
√

d(1 + ε).

Proof. We shall use Corollary 3.28. Set t = 1
(1+ε)

√
d
. Observing that any principal submatrix of the

PSD matrix B̃HG(t) � 0 is also PSD, and ‖(DG)S‖ 6 d(1 + ε), we get that

λmax
(
(AG)S

)
6

1 + dt3 − t2 + d(1 + ε)t2

t

6
√

d(1 + ε) +
1

1 + ε
+
√

d(1 + ε) 6 2
√

d(1 + ε).

Doing the same for the matrix B̃HG(−t) � 0,

λmin
(
(AG)S

)
>

1 + dt3 − t2 + d(1 + ε)t2

−t

> −
√

d(1 + ε)− 1
1 + ε

−
√

d(1 + ε) > −2
√

d(1 + ε). �

Similarly, there are well-established bounds on the spectral radius of the nonbacktracking ma-
trix of randomly signed Erdős–Rényi graphs.

Lemma 3.30 (Consequence of [SM22, Theorem 2]). Let G ∼ SBM(n, d, λ) and let c be a random

assignment of ±1-valued signs to the edges of G. Then, with probability 1− on(1),

|λ|max(Bc) 6 (1 + on(1)) ·
√

d .

An identical argument to the proof of Lemma 3.29 can be used to establish the following.

Lemma 3.31. Let G ∼ SBM(n, d, λ) and let c be a random assignment of ±1-valued signs to the edges of

G. With probability 1− on(1), the following holds. Let S ⊆ [n] such that the degree of every vertex in S

within G is at most (1 + ε)d. Then,

‖Ac‖ 6 2
√

d(1 + ε).

Remark 3.32. Notice that one difference between Lemma 3.29 and Lemma 3.31 is that the latter
does not require a constraint on d and ε. This owes to the fact that in the former case there are
nonzero entries both at the scale of Θ(1) and Θ(1/n) whereas all nonzero entries in the latter case
are in {±1}.
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4 Glauber dynamics on near-forest decompositions

This section is dedicated to proving the following result.

Theorem 4.1. Fix d > 1. Let A be the adjacency matrix of a randomly signed graph G ∼ SBM(n, d, λ).

There exists a universal constant β > 0 such that with high probability over the draw of G, for any external

field h, we have CMLSI(µβA/
√

d,h) > n−1−o(1).

Given a sparse random graph G, our goal is to show that for any external field h, Glauber
dynamics for the randomly signed Ising model on G mixes rapidly in the appropriate temperature
regime.

In Section 4.1, we describe the graph decomposition, and state several results that will play a
part in the proof. In Section 4.2, before proving any of these results, we begin by putting them to-
gether to prove an MLSI — the localization scheme we use will be described therein. In Section 4.3,
we bound the covariances of Ising models supported on near-forests using the trace method —
these bounds are used in Section 4.4, where we establish a covariance bound used in showing that
entropy is conserved along the localization path. In Section 4.5, we prove a modified log-Sobolev
inequality for Ising models supported on near-forests, which we are left with at the end of the
localization scheme.

4.1 On decomposing random graphs

In this section, we describe an explicit class of decompositions of an Ising Hamiltonian into the
sum of two Hamiltonians which are supported on two disjoint sets of edges, which we term the
bulk and the near-forest components. We then use a localization scheme to anneal the original Ising
model into an Ising model with interactions supported only on the near-forest component. We
will verify the two conditions needed to apply Theorem 3.20 to imply rapid mixing of Glauber
dynamics on sparse random graphs.

Definition 4.2 (Near-forest). We say a graph H is a near-forest if all its connected components have
at most a single cycle. Equivalently, each component has tree-excess at most 1.

A crucial ingredient in our proof is that sparse stochastic block model graphs can be decom-
posed into the union of two graphs, a bulk and a near-forest, where the bulk has bounded degree
and the near-forest satisfies some pseudorandom properties. The following definitions capture
the pseudorandom property the near-forest satisfies and the precise form of the decomposition.

Definition 4.3 (Pseudorandom graph). We say a graph H is (∆, D)-pseudorandom with respect to
S ⊆ V(H) if it satisfies the following:

1. For any r > 1, and any vertex u ∈ V(H), the size of the r-ball around u is at most Dr−1 · ∆.
Note in particular that this implies that the maximum degree is at most ∆.

2. For any r > 0 and u ∈ V(H), |{v ∈ S : dist(u, v) 6 r}| 6 Dr.

While the above statement bounds the sizes of balls, most of our proofs will only need bounds
on the sizes of neighborhoods. We are now ready to formally state our graph decomposition.

23



Definition 4.4 (Graph decomposition). For a graph G, let B, H be subgraphs of G with possibly
overlapping sets of vertices, which we refer to as the bulk and near-forest components. We say that
(B, H) is a (∆, D)-decomposition of G if the following properties hold.

1. E(G) = E(B) ⊔ E(H), i.e. the bulk and near-forest components partition the edges of G.

2. Let ∂H = V ′(B) ∩ V ′(H) denote the vertex boundary of H, the vertices in H incident to an
edge in E(B). Then H is a (∆, D)-pseudorandom near-forest with respect to ∂H.

If such a (B, H) exists, we say that G admits a (∆, D)-decomposition.

Many of our results hold generically assuming that G admits a (∆, D)-decomposition (or is
itself a (∆, D)-pseudorandom near-forest); we refer the readers back to Figure 1 for an illustration
of such a decomposition. In Theorem 4.9, we show that sparse stochastic block model graphs
admit such a decomposition.

As a crucial first step towards analyzing the class of Ising models supported on such graphs,
we establish the following covariance bounds for any Ising model with bounded interactions sup-
ported on a pseudorandom near-forest; we defer the proof to Section 4.3.

Lemma 4.5. Let H be a (∆, D)-pseudorandom near-forest with respect to S ⊆ V(H). For any Ising model

with interactions J supported on E(H) with values in
[
− γ√

D
, γ√

D

]
, along with an arbitrary external field

h, we have
∥∥Cov

(
µJ,h
)

S

∥∥ 6 e2γ/
√

D

(1− γ)2 .

Additionally,
∥∥Cov

(
µJ,h
)∥∥ 6 e2γ/

√
D

(1− γ)2 ·
∆

D
.

As a consequence of Lemma 4.5, we can establish conservation of entropy and a good MLSI
constant for the annealed model. We prove these implications in Sections 4.4 and 4.5, respectively.

Theorem 4.6. Let (B, H) be a (∆, D)-decomposition of G, and let JB, JH ∈ Rn×n be interaction matrices

whose off-diagonal entries are supported on E(B) and E(H), respectively. Suppose that there are constants

η, K ∈ (0, 1) such that η IB � JB � KIB, and that all interactions in JH are in
[
− γ√

D
, γ√

D

]
for some

γ ∈ [0, 1). Finally, suppose that

K · e2γ/
√

D

(1− γ)2 6 1− δ

for a positive constant δ > 0. There exists a positive constant C not depending on ∆ such that for any

0 6 t 6 1 and external field h ∈ Rn,

Cov(µ(1−t)JB+JH ,h) � C(IB + ∆IH\∂H).

Remark 4.7. The assumptions on the spectrum of JB may look artificial, but they are in fact without
loss of generality. Indeed, by Observation 3.11, one can shift JB by a constant multiple of IB to
ensure it is PSD lower bounded by η when restricted to the bulk.
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Theorem 4.8. Let H be a (∆, D)-pseudorandom near-forest, and J ∈ Rn×n an interaction matrix sup-

ported on H with all interactions in
[
− γ√

D
, γ√

D

]
for some γ ∈ [0, 1). There is a constant c (depending on

γ) such that for any external field h ∈ Rn,

CMLSI(µJ,h) >
1

nec∆
.

To apply Theorems 4.6 and 4.8 for concrete graphs to prove rapid mixing results, we need to
establish that these graphs admit a (∆, D)-decomposition.

For sparse random graphs, we explicitly construct the near-forest decomposition as outlined
in Section 2 and obtain the following explicit bounds on the parameters ∆ and D; the analysis is
given in Section 6.

Theorem 4.9. Let G ∼ SBM(n, d, λ) for any d > 1. There exist universal constants C1 and C2 such

that for any ε > C1 ·
(

C2+log d
d

)1/3
, with high probability over G, we can partition the edge set E(G) as

E(G1) ⊔ E(G2) for graphs G1 and G2 on [n] where:

1. The maximum degree of G1 is at most (1 + ε)d.

2. G2 is a (∆, D)-pseudorandom near-forest with respect to S := V ′(G1) ∩ V ′(G2) for ∆ = o(log n)

and D = (1 + ε)d.

Remark 4.10. We will henceforth refer to G1 as the bulk part in the decomposition, and to G2 as
the near-forest part of the decomposition.

Remark 4.11. The bound on the maximum degree of G1 is important for obtaining a bound on the
spectral norm of the interaction matrix restricted to the edges in G1. The bound on ∆ of o(log n) is
crucial to obtain a bound of n1+o(1) on the mixing time via Theorem 4.8.

4.2 Proving an MLSI for diluted spin glasses

In this section, we apply Theorems 4.6, 4.8 and 4.9 to obtain a lower bound on the MLSI constant
for Glauber dynamics on randomly signed sparse random graphs. We restate the theorem here
for convenience.

Theorem 4.1. Fix d > 1. Let A be the adjacency matrix of a randomly signed graph G ∼ SBM(n, d, λ).

There exists a universal constant β > 0 such that with high probability over the draw of G, for any external

field h, we have CMLSI(µβA/
√

d,h) > n−1−o(1).

Proof. Consider the bulk G1 and near-forest G2 guaranteed by Theorem 4.9, and let JB = β√
d

AG1

and JH = β√
d

AG2 . We will verify the conditions of Theorem 4.6 for some β = Ω(1). We want to
verify that

K · e2γ/
√

D

(1− γ)2 6 1− δ (4)
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Before we dive into the calculations, let us first observe that from Theorem 4.9, we have that
G2 is a (o(log n), d(1 + ε))-pseudorandom near-forest. Thus, the interaction strengths on JH are in[
− β√

d
, β√

d

]
=

[
− β

√
1+ε√

d(1+ε)
, β
√

1+ε√
d(1+ε)

]
. We will thus check (4) for γ = β

√
1 + ε. We have

e2γ/
√

D

(1− γ)2 =
e2β/

√
d

(1− β
√

1 + ε)2
.

Turning now to K, Lemma 3.31 furnishes the bound

−2β(1 + ε)IB � JB � 2β(1 + ε)IB.

For some “small” η > 0 that we fix later, we can define J̃B = JB + (η + 2β(1 + ε))IB without
changing the Ising model to ensure

η IB � J̃B � (η + 4β(1 + ε)) IB.

Thus, we choose K = η + 4β(1 + ε). Hence, the LHS of (4) is at most

K · e2β/
√

d

(1− β
√

1 + ε)2
6 e2β/

√
d · η + 4β(1 + ε)

(1− β(1 + ε))2 .

If we have

β < min

{
1,

1 + 2e2/
√

d −
√

4e4/
√

d + 4e2/
√

d

1 + ε

}
= (3−

√
8)(1− od(1)) ≈ 0.17 · (1− od(1)),

sufficiently small constants η and δ may be chosen so the above is less than 1− δ.
Now, we can apply Theorem 4.6 to show that

Cov(µ(1−t)JB+JH ,h) � C(IB + o(log n) · IH\∂H),

and in turn
exp(−‖ J̃1/2

B ·Cov(µ(1−t)JB+JH ,h) · J̃1/2
B ‖) > Ω(1).

On the other hand, Theorem 4.8 shows that for any h′ we have

CMLSI(µJH ,h′) >
1
n
· e−o(log n) = n−1−o(1).

Finally, applying Theorem 3.20 with M1 = J̃B and M2 = JH allows us to conclude that CMLSI(µβA/
√

d,h) >

n−1−o(1). �

Combined with Fact 3.6, we immediately conclude Theorem 1.1.
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4.3 Covariance bounds on near-forests

In this section we establish Lemma 4.5, which bounds the covariance of an Ising model supported
on a pseudorandom near-forest.

Lemma 4.5. Let H be a (∆, D)-pseudorandom near-forest with respect to S ⊆ V(H). For any Ising model

with interactions J supported on E(H) with values in
[
− γ√

D
, γ√

D

]
, along with an arbitrary external field

h, we have
∥∥Cov

(
µJ,h
)

S

∥∥ 6 e2γ/
√

D

(1− γ)2 .

Additionally,
∥∥Cov

(
µJ,h
)∥∥ 6 e2γ/

√
D

(1− γ)2 ·
∆

D
.

Our strategy to prove Lemma 4.5 is:

1. Reduce to proving the covariance norm bound in the case when H is a tree, the interactions
are nonnegative, and there is no external field.

2. Use an explicit formula for the covariance in tree Ising models with a zero external field, and
bound the spectral norm of that matrix using the trace moment method.

The first ingredient in this reduction is the following simple observation.

Observation 4.12. For any interaction matrix J, external field h, and diagonal matrix of signs D,
we have: ∥∥Cov

(
µJ,h
)∥∥ =

∥∥Cov
(
µDJD,Dh

)∥∥ .

In fact, CMLSI(µJ,h) = CMLSI(µDJD,Dh).

Proof. Note that if σ ∼ µJ,h, the vector Dσ is distributed as µDJD,Dh. Thus, Cov
(
µDJD,Dh

)
=

D · Cov
(
µJ,h
)
· D. The first observation now follows since D is an orthogonal matrix. For the

second part, we have that for any function f : {±1}n → R>0, if we define g : {±1}n → R>0 by
g(σ) = f (Dσ), then the entropies and Dirichlet forms of f and g with respect to µJ,h and µDJD,Dh

(respectively) are equal. �

We now use the above observation to pass from an Ising model on a forest with arbitrary
interactions to one with nonnegative interactions on all but one edge.

Lemma 4.13. For any connected graph H and spanning tree T of H, interaction matrix J supported on H,

and an external field h, there is a diagonal matrix D such that DJD has nonnegative interactions on the

edges of T.

Proof. Arbitrarily root T at a vertex r. Construct D by choosing Dv,v = ∏e′∈P sign(Je′) where
P is the unique path from r to v in T. For any edge uv ∈ E(T), (DJD)u,v = Ju,vDu,uDv,v =

Ju,v sign(Ju,v) > 0. �

We will need the following fact about ferromagnetic Ising models with external fields.
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Lemma 4.14 ([DSS23, Corollary 1.3]). For any ferromagnetic interaction matrix J ∈ R
n×n
>0 and external

field h ∈ Rn, we have for any u, v ∈ [n]:

Cov
(
µJ,h
)

u,v 6 Cov(µJ,0)u,v.

Fact 4.15. For any ferromagnetic interaction matrix J ∈ R
n×n
>0 , external field h ∈ Rn, and u, v ∈ [n],

Cov
(
µJ,h
)

u,v > 0.

Proof. Ferromagnetic Ising models with arbitrary external fields satisfy the hypothesis of the FKG
inequality [Gri06, Theorem 2.16]. The statement then follows from the FKG inequality applied to
the functions σi − E[σi] and σj − E[σj]. �

Corollary 4.16. Let M be a matrix with all non-negative entries. For any ferromagnetic interaction matrix

J ∈ R
n×n
>0 and external field h ∈ Rn, we have

∥∥Cov
(
µJ,h
)
·M
∥∥ 6 ‖Cov(µJ,0) ·M‖ .

In particular, ∥∥Cov(µJ,h)
∥∥ 6 ‖Cov(µJ,0)‖ .

Proof. This is immediate by Fact 4.15 and Lemma 4.14, and the Perron-Frobenius theorem. �

Next, we prove a bound on the operator norm of matrices that encode when two vertices are a
certain distance apart.

Lemma 4.17. Let H be a (∆, D)-pseudorandom tree with respect to S ⊆ V(H). Let ℓ > 1, and set

A(ℓ) = A
(ℓ)
H to be the matrix with (A(ℓ))uv = 1 if vertices u and v are distance exactly ℓ apart, and 0

otherwise. Also let A = A(1) be the adjacency matrix of H. Then,

∥∥∥A(ℓ)
∥∥∥ 6 Dℓ/2 · (ℓ+ 1) ·

(
∆

D

)

∥∥∥A
(ℓ)
S

∥∥∥ 6 Dℓ/2 · (ℓ+ 1)
∥∥∥A(ℓ)A

∥∥∥ 6 Dℓ/2 · (ℓ+ 1) ·
(

2∆√
D

)
.

Proof. We shall bound these operator norms using the trace moment method. Let R be S or V(H),

so we are interested in bounding
∥∥∥A

(ℓ)
R

∥∥∥. Let us defineWℓ,m,R to be the set of all closed walks in H

of length ℓ ·m that can be expressed as the concatenation of m nonbacktracking walks8 between a
pair of vertices in R of length-ℓ each. Henceforth, we refer to each of these length-ℓ nonbacktrack-
ing walks as a linkage. For any even integer m > 0, we have:

∥∥∥A
(ℓ)
R

∥∥∥
m
6 Tr

((
A
(ℓ)
R

)m)
= |Wℓ,m,R|.

For each vertex r ∈ R, we count the number of walks that start and end at r. The t-th linkage,
if started at a vertex v, is composed of st steps “upwards” away from v, followed by ℓ− st steps

8 In a tree, nonbacktracking walks are equivalent to shortest paths.
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“downwards”. Since H is a tree, and the walks we are counting start and end at the same vertex,
exactly half of the steps in any walk are upwards, and exactly half are downwards, that is,

m

∑
t=1

st =
m

∑
t=1

ℓ− st = ℓ ·m/2 .

Given st, the number of choices for the t-th linkage is at most Dℓ−st−1 · ∆R where ∆R is D when
R = S and ∆ when R = V(H).

|Wℓ,m,R| 6 |R| · ∑
s1 ,...,sm

m

∏
t=1

Dℓ−st · ∆R

D
= |R| · ∑

s1 ,...,sm

Dℓ·m/2 ·
(

∆R

D

)m

6 |R| ·Dℓ·m/2 ·
(

∆R

D

)m

· (ℓ+ 1)m .

Thus, taking m→ ∞ so |R|1/m → 1, we get that

∥∥∥A
(ℓ)
R

∥∥∥ 6 Dℓ/2 ·
(

∆R

D

)
· (ℓ+ 1).

The first two inequalities follow by plugging in ∆S = D and ∆V(H) = ∆.

The proof of the third inequality is very similar. The main difference is that each of the linkages
is not a length-ℓ nonbacktracking walk, but instead a length-(ℓ + 1) walk, of which the first ℓ
steps are non-backtracking. That is, the t-th “linkage” is now composed of st steps upwards,
followed by ℓ − st steps downwards, followed by a single step upwards or downwards. If the
final step is downwards, this is just st steps upwards then ℓ− st + 1 steps downwards. If the final
step is upwards, then this can be thought of as changing st+1 to st+1 + 1. We encode this with
εt, ε′t ∈ {0, 1}, wherein the t-th linkage consists of st + εt steps upwards followed by ℓ − st + ε′t
steps downwards. Since ε′t + εt+1 = 1, the sequence (ε′t) is determined by (εt), and ∑ εt + ε′t = m.
Consequently,

∑
t

st + εt = ∑
t

ℓ− st + ε′t =
(ℓ+ 1)m

2
.

SettingW ′
ℓ,m as the set of walks enumerated by this trace moment method calculation,9 we have

|W ′ℓ,m| 6 V(H) · ∑
s1,...,sm,ε1,...,εm

m

∏
t=1

Dℓ−st+ε′t · ∆

D

= V(H) · ∑
s1,...,sm,ε1,...,εm

D(ℓ+1)m/2 ·
(

∆

D

)m

6 V(H) · (ℓ+ 1)m · 2m · D(ℓ+1)m/2 ·
(

∆

D

)m

.

Again, taking m→ ∞ so V(H)1/m → 1, we get that
∥∥∥A(ℓ)A

∥∥∥ 6 D(ℓ+1)/2 · ∆

D
· 2(ℓ+ 1)

as claimed. �

9 In this case, R is fixed to be V(H).
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As our final ingredient, we now prove a version of Lemma 4.5 for trees with positive interac-
tions and no external field.

Lemma 4.18. Let H be a (∆, D)-pseudorandom tree with respect to S ⊆ V(H). Let A be the adjacency

matrix of H. If J is a collection of interactions supported on the edges of H with values in
[
0, γ√

D

]
for some

γ ∈ [0, 1), then

∥∥Cov(µJ,0)S

∥∥ 6 1
(1− γ)2

‖Cov(µJ,0)‖ 6
1

(1− γ)2 ·
∆

D

‖Cov (µJ,0) · A‖ 6
1

(1− γ)2 ·
2∆√

D
.

While only the first two of these bounds are needed in the current section, the third will come in
handy in Section 4.5 when we show an MLSI for the Ising model obtained after running stochastic
localization, which is supported on a pseudorandom near-forest.

Proof. We start with the first two bounds, using the following explicit formula for the covariance
matrix.

Cov(µJ,0) = ∑
ℓ>0

X(ℓ),

where X
(ℓ)
i,j is 0 if there is no length-ℓ path between i and j in H, and is otherwise equal to

∏e∈P(i,j) tanh(Je) where P(i, j) is the unique such path. For R ⊆ V(H), will use the bound:

∥∥Cov(µJ,0)R

∥∥ 6 ∑
ℓ>0

∥∥∥X
(ℓ)
R

∥∥∥. (5)

Consider the matrix Y(ℓ) obtained by replacing each nonzero entry of X(ℓ) with
(

γ√
D

)ℓ
. Since the

interactions are all nonnegative, X(ℓ) is a nonnegative matrix, and Y(ℓ) is entrywise at least X(ℓ)

since tanh(x) 6 x for x > 0. Consequently,
∥∥∥X

(ℓ)
R

∥∥∥ 6
∥∥∥Y

(ℓ)
R

∥∥∥. (6)

Lemma 4.17 now implies that

∥∥∥Y
(ℓ)
R

∥∥∥ 6
(

γ√
D

)ℓ

· Dℓ/2 · (ℓ+ 1) ·
(

∆R

D

)
= γℓ · (ℓ+ 1) ·

(
∆R

D

)
.

Therefore,
∥∥Cov(µJ,0)R

∥∥ 6 ∆R

D
·∑
ℓ>0

(ℓ+ 1)γℓ 6
1

(1− γ)2 ·
∆R

D
,

which recovers the desired bounds by plugging in ∆R = ∆ for R = V(H), and ∆R = D for R = S.
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For the third inequality, we again have

Cov (µJ,0) · A = ∑
ℓ>0

∥∥∥X(ℓ) · A
∥∥∥.

Again, the non-negativity of X(ℓ) and A implies that
∥∥∥X(ℓ) · A

∥∥∥ 6
∥∥∥Y(ℓ) · A

∥∥∥.

The third bound in Lemma 4.17 now implies that

∥∥∥Y(ℓ) · A
∥∥∥ 6

(
γ√
D

)ℓ

D(ℓ+1)/2 · (ℓ+ 1) · 2 ·
(

∆

D

)

= γℓ · (ℓ+ 1) · 2 · ∆√
D

.

Therefore,

‖Cov (µJ,0) · A‖ 6 ∑
ℓ>0

γℓ · (ℓ+ 1) · 2 · ∆√
D

6
1

(1− γ)2 ·
2∆√

D
,

completing the proof. �

We are now ready to prove Lemma 4.5.

Proof of Lemma 4.5. The matrix Cov
(
µJ,h
)

is a block diagonal matrix with a block per connected
component of H, and so without loss of generality, it suffices to achieve a bound on the spectral
norm in the case where H is a connected near-forest (a near-tree) — a tree with possibly one extra
edge inserted. If H has tree-excess 0, the desideratum is trivial by Fact 4.15 and Lemmas 4.14
and 4.18. Hence, let us assume that H has tree-excess 1.

Let T be an arbitrary ((∆, D)-pseudorandom) spanning tree of H, such that the edge set of H

consists of those in T along with an extra edge ij. By Observation 4.12 and Lemma 4.13, it suffices
to consider the case where J has nonnegative interactions on all edges in T, and possibly a negative
interaction on ij. Also let J′ be the interaction matrix which is identical to J except that J′ij = J′ji = 0.

Note that
∣∣σ⊤ Jσ− σ⊤ J′σ

∣∣ 6 γ√
D

for any σ ∈ {±1}n . Let R be equal to S or V(H), with ∆S = D

and ∆V(H) = ∆, and set v to be a unit vector that witnesses the operator norm of Cov(µJ,h)R. Then,

‖Cov
(
µJ,h
)

R
‖ = v⊤Cov

(
µJ,h
)

v

= Varσ∼µ J,h(〈v, σ〉) (Observation 3.9)

6 e2γ/
√

D ·Varσ∼µ J ′,h (〈v, σ〉) (Lemma 3.8)

6 e2γ/
√

D · ‖Cov
(
µJ′,h

)
R
‖ (Observation 3.9)

6 e2γ/
√

D · ‖Cov
(
µJ′,0

)
R
‖ (Corollary 4.16)

6
e2γ/

√
D

(1− γ)2 ·
∆R

D
(Lemma 4.18)

as desired. �
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4.4 Entropy conservation for near-forest decompositions

In this section, we shall bound the covariance matrix of the distribution obtained along the localiza-
tion path for Ising models supported on a graph which admits a (∆, D)-decomposition, towards
satisfying the first requirement for applying Theorem 3.20.

Let us now prove the main result of this section, which is restated here for convenience.

Theorem 4.6. Let (B, H) be a (∆, D)-decomposition of G, and let JB, JH ∈ Rn×n be interaction matrices

whose off-diagonal entries are supported on E(B) and E(H), respectively. Suppose that there are constants

η, K ∈ (0, 1) such that η IB � JB � KIB, and that all interactions in JH are in
[
− γ√

D
, γ√

D

]
for some

γ ∈ [0, 1). Finally, suppose that

K · e2γ/
√

D

(1− γ)2 6 1− δ

for a positive constant δ > 0. There exists a positive constant C not depending on ∆ such that for any

0 6 t 6 1 and external field h ∈ Rn,

Cov(µ(1−t)JB+JH ,h) � C(IB + ∆IH\∂H).

Proof. Let ρ > 0 be a positive constant that we fix later. We use Lemma 3.14, with the instantiation

M1 = (1− t)JB +
t

2
IB +

ρ

∆
IH\∂H and M2 = JH.

Since η IB � (1− t)JB + t
2 IB � KIB, we can reduce to the case where t = 0. Now, set δ′ = δ/2. For

t = 0 and an arbitrary external field h′ , we have

M1 ·Cov(µM2,h′) ·M1 =
(

JB +
ρ

∆
IH\∂H

)
·Cov(µM2,h′) ·

(
JB +

ρ

∆
IH\∂H

)

�
(
1 + δ′

)
· JB ·Cov(µM2,h′) · JB +

(
1 +

1
δ′

)
· ρ2

∆2 IH\∂H ·Cov(µM2,h′) · IH\∂H

=
(
1 + δ′

)
JB ·Cov(µM2,h′) · JB +

(
1 +

1
δ′

)
· ρ2

∆2 Cov(µM2,h′)H\∂H.

Above, the inequality follows from the observation that for symmetric matrices A1, A2, a positive
semidefinite matrix M, and any α > 0,

(A1 + A2)M(A1 + A2) � (1 + α) A1MA1 +

(
1 +

1
α

)
A2MA2.

We now make the crucial observation that we can restrict the covariance to the bulk in the first
term, that is,

JB ·Cov(µM2,h′) · JB = JB ·Cov(µM2,h′)B · JB.

Indeed, observe that (JB)ij must be zero for any i, j where i or j lies in H \ ∂H, the interior of the
near-forest. In particular, any such i or j is not in the bulk.

We are interested in showing the positive definiteness of

(
JB − (1 + δ′) · JB · Cov(µM2,h′)B · JB

)
+

ρ

∆

(
IH\∂H −

(
1 +

1
δ′

)
· ρ

∆
·Cov(µM2,h′)H\∂H

)
.
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Note that had we not added the extra (ρ/∆)IH when defining M1, the second term above would
be absent, making the matrix entries zero on the rows and columns V ′(H) \ V ′(B), which pre-
cludes a meaningful lower bound by a full-rank matrix.

By assumption, M2 is supported on a (∆, D)-pseudorandom near-forest, and the interaction

strengths are in
[
− γ√

D
, γ√

D

]
. Furthermore, since γ < 1, the first part of Lemma 4.5 yields

∥∥Cov (µM2,h′)B

∥∥ 6 e2γ/
√

D

(1− γ)2 =: f (γ).

Consequently, Fact 3.15 and the assumption on γ shows that

JB −
(
1 + δ′

)
· JB ·Cov(µM2,h′) · JB � η ·

(
1−

(
1 + δ′

)
K f (γ)

)
IB

� η · δ′ · IB.

Similarly, the second part of Lemma 4.5 shows that

∥∥Cov(µM2,h′)H\∂H

∥∥ 6 ‖Cov(µM2,h′)H‖ 6
∆

D
· f (γ).

Selecting ρ := D
2 f (γ)·(1+ 1

δ′ )
, we see that

IH\∂H −
(

1 +
1
δ′

)
· ρ

∆
· Cov(µM2,h′)H\∂H �

1
2

IH\∂H.

Thus, we have that

M1 −M1 ·Cov(µM2,h′) ·M1 � ηδ′ · IB +
ρ

2∆
· IH\∂H

� c

(
IB +

1
∆

IH\∂H

)
,

for some universal constant c (that does not depend on ∆). The claim follows by applying Lemma 3.14
and setting C = c−1. �

4.5 MLSI for Ising models on pseudorandom near-forests

Our goal in this section will be to prove a modified log-Sobolev inequality for the Ising model
obtained after stochastic localization of the original Ising model, which we recall for convenience.

Theorem 4.8. Let H be a (∆, D)-pseudorandom near-forest, and J ∈ Rn×n an interaction matrix sup-

ported on H with all interactions in
[
− γ√

D
, γ√

D

]
for some γ ∈ [0, 1). There is a constant c (depending on

γ) such that for any external field h ∈ Rn,

CMLSI(µJ,h) >
1

nec∆
.
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Fact 3.7 implies that it suffices to prove an MLSI of 1
|C|e∆ for each component C of this near-

forest, a “near-tree”. By a simple comparison argument, it in fact suffices to prove an MLSI for
pseudorandom trees with ferromagnetic interactions — we shall elaborate on this in the proof.

Lemma 4.19. Let H be a (∆, D)-pseudorandom tree on n vertices, and J an interaction matrix supported

on H with all interactions in
[
0, γ√

D

]
for some γ ∈ [0, 1). There is a constant c (depending on γ) such that

for any external field h ∈ Rn,

CMLSI(µJ,h) >
1

nec∆
.

Remark 4.20. In fact, our proof works in a slightly broader range of the interactions, only requiring

that for some γ ∈ [0, 1), all the interactions are bounded (in absolute value) by tanh−1
(

γ√
D

)
. We

conjecture that this is optimal.

In this section, we only provide a proof of the above in the setting where all the nonzero
interactions are exactly equal to γ√

D
A. The more general proof is provided in Appendix A.

Proof. Let H be a tree as in the lemma statement, A its adjacency matrix, and J = γ√
D

the corre-
sponding interaction matrix. Also set DH be the (diagonal) degree matrix of H.

To prove this, we shall once again use Lemma 3.18. The control matrix will be of the form
C = (J + E)1/2 � 0 for a non-negative diagonal matrix E. Due to the ferromagneticity of the
system, C2 has all non-negative entries. At time 0 6 t 6 1, Jt will have the form (1− t)J − tE – in
particular, at time t = 1, µt is almost surely a product distribution so CMLSI(µt) = Ω(1/n). In the
context of Lemma 3.18, our goal is to bound, for all external fields h ∈ Rn, the operator norm

∥∥∥C ·Cov
(

µ(1−t)J,h

)
· C
∥∥∥ 6

∥∥∥Cov
(

µ(1−t)J,h

)
· C2

∥∥∥. (7)

By Corollary 4.16 (using the matrix C2), it suffices to bound the above for h = 0. For h = 0, we
recall that if A(ℓ) is the matrix where the uv-th entry is 1 if u and v are distance exactly ℓ apart and
0 otherwise,

Cov
(

µ(1−t)J,0

)
6 ∑

ℓ>0

(
γ√
D

)ℓ

A(ℓ)

in the sense that the matrix on the right is entry-wise at least the matrix on the left. In particular,

∥∥∥Cov
(

µ(1−t)J,h

)
· C2

∥∥∥ 6
∥∥∥∥∥∑
ℓ>0

(
γ√
D

)ℓ

A(ℓ) · C2

∥∥∥∥∥. (8)

For ease of notation, denote s0 = γ√
D

. Recalling Definition 3.22, set

BH(s) =
(DH − I)s2 − As + I

1− s2 ,

so by Fact 3.25,

BH (s0)
−1 = ∑

ℓ>0

(
γ√
D

)ℓ

A(ℓ).
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We choose

C =
(
(1− s2

0) · BH (−s0)
)1/2

. (9)

Now,

∑
ℓ>0

(
γ√
D

)ℓ

A(ℓ) · C2 = (1− s2
0) · BH (s0)

−1 · BH (−s0)

= (1− s2
0) · BH(s0)

−1 ·
(

BH(s0) +
2s0

1− s2
0
· A
)

= (1− s2
0) · I + 2s0 · BH(s0)

−1 · A.

Using the third bound in Lemma 4.18 with (7) and (8), we get the desired claim that
∥∥∥C · Cov

(
µ(1−t)J,h

)
· C
∥∥∥ 6

∥∥∥(1− s2
0) · I + 2s0 · BH(s0)

−1 · A
∥∥∥

6 1 +
8

(1− γ)2 ·
∆

D
.

Given that the product measure obtained at time 1 satisfies an MLSI with constant 1/n, it follows
by Lemma 3.18 and Theorem 3.19 that

CMLSI(µJ,h) >
1
n
· exp

(
−
∫ 1

0
sup
h∈Rn

∥∥∥C ·Cov
(

µ(1−t)J,h

)
· C
∥∥∥ dt

)

>
1
n
· exp

(
−
(

1 +
8

(1− γ)2 ·
∆

D

))
=

1
neO(∆)

as desired. �

Before moving on, we make a handful of remarks about the above proof, specifically the choice
of control matrix in (9):

• The choice is well-defined due to Corollary 3.24, which implies that BH (−s0) ≻ 0.

• It is important that we provide a negative argument to BH so that C2 is equal to some positive
scaling of the interaction matrix (which in turn is a scaling of the adjacency matrix because
all the nonzero interactions are equal) plus a diagonal matrix – this is required for stochastic
localization to eventually kill the interaction matrix. Note that as a consequence of this, C2

has all non-negative entries as desired.

• It is also important that the precise negative argument we provide is equal to −s0 in order
to be able to express C2 as BH(s0) plus some scaling of the adjacency matrix – otherwise,
there would also be a term corresponding to the degree matrix in the definition of the Bethe
Hessian. This would cause issues in the methods we use to bound the operator norm.

The above lemma easily yields a similar result even when interactions are allowed to be nega-
tive, as long as their absolute values satisfy the same bound.
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Corollary 4.21. Let H be a (∆, D)-pseudorandom tree on n vertices, and J an interaction matrix supported

on H with all interactions in
[
− γ√

D
, γ√

D

]
. For any external field h,

CMLSI(µJ,h) >
1

neO(∆)
.

Proof. This immediately follows using Lemma 4.19 in conjunction with Observation 4.12 and Lemma 4.13,
since H is a tree. �

Given the above, Theorem 4.8 is near-immediate using the Holley-Stroock perturbation princi-
ple Lemma 3.8.

Proof of Theorem 4.8. As remarked earlier, by Fact 3.7, it suffices to prove an MLSI of Ω
(

1
|C|e∆

)
for

each component C of H, which is a near-tree. Let µ be the corresponding Ising model on this
component, with interaction matrix J|C and external field h|C. Let T be an arbitrary spanning tree
of C (which must also be (∆, D)-pseudorandom), and ν the Ising model supported on T with the
same interaction strengths as in µ. Observe that because C has at most one edge in addition to
those in T, and the interaction strengths are bounded by γ√

D
in absolute value, we have

e
− 2γ√

D 6
µ(σ)

ν(σ)
6 e

2γ√
D .

Furthermore, ν satisfies an MLSI by Corollary 4.21, so Lemma 3.8 completes the proof. �

5 Glauber dynamics for centered stochastic block models

In this section, we establish the following result proving an MLSI for Ising models where the
interactions are proportional to the centered adjacency matrix AG for a sparse random graph G.

Theorem 5.1. Fix constants d > 1, λ > 0. There exists a universal constant β > 0 such that the following

is true. Let AG := AG − E[AG|σ] be the centered adjacency matrix of G ∼ SBM(n, d, λ). With high

probability over the draw of G, for any external field h, CMLSI(µ(β/
√

d)AG ,h) > n−1−od(1).

Given this, Fact 3.6 immediately yields Theorem 1.3.
Due to the presence of the weak (but nonzero) centering interactions, the analysis turns out to

be significantly more delicate than that in Section 4. To prove an MLSI, one still uses Theorem 3.20,
where the initial localization scheme anneals away the bulk interactions. However, the annealed
Ising model now has small but nonzero interactions that are supported beyond the near forest H.

Thus, we need to prove analogous versions of Theorems 4.6 and 4.8 for entropy conservation
and an MLSI for the annealed model. We state the results below and prove them in subsequent
sections.

Theorem 5.2. Let G ∼ SBM(n, d, λ) for any constant d > 1, and let B = G1 and H = G2 be the

bulk component and near-forest component respectively that are guaranteed by Theorem 4.9. There exists a

constant β∗ > 0 such that with high probability over the draw of G and any external field h, the following
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holds for all β < β∗. Set JB = β√
d
(AG1 − E[A|σ]G1 ) and JR = β√

d
AG − JB. There exists a positive

constant C such that for any 0 6 t 6 1 and external field h ∈ Rn,

Cov(µ(1−t)JB+JR,h) � C(IB + ∆IH\∂H).

Theorem 5.3. Let JR ∈ Rn×n be the interaction matrix for the perturbed near-forest as defined in Theorem 5.2.

Then, for any external field h,

CMLSI(µJR,h) >
1

n1+od(1)
.

Given the above lemmas, the proof of Theorem 5.1 is exactly like that of Theorem 4.1.

Proof of Theorem 5.1. By Theorem 5.2, for sufficiently low inverse temperature β, it holds with high
probability that all 0 6 t 6 1 and external fields h ∈ Rn,

Cov(µ(1−t)JB+JR,h) � C(IB + o(log n) · IH\∂H).

With J̃B = JB + 2β(1 + ε)IB, Lemma 3.29 implies that

0 � J̃B � 4β(1 + ε)IB.

Thus,
exp

(
−
∥∥∥ J̃1/2

B · Cov
(

µ(1−t)JB+JR,h

)
· J̃1/2

B

∥∥∥
)
= Ω(1).

On the other hand, Theorem 5.3 says that for all h,

CMLSI
(
µJR,h

)
>

1
n1+od(1)

.

Theorem 3.20 completes the proof. �

5.1 Technical overview for centered stochastic block models

We now elucidate the high-level strategy for proving Theorems 5.2 and 5.3. The annealed Ising
model is µJR,h for some external field h; here JR stands for the remainder of the interactions outside
of the bulk. We will refer to JR as the perturbed near-forest interactions, and µJR,h as the perturbed
near-forest Ising model. Let us introduce some notation to separate out the different pieces of JR.

Let H′ = V ′(H) denote the set of non-isolated vertices in H, and let B′ := V(B) \H′ denote the
set of vertices on the interior of the bulk (we slightly abuse notation here for notational simplicity).
Furthermore, for any two matrices M, N ×Rn×n, the Hadamard product M ◦ N ∈ Rn×n denotes
the entrywise product of M and N.

We can decompose JR = MH + EH + E, with the latter defined explicitly as

JR =
β√
d
(AH ◦ AH)

︸ ︷︷ ︸
MH

− β√
d

E[A|σ]H ◦ (1H′1
⊤
H′ − AH)

︸ ︷︷ ︸
EH

− β√
d
(E[A|σ]H′ ,B′ + E[A|σ]B′ ,H′)

︸ ︷︷ ︸
E

, (10)

where

E[A|σ]H′ ,B′ =
d

n

(
1H′1

⊤
B′ +

λ√
d

σH′σ
⊤
B′

)
= E[A|σ]⊤B′ ,H′ .

When G is a sparse Erdős-Rényi graph (instead of the more general stochastic block model),
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Localization

Lemma 5.17

HS transform

Lemma 3.14

Figure 3: A flow chart outlining our proof of an MLSI for the centered adjacency matrix. The main
difference in the structure of the proof compared to Figure 2 are the three boxes on the bottom
right, which handle the interactions present on nonedges of the graph due to centering.

•
√

d
β ·MH is equal to

(
1− d

n

)
on the edges within the near-forest H.

•
√

d
β · EH is equal to d

n on all the non-edges in the near-forest H.

•
√

d
β · E is equal to d

n on all pairs between the near-forest H and the interior of the bulk B′.

In particular, JR is equal to zero on the B′ × B′ pairs.
Note that if only MH were present, then we would be back in the setting of Lemma 4.5. Ac-

cordingly, we shall show that the perturbation terms E and EH do not affect the covariances or
MLSIs by too much.

Crucially, observe that the perturbation interactions are O
(

d
n

)
, and nonzero if and only if the

edge is incident to a vertex of H. In particular, for any isolated vertex, corresponding to a vertex
in B′, the perturbation vanishes. Moreover, we show that the size of each connected component
is o(n), which means that the perturbation interactions are genuinely small relative to the scale of
connected components. This motivates introducing a Markov chain whose states correspond to
the nontrivial connected components Ci of H with size strictly greater than 1.

Since the perturbation interactions are small, we can show that the spectral norm version of
Dobrushin’s condition [Hay06] is satisfied for this Markov chain. In the end, this allows us to pass
to the simpler Ising model supported on a single connected component Ci, where we can apply
our results from Section 4.1.

As in the technical overview, we outline the structure of our proof in Figure 3. The new ele-
ments in the proof compared to the simpler spin glass setting are on the bottom right of the chart
— a bound on a certain Dobrushin influence matrix is the primary new tool that is required.

To rigorously execute the above plan, we will need some additional machinery. We introduce
these tools in Section 5.3 to prove Theorem 5.3. Using the same tools, we then prove Theorem 5.2
in Section 5.4.
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5.2 A crash course on spectral independence

We first introduce some additional tools that we use to establish the MLSI for the perturbed near-
forest. These ingredients are stated somewhat abstractly, but we will next point out what the
definitions correspond to in our application and tie it all together when we apply them to sparse
random graphs.

Influence matrices and spectral independence. We work in the following general setup. Let ν be
a distribution on a generic product domain P = P1 × · · · × Pk. A key object of interest associated
to ν is its Dobrushin influence matrix, which is very standard in the literature on mixing times of
Glauber dynamics.

Definition 5.4 (Dobrushin Influence matrix [Dob68, BD97]). The Dobrushin influence matrix of ν,
denotedRν, is a k× k matrix where:

Rν[i, j] := max
σ−i,τ−i

that agree on coordinates
[k]\{i,j}

dTV(ν|σ−i, ν|τ−i) .

The following was proved in [AJK+24], with a slightly weaker version presented in [Liu21,
BCC+22].

Theorem 5.5 ([AJK+24, Theorem 43]). If ‖Rν‖ 6 δ < 1, then ν is
( 1

1−δ

)
-spectrally independent.

In order to prove the MLSI for the perturbed Ising model, we will need to show that the block
Glauber dynamics on connected components introduced earlier has entropy factorization. To this
end, we will need the notion of a tilt.

Definition 5.6 (Tilts). A tilt λ = (λ1, . . . , λk) is a collection of functions λi : Pi → R>0 for i ∈ [k],
and the tilted distribution ν ∗ λ is:

(ν ∗ λ)(x) ∝ ν(x) ·
k

∏
i=1

λi(xi) .

The following is a consequence of [AJK+21a, Theorem 4 and Theorem 5] and [AASV21, Propo-
sition 20 and Remark 70].

Lemma 5.7. Suppose for every tilt λ, the distribution (ν ∗λ) is γ-spectrally independent for some constant

γ > 0. Then ν satisfies the following conservation of entropy property. For any function f : P → R>0 ,

Ei∼[k]Ex−i∼ν−i
Entνi

[ f ] >
1
kγ
· Entν[ f ],

where νi is the conditional marginal of site i conditioned on all other sites.

The following is an immediate corollary of Theorem 5.5 and Lemma 5.7.

Corollary 5.8. Suppose for every tilt λ, the influence matrix satisfies:

‖Rν∗λ‖ 6 δ < 1.

Then for every function f : P → R>0 ,

Ei∼[k]Ex−i∼ν−i
Entνi

[ f ] >
1

k
1

1−δ

· Entν[ f ] .
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5.3 MLSI for Ising models on perturbed near-forests

We now establish an MLSI for perturbed Ising models which satisfy certain assumptions (Assumption 5.9).
Following this, we verify these assumptions for our concrete setting (Lemma 5.17). For conve-
nience, we restate our goal.

Theorem 5.3. Let JR ∈ Rn×n be the interaction matrix for the perturbed near-forest as defined in Theorem 5.2.

Then, for any external field h,

CMLSI(µJR,h) >
1

n1+od(1)
.

Many of the tools introduced in this subsection are reused in the next subsection, where we
bound the covariance of the Ising models obtained along the localization path.

MLSI for perturbed Ising models. Consider a collection of connected components C1, . . . , Cm,
as well as a collection of isolated vertices v1, . . . , vm′ , and set n = ∑i|Ci|+ m′. We study a “base”
Ising model with interaction matrix J ∈ Rn×n supported on the edges of the (Ci) and diagonal,
along with an arbitrary external field h ∈ Rn.

A key assumption we make is the following.

Assumption 5.9. For each Ci, and for any external field h, the Ising model µJCi
,h on {±1}V(Ci) sat-

isfies an MLSI with constant ζ. Additionally, suppose that η, δ, θ > 0 are small enough parameters
(which can be shrinking with n) such that:

max
i
|Ci| 6 nθ

η ·∑
i

|Ci|2 < δ

2 · η2 ·m′ ·∑
i

|Ci|2 < δ .

We will be interested in perturbed Ising models of the form J + E, where every entry of E is at
most η, and Eij = 0 if both i and j are among the (vk)16k6m′ .

To keep notation succinct, we use µ as shorthand for the Gibbs distribution of the perturbed
Ising model µJ+E,h.

In the setting of Corollary 5.8, each Pi corresponds to the collection of spins on the vertices of
one of the connected components Cj or the spin on one of the isolated vertices vj. We index our
influence matrix by C1, . . . , Cm, v1, . . . , vm′ . The following is a consequence of a straightforward
calculation.

Observation 5.10. For any tilt λ, the influence matrix satisfies:

Rµ∗λ[Ci, Cj] 6 1− exp(−η|Ci| · |Cj|)
Rµ∗λ[Ci, vj] 6 1− exp(−η|Ci|)
Rµ∗λ[vi, Cj] 6 1− exp(−η|Cj|)
Rµ∗λ[vi, vj] = 0 .
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Using exp(x) > 1 + x, we get the following as a corollary.

Corollary 5.11. For any tilt λ,

∥∥Rµ∗λ
∥∥

F
6

√√√√η2 ·
(

∑
i

|Ci|2
)2

+ 2 · η2 ·m′ ·∑
i

|Ci|2 .

Hence, under Assumption 5.9,
∥∥Rµ∗λ

∥∥
op 6 δ +

√
δ 6 2

√
δ.

Thus, by Corollary 5.8, we get the following.

Corollary 5.12. Let k = m + m′. Under Assumption 5.9, the perturbed Ising model µ satisfies the follow-

ing entropy conservation bound.

Eb∼{C1,...,Cm}∪{v1,...,vm′}Ex−b∼µ−b
Entµb

[ f ] >
1

k
1

1−2
√

δ

· Entµ[ f ] .

Next, we observe that based on the assumptions on the parameters, for any individual con-
nected component Ci, any Ising model with the perturbed interaction matrix restricted to Ci satis-
fies an MLSI.

Lemma 5.13. Under Assumption 5.9, for any external field h, we have

exp
(
−O

(
η · n2θ

))
6

µ(J+E)Ci
,h(x)

µJCi
,h(x)

6 exp
(

O
(

η · n2θ
))

.

Consequently, the Glauber dynamics on µ(J+E)Ci
,h satisfies

CMLSI(µ(J+E)Ci
,h) > exp

(
−O

(
η · n2θ

))
· ζ.

Proof. For any x ∈ {±1}V(Ci), the first bound easily follows from the bound on |Ci| and the entries
of E. The second statement then follows from Lemma 3.8. �

We are now ready to prove the MLSI for Glauber dynamics for µ. Recall that n = ∑i |Ci|+ m′,
so µ is a distribution on {±1}n.

Lemma 5.14. Under Assumption 5.9, Glauber dynamics on µ satisfies

CMLSI(µ) > exp
(
−O

(
η · n2θ

))
· ζ

n
1

1−2
√

δ

·
(

1− δ

ηn

)
.

Proof. We can sample a uniform index i from [n] by the following two-step process. First, sample
b from a certain distribution D on {C1, . . . , Cm} ∪ {v1, . . . , vm′}, and then choose i as a uniformly
random vertex from b. In particular, the distribution D is defined as:

Pr[b = vi] =
1
n

Pr[b = Ci] =
|Ci|
n

.
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For any b, and any pinning x−b to the spins outside of b, the resulting conditional distribution on
xb is an Ising model with interaction matrix (J + E)b and some external field h(x−b) depending on
the pinning. This lets us write the distribution µ as a mixture:

µ = Eb∼DEx−b∼µ−b
µ(J+E)b,h(x−b) .

We can succinctly express the mixture distribution as ρ, the pair (b, x−b) as z, and the resulting
Ising model as πz. To prove the MLSI, we write the following chain of inequalities. For any
function f : {±1}n → R>0:

Eµ( f , log f ) > Ez∼ρEπz( f , log f )

> exp
(
−O

(
η · n2θ

))
· ζ · Ez∼ρ Entπz [ f ] (MLSI for πz, Lemma 5.13)

= exp
(
−O

(
η · n2θ

))
· ζ · Eb∼DEx−b∼µ−b

Entπ(b,x−b)
[ f ]

> exp
(
−O

(
η · n2θ

))
· ζ ·

(
1− δ

ηn

)
· Eb∼{C1,...,Cm}∪{v1,...,vm′}Ex−b∼µ−b

Entπ(b,x−b)
[ f ]

> exp
(
−O

(
η · n2θ

))
· ζ

n
1

1−2
√

δ

·
(

1− δ

ηn

)
· Entµ[ f ], (Corollary 5.12)

where in the fourth line we move from D to the uniform distribution over the parts using the fact
that for any component Ci,

|Ci|/n

1/(m + m′)
>

m

n
>

n−∑i:|Ci|>1 |Ci|
n

> 1− δ

ηn
.

This completes the proof. �

Component sizes of sparse random graphs. To prove Theorem 5.3 and obtain explicit parameter
dependencies, we will need to verify Assumption 5.9 for sparse random graphs. The following
results give finer control on the near-forest decomposition; we defer their proofs to Section 6.

Lemma 5.15. Let G ∼ SBM(n, d, λ) for any constant d > 1. Let G2 be the near-forest component

guaranteed by Theorem 4.9, and write G2 as the union of connected components G2 =
⊔

i Ci.

For ε > Ω(log d/d)1/3, the following holds with α := exp(−cε3d) for some absolute constant c > 0.

With probability 1− o(1) over G,

∑
i:|Ci|>1

|Ci|2 6 αn.

Lemma 5.16. With probability 1− o(1), the maximum size of a connected component is at most n
c log(d(1+ε))

ε3d

for some absolute constant c > 0.

Let us put everything together and prove that Assumption 5.9 holds for sparse random graphs;
this will also be required later when we bound the covariance of the Ising models obtained along
the localization path.
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Lemma 5.17. Let G ∼ SBM(n, d, λ). Then µJR
satisfies Assumption 5.9 with m′ 6 n and

(η, δ, θ, ζ) ← ( 2d
n , 8αd2, c log(d(1+ε))

ε3d
, n−od(1)),

where c is a positive universal constant. Consequently, for ε = Ω(log d/d)1/3, Glauber dynamics on µJR

satisfies

CMLSI(µJR
) >

1
n1+od(1)

.

Proof. Let cc(H) denote the connected components of H, and write H = ⊔C∈cc(H)C. Let S = {C ∈
cc(H) : |C| > 1} be the nontrivial connected components, and T = {C ∈ cc(H) : |C| = 1} be
the isolated vertices. In our setup, the error EH + E has entries whose magnitude are bounded by
d
n

(
1 + |λ|√

d

)
6 2d

n . On the other hand, Lemma 5.15 implies that |S| 6 αn, where α = exp(−cε3d),

and we trivially have |T | 6 n.
Hence, we will verify the conditions for η = 2d

n and m′ = n. Plugging these parameters in, we
need δ to satisfy

2d

n
· ∑

C∈S
|C|2 < δ

2 ·
(

2d

n

)2

· n · ∑
C∈S
|C|2 < δ.

Applying Lemma 5.15 again, we see that the above inequalities are satisfied for δ > 8αd2. Hence,
we pick δ = 8αd2, and we easily compute 1− δ

ηn = 1− 4αd = 1− od(1).
Turning now to θ, we need θ to satisfy

max
C∈S
|C| 6 nθ.

Lemma 5.16 implies that we can take θ = c log(d(1+ε))
ε3d

= od(1) for some positive constant c. Next,
by the proof of Theorem 4.8, we can take ζ = n−θ−on(1) = n−od(1) (observe that we get n−θ−o(1)

instead of n−1−o(1) here because we are considering the Ising model over {±1}V(Ci) instead of
{±1}n).

Finally, plugging these parameters into Lemma 5.14, we have

exp(−O(η · n2θ)) = 1−O

(
d

n1−2θ

)

By picking the constant factor in ε large enough, we can ensure that θ is sufficiently small so that
the above term is 1− on(1). �

Clearly, Lemma 5.17 directly proves Theorem 5.3.

43



5.4 Entropy conservation for centered stochastic block models

In this section, we prove Theorem 5.2, which is used to establish entropy conservation for centered
Ising models on sparse SBMs.

Theorem 5.2. Let G ∼ SBM(n, d, λ) for any constant d > 1, and let B = G1 and H = G2 be the

bulk component and near-forest component respectively that are guaranteed by Theorem 4.9. There exists a

constant β∗ > 0 such that with high probability over the draw of G and any external field h, the following

holds for all β < β∗. Set JB = β√
d
(AG1 − E[A|σ]G1 ) and JR = β√

d
AG − JB. There exists a positive

constant C such that for any 0 6 t 6 1 and external field h ∈ Rn,

Cov(µ(1−t)JB+JR,h) � C(IB + ∆IH\∂H).

Let B, H be a (∆, D)-decomposition as guaranteed by Theorem 4.9. As before, we will use
Lemma 3.14 with

M1 = (1− t)JB + θ IB +
ρ

∆
IH\∂H and M2 = JR,

where we can take θ = t
2 + η + 2β(1 + ε) due to Lemma 3.29 and ρ as in the proof of Theorem 4.6.

As before, we can reduce to the case t = 0.
Moreover, since JB is only supported on the bulk, one can follow the proof of Theorem 4.6 to

argue that to bound Cov(µM1+M2,h), one only needs to bound covariances of Ising models on M2.
Namely, it suffices to establish the following PSD upper bounds for arbitrary external field h′:

∥∥Cov (µM2,h′)B

∥∥ 6 O(1)

‖Cov(µM2,h′)H‖ 6 O

(
∆

D

)
.

The main difficulty stems from the fact that M2 = JR has support outside H; it is now sup-
ported on the complete graph on H, as well as the edges between B and H.

To analyze Cov(µM2,h), the high level strategy will be to use Observation 3.9 and transfer over
to the case of having interactions purely supported on H. To do so, we will prove an optimal
Poincaré inequality for a Markov chain where the states are the connected components of H. Let
us illustrate this argument informally; the subsequent lemmas will justify why we can execute
these steps.

Recall that cc(H) denotes the set of connected components of H, and let C ∈ cc(H) be an
arbitrary component. By a slight abuse of notation, let MC = (MH)C denote the restriction of
MH to C and EC = (EH)C denote the restriction for the error in the near-forest. For any v ∈ Rn

supported on S ⊆ [n], we have

Var
x∼µM2,h′

(〈v, x〉) 6 O(1) ∑
C∈cc(H)

Ex−C
Var

x∼µMC+EC,h(x−C)

(〈vC, xC〉) (Poincaré)

6 O(1) ∑
C∈cc(H)

Ex−C
Var

x∼µMC ,h(x−C)

(〈vC, xC〉) (Perturbation)

6 O(1) ∑
C∈cc(H)

‖vC‖2 · Ex−C

[
‖Cov(µMC,h(x−C))S‖

]
. (v supported on S)
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By selecting S = B and S = H, we can transfer over the covariance bounds computed for
near-forest Ising models in Lemma 4.5 to finish off the proof.

For the remainder of this section, we will justify the above steps and complete the proof of
Theorem 5.2.

Establishing an optimal Poincaré inequality. Let us first recall the definition of the Poincaré
inequality on product domains.

Definition 5.18. Suppose that ν is a distribution on a product domain P = P1 × · · · × Pk, and let
CPI(ν) be the Poincaré constant for Glauber dynamics on ν. Then for any f : P → R, we have

Varν( f ) 6
1

k · CPI(ν)
∑

i∈[k]
Ey−i

Varyi |y−i
( f ).

We claim that the block Glauber dynamics studied in Section 5.3 has an optimal Poincaré con-
stant. In particular, for us k = m+m′ is the total number of connected components of H (including
isolated vertices). Indeed, due to Lemma 5.17 and Corollary 5.11, we have

‖Rν‖ 6 8αd2 +
√

8αd2

6 exp(−Ω(ε3d)). (Lemma 5.15)

We now have the following lemma from [Hay06].

Lemma 5.19 ([Hay06]). If the influence matrix of a distribution ν is bounded as ‖Rν‖ < 1− ε, the mixing

time of Glauber dynamics is O((n log n)/ε).

In conjunction with the previous equations, this implies an optimal mixing time bound for the
block dynamics, and thus an Ω

( 1
k

)
bound on CPI(ν).

Perturbation. Next, we justify the transfer from µMC+EC,h to µMC,h, thereby removing the pesky
additional weak interactions EC. To accomplish this, we will use the simple perturbation bound
Lemma 3.8. Indeed, we already proved such a density bound for perturbed Ising models in
Lemma 5.13. Plugging in the explicit parameters for SBMs, as we did in the proof of Lemma 5.17,
we see that we can take c = 1 + on(1) in Lemma 3.8. In other words, we barely incur any loss
transferring to MC.

With the above lemmas in hand, we can finish off the proof of the theorem.

Proof of Theorem 5.2. By Observation 3.9, if v ∈ Rn is a unit norm vector supported on S ⊆ [n],
then there is a positive constant c > 0 such that

Var
x∼µMR,h′

(〈v, x〉) 6 c ∑
C∈cc(H)

Ex−C
Var

x∼µMC+EC,h(x−C)

(〈vC, xC〉) (Definition 5.18)

6 c(1 + on(1)) ∑
C∈cc(H)

Ex−C
Var

x∼µMC,h(x−C)

(〈vC, xC〉) (Lemma 3.8)

6 c(1 + on(1)) ∑
C∈cc(H)

‖vC‖2Ex−C

[
‖Cov(µMC,h(x−C))S‖

]
. (v supported on S)
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Recall that MH = β√
d
(AH ◦AH). Since the centering interaction is O( d

n ), it follows that the inter-

actions are in
[
− β√

d
, β√

d

]
=

[
− β

√
1+ε√

d(1+ε)
, β
√

1+ε√
d(1+ε)

]
, so we can apply Lemma 4.5 with γ = β

√
1 + ε.

Taking S = B and applying Lemma 4.5 uniformly on each component C yields

‖Cov(µMR,h′)B‖ 6 c(1 + o(1)) ·
(

e2β/
√

d

(1− β
√

1 + ε)2

)
,

and for S = H we obtain that

‖Cov(µMR,h′)H‖ 6 c(1 + o(1)) ·
(

e2β/
√

d

(1− β
√

1 + ε)2

)
· ∆

D
.

By following the same calculations as in Theorem 4.1, the upshot is that for sufficiently small
(constant) β > 0, we have for some constant C independent of ∆ that

Cov(µ(1−t)JB+JR,h) � C
(

IB + ∆IH\∂H

)
,

as desired. �

6 Near-forest decomposition for stochastic block models

In this section, we prove Theorem 4.9, a statement about the existence of a near-forest decomposi-
tion for sparse random graphs.

Theorem 4.9. Let G ∼ SBM(n, d, λ) for any d > 1. There exist universal constants C1 and C2 such

that for any ε > C1 ·
(

C2+log d
d

)1/3
, with high probability over G, we can partition the edge set E(G) as

E(G1) ⊔ E(G2) for graphs G1 and G2 on [n] where:

1. The maximum degree of G1 is at most (1 + ε)d.

2. G2 is a (∆, D)-pseudorandom near-forest with respect to S := V ′(G1) ∩ V ′(G2) for ∆ = o(log n)

and D = (1 + ε)d.

Notation (ε, d, G). Throughout this section, let ε and d be as in the statement of Theorem 4.9, and
let G ∼ SBM(n, d, λ).

We begin the proof by first defining the construction of G1 and G2.

Definition 6.1 (Excision of a graph). For a graph G, and for each vertex v ∈ V(G), define Nℓ(v)

to be the set of vertices at distance exactly ℓ from v and Bℓ(v) to be the induced subgraph on G

on those vertices within distance ℓ of v. We say that v is ℓ-heavy if |Bℓ(v)| > (d(1 + ε))ℓ, and
conversely that v is ℓ-light if |Bℓ(v)| 6 (d(1 + ε))ℓ, and set

ℓ(v) = min{ℓ > 0 : v is L-light for all L > ℓ}.
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Note in particular that if |BL(v)| 6 (d(1 + ε))L for all L > 0, then ℓ(v) = 0 and Bℓ(v)(v) has no
edges. Finally, we define the excision of a graph G as

H :=
⋃

v∈V

Bℓ(v)(v),

and refer to the graph after the removal of edges in H as the bulk of G.

The ingredients to prove Theorem 4.9 are:

• Observation 6.2, which says that the bulk of any graph has bounded degree, and the excision
of any graph is (∆, D)-pseudorandom for some ∆ and D = (1 + ε)d.

• Lemma 6.3, which says that the excision of a sparse random graph is a near-forest with high
probability.

• Lemma 6.4, which shows that ∆ = o(log n) with high probability.

Notation (H). We will use H to refer to the excision of G.

Observation 6.2. For any graph G, let G1 and G2 denote its bulk and excision respectively. Then,
for some ∆ > 0 and D := (1 + ε)d:

1. The maximum degree of G1 is at most D.

2. G2 is (∆, D)-pseudorandom with respect to S := V ′(G1) ∩V ′(G2).

Lemma 6.3. With probability 1− o(1), H is a near-forest.

The following statement establishes the claimed bound on ∆.

Lemma 6.4. With probability 1− o(1), for every vertex v in G and ℓ > 0, |Bℓ(v)|
(d(1+ε))ℓ

= o(log n).

We are now ready to prove Theorem 4.9.

Proof of Theorem 4.9. Choose G1 as the bulk of G, and G2 as the excision of G. The statement then
immediately follows from Observation 6.2 and Lemmas 6.3 and 6.4. �

It now remains to prove the above statements. The statement of Lemma 6.4 is a mild strength-
ening of [BGGŠ24, Lemma 9 of arXiv version] and follows standard arguments involving branch-
ing processes, and hence, we defer its proof to Appendix A.

The rest of this section is dedicated to proving Lemma 6.3, which establishes that H is a near
forest with high probability.
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6.1 Excisions of sparse random graphs are near-forests

The key technical ingredient in the proof of Lemma 6.3 is the following.

Lemma 6.5. With probability 1− o(1), for any connected component C of H, diam(C) 6 O
(

log n
ε3d

)
.

As foreshadowed in the technical overview, we will also need the following structural result
about small sets in sparse random graphs.

Lemma 6.6 ([BLM15, Lemma 30], also see [BGGŠ24, Lemma 31]). For G ∼ SBM(n, d, λ), with high

probability, there is no connected set S of vertices with |S| < 1
2 ·

log n
log d that has tree-excess larger than 1.

Assuming the above, let us present a proof of Lemma 6.3.

Proof of Lemma 6.3. Condition on the event in Lemma 6.5, so we have that every component C of
H has diameter at most log n/d. Suppose instead that C had tree-excess at least 2, and let C1, C2

be minimal cycles in C (in that they do not have any chords). Consider the induced subgraph
on the set S of vertices in C comprised of C1, C2, and a shortest path (in C) between the two.
Note in particular that S is connected, and |S| 6 5 diam(C). Since ε = Ωd(log d/d)1/3, we may
apply Lemma 6.6 to conclude that the tree-excess of the induced subgraph on S is at most 1, a
contradiction. �

We now turn our attention to proving Lemma 6.5, which bounds the diameter of each con-
nected component of H. A key auxiliary graph in our proof is the cluster graph.

Definition 6.7. Given a graph G on [n], the associated cluster graph Cluster(G) has vertex set [n],
with an edge between u and v iff ℓ(u), ℓ(v) > 0 and Bℓ(u)(u) ∩ Bℓ(v)(v) 6= ∅. Furthermore, each
vertex u in this graph has associated weight wt(u) = (1 + ε)ℓ(u), and each edge uv has weight
wt(u, v) = ℓ(u) + ℓ(v).

Observe that Lemma 6.5 follows immediately from the following two statements:

1. Lemma 6.8, which shows that if a connected component of H has large diameter, then it
causes a high-weight induced path in Cluster(G).

2. Lemma 6.9, which establishes that there are no high-weight induced paths in Cluster(G).

Lemma 6.8. Suppose the diameter of a connected component of H exceeds τ. Then there are vertices

u1, . . . , uk ∈ [n] such that the induced subgraph in Cluster(G) is the path u1 . . . uk, and

∑
i∈[k]

ℓ(ui) >
τ

2
.

Lemma 6.9. Define η as min
{

ε2

54 , 1
18

}
. With probability 1− o(1), for any U = {u1, . . . , uk} such that

the induced subgraph on U in Cluster(G) is the path u1 . . . uk, we have:

∑
i∈[k]

ℓ(ui) <
32 log n

ηεd
.
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The proof of Lemma 6.8 is fairly short and self-contained, and we present it below.

Proof of Lemma 6.8. There must be vertices a and b in a single connected component of H such that
distH(a, b) > τ. Let u and v be vertices such that Bℓ(a)(a) and Bℓ(b)(b) contain u and v respectively.

Let u1u2 . . . uk be the weighted shortest path between u and v in Cluster(G) where u1 = u and
uk = v. The path between a and b has length bounded by 2 ∑i∈[k] ℓi, and hence:

∑
i∈[k]

ℓi >
τ

2
.

The induced subgraph on {u1, . . . , uk} certainly contains the claimed path by construction. It
remains to show that there are no other edges besides the ones in the path. If there is an edge
between ui and uj for j 6= i± 1 for i < j, then the path u1 · · · uiujuj+1 · · · uk is a shorter path than
the original one, which leads to a contradiction. Indeed, since the edge weights are positive and
wt(u, v) = ℓ(u) + ℓ(v), any path between ui and uj, in particular uiui+1 · · · uj−1uj, has weight at
least ℓ(ui) + ℓ(uj), with equality if and only if the path is just the edge uiuj. �

We now begin the proof of Lemma 6.9 by setting up some terminology.

Definition 6.10 (Violating set and minimal violating set). We say a subset of vertices U is a violating

set if the induced subgraph on U in Cluster(G) is a path of weight exceeding 32 log n
ηεd . We say U is a

minimal violating set if it is a violating set, and no subset of U is a violating set.

Definition 6.11 (Signature). The signature of a minimum violating set is the tuple
(

k,~u,~ℓ
)

where

k is the number of vertices in the minimum violating set, ~u = (u1, . . . , uk) is the vertices in the
minimum violating set in the order they appear in the path, and~ℓ = (ℓ(u1), . . . , ℓ(uk)).

Notation (Sκ). For any positive integer κ, define Sκ as all signatures (k,~u,~ℓ) for which k > 1 and
~ℓ is in [κ]k.

To prove Lemma 6.9, it suffices to prove that there are no violating sets in Cluster(G). Our
goal is to prove that with high probability, there are no violating sets in Cluster(G). We observe
that it suffices to prove there are no minimal violating sets (Observation 6.12), and then bound the
probability of containing a minimal violating set in Observation 6.13.

Observation 6.12. If U ⊆ [n] is a violating set in Cluster(G), then it contains a minimal violating
set U′ ⊆ U.

Observation 6.13. For any positive integer κ, the probability that Cluster(G) contains a minimal
violating set is bounded by

∑
(k,~u,~ℓ)∈Sκ

Pr
[
∃MVS with signature

(
k,~u,~ℓ

)
in Cluster(G)

]
+ Pr[∃v ∈ [n] s.t. ℓ(v) > κ],

where MVS is short for “minimal violating set”.

The following, proved in Appendix A, gives a choice of κ for which the second term of the
above is negligible.
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Lemma 6.14. For κ = 4
ε log log n

ηd , we have:

Pr[∃v ∈ [n] s.t. ℓ(v) > κ] = o(1) .

The following gives us a handle on the first term of the bound in Observation 6.13.

Lemma 6.15. For κ = 4
ε log log n

ηd and for any (k,~u,~ℓ) ∈ Sκ where~ℓ = (ℓ1, . . . , ℓk), we have:

Pr
[
∃MVS with signature

(
k,~u,~ℓ

)
in Cluster(G)

]

6
1

nk−1 ∏
i∈[k]

2ℓ2
i · (d(1 + ε))2ℓi · exp

(
−ηd

2

(
1 +

ε

4

)ℓi
)

.

Remark 6.16. The way to interpret the above is to think of the probability bound as decaying at
a doubly exponential rate in each ℓi, and for the events {ui is ℓi-heavy} as being approximately
independent. See Lemma A.1 and its proof to understand the doubly exponential decay rate.

We first show how to complete the proof of Lemma 6.9, and then later prove Lemma 6.15.

Proof of Lemma 6.9. By Observation 6.12 it suffices to prove that there is no minimal violating set

in Cluster(G). The definition of a signature
(

k,~u,~ℓ
)

of a minimal violating set implies that ∑i ℓi >

32 log n
ηεd . Hence, by Observation 6.13 and Lemmas 6.14 and 6.15, we get that the probability of con-

taining a violating set is at most:

n ∑
k>1

∑
ℓ1,...ℓk

∑ ℓi>
32 log n

ηεd

∏
i∈[k]

2ℓ2
i · (d(1 + ε))2ℓi · exp

(
−ηd

2

(
1 +

ε

4

)ℓi
)

. (11)

Consider one of the terms in the product, which is

exp
(

log(2ℓ2
i ) + 2ℓi log(d(1 + ε))− ηd

2

(
1 +

ε

4

)ℓi
)
6 exp

(
ℓi(2 log(d(1 + ε)) + 2)− ηd

2

(
1 +

ε

4

)ℓi
)

.

We claim that for

ε > 1500
(

100 + log d

d

)1/3

, (12)

the above is at most exp
(
−ℓi

(
1 + ηεd

16

))
. Indeed, since

(
1 + ε

4

)ℓi > ε
4 · ℓi, the above quantity is at

most

exp
(
−ℓi

(
ηεd

8
− 2− 2 log (d(1 + ε))

))
.

Therefore, it suffices for ε to satisfy

ηεd

16
> 2 log (d(1 + ε)) + 3.
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It is straightforward to verify that ε as in (12) satisfies the above. Given this, (11) is at most

n ∑
k>1

∑
ℓ1,...ℓk

∑ ℓi>
32 log n

ηεd

exp

(
−
(

ηεd

16
+ 1
)

∑
i∈[k]

ℓi

)
6

1
n ∑

k>1
∑

ℓ1,...ℓk

∑ ℓi>
32 log n

ηεd

exp

(
− ∑

i∈[k]
ℓi

)

6
1
n ∑

k>1
∑

ℓ1,...ℓk>1
exp

(
− ∑

i∈[k]
ℓi

)

6
1
n ∑

k>1
exp(−Ω(k)) = o(1),

as desired. �

We now turn our attention to proving Lemma 6.15. The following two statements (Lemmas 6.17
and 6.19) will be used in the proof. We defer their proofs to Appendix A.

Lemma 6.17. Let u1, u2, . . . , ur ∈ [n] and ℓ1, ℓ2, . . . , ℓr > 0. Then,

Pr
[
ℓ(ui) = ℓi ∀i ∈ [r] and Bℓi

(ui) ∩ Bℓ j
(uj) = ∅ ∀i 6= j ∈ [r]

]
6 ∏

i∈[r]
exp

(
−ηd

(
1 +

ε

4

)ℓi
)

.

Remark 6.18. In the above bound, the reader should treat the events {ℓi = ℓ(ui)} as roughly
independent. Informally, the approximate independence can be justified by the fact that the union
of the balls covers only a small fraction of the graph, and hence for a vertex ur disjoint from
Bℓ(u1)(u1) ∪ · · · ∪ Bℓ(ur−1)(ur−1), the probability that Bℓ(ur)(ur) intersects the rest is very small —
it is roughly the probability that two small subsets of [n] intersects. Furthermore, when the ball
around ur is disjoint from the remaining balls, its size is not influenced by the other balls, resulting
in approximate independence.

Lemma 6.19. Let S, T1, T be disjoint subsets of vertices, and say T = T2 ⊔ T′. Let E be an (arbitrary)

conditioning of the edges adjacent to vertices in S, T1, T such that for any A = S, T1, T, we can write

A = Ain ⊔ Aout such that the following holds.

• |A| = o(n).

• Every edge incident on vertices in Ain is fixed in a way that there are no edges between Aout and Ac.

• Further, there is no conditioning done on the edges between Aout and (Sin ∪ (T1)in ∪ Tin)c.

Let u ∈ [n] and ℓ > 0. Then, for n sufficiently large,

Pr [u is ℓ-light and Bℓ(u) ∩ Ti 6= ∅ for i ∈ {1, 2} | E ] 6 2ℓ2 · (d(1 + ε))2ℓ · |T1| · |T2|
n2 .

Remark 6.20. Put more intuitively, Lemma 6.19 is a generalization of the following simple obser-
vation: for any small set of vertices of size C, then the probability that a random vertex is contained
in said set scales like C/n. The technical assumptions on S, T1, and T are present to ensure that the
lemma applies throughout the proof of Lemma 6.9; see Figure 4 for a depiction of these sets.
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Bℓ3(u3) Bℓ5(u5)
Bℓ4(u4)

G
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T′

T2

Bℓ(u)

T1

S

Bℓ1(u1)
Bℓ2(u2)

Bℓ7(u7)
Bℓ9(u9)

Figure 4: A depiction of the sets T1, T2, T′, S, and Bℓ(u). The event of interest in Lemma 6.19 is
when the random set of interest Bℓ(u) (shaded blue) intersects the two target sets T1 (solid purple)
and T2 (solid green). The other two sets of vertices S and T′ cover the additional edges that need
to be conditioned on to apply the lemma inductively to bound the length of the path u1 . . . uk in
the cluster graph. In our setting, all the sets involved are unions of balls centered at the vertices
ui.

We now prove Lemma 6.15.

Proof of Lemma 6.15. Assume, without loss of generality, that

∑
i odd

(1 + ε)ℓi > ∑
i even

(1 + ε)ℓi .

Thus, for the independent set {ui : i odd}, we have

∑
i odd

(1 + ε)ℓi >
1
2 ∑

i

(1 + ε)ℓi .

Let Eindependent be the event that ℓ(ui) = ℓi for all odd i and Bℓi
(ui) ∩ Bℓ j

(uj) = ∅ for distinct
odd i, j. Let Ecross be the event that for all even i and j = i± 1, Bℓi

(ui) ∩ Bℓ j
(uj) 6= ∅. Then,

Pr
[
∃MVS with signature

(
k,~u,~ℓ

)
in Cluster(G)

]

6 Pr
[
Eindependent, Ecross

]
(13)

= Pr[Eindependent] · Pr[Ecross | Eindependent]

6 ∏
i odd

exp(−ηd(1 + ε)ℓi) · ∏
i even

2ℓ2
i ·

(d(1 + ε))2ℓi+ℓi−1+ℓi+1

n2 (14)

6
1

nk−1 ∏
i∈[k]

2ℓ2
i · (d(1 + ε))2ℓi · exp

(
−ηd

2

(
1 +

ε

4

)ℓi
)

. (15)

To explain the above chain of inequalities, in (13) we dropped the condition that ℓ(ui) = ℓi for
even i. In (14), we applied Lemma 6.17 and Lemma 6.19 inductively with the setting

T1 = Bℓi+1
(ui+1), S =

⋃

i odd
j>i+1

Bℓ j
(uj), T′ =

⋃

j<i−1

Bℓ j
(uj), T2 = Bℓi−1

(ui−1) \ T′ .
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When applying Lemma 6.19, we use the bound of κ on ℓi to conclude that the size of the union of
all these balls is o(n). See Figure 4 for an illustration. In (15), we used the fact that the odd vertices
have at least half of the total vertex weight. �

6.2 Bounding the sizes of components

In this section, we prove high probability bounds on the sizes of connected components in H,
which are of interest when studying the Ising model on centered interaction matrices.

Lemma 5.16, which states that the maximum size of a connected component is nod(1), is a con-
sequence of Lemma 6.5.

Lemma 5.16. With probability 1− o(1), the maximum size of a connected component is at most n
c log(d(1+ε))

ε3d

for some absolute constant c > 0.

We believe that our analysis here is loose, and that the size of the largest connected component
is in fact poly log(n) with high probability.

Proof. By Lemma 6.5, we know that for any connected component C, there is an absolute positive
constant c such that diam(C) 6 c log n

ε3d
. Note that any vertex u ∈ C is diam(C)-light. Furthermore,

we have Bdiam(C)(u) ⊇ C, so

|C| 6 (d(1 + ε))diam(C) 6 exp
(

log(d(1 + ε)) · c log n

ε3d

)
= n

c log(d(1+ε))
ε3d ,

as desired. �

Using similar ingredients, we are also able to establish the following quantitative bound on
the sum of squared component sizes, from which Lemma 5.15 follows.

Lemma 6.21. Write H = ⊔C∈cc(H)C, where cc(H) denotes the connected components of H. There are

absolute constants c1, c2 > 0 such that for ε > c1(log d/d)1/3, with probability 1− o(1),

∑
C∈cc(H)
|C|>1

|C|2 6 exp(−c2ε3d)n.

We now turn our attention to proving Lemma 6.21, which gives a high probability bounds on
the sizes of component sizes in H. The proof essentially amounts to bounding the first and second
moments. For the first moment bound, many of the key ingredients are already contained in the
proof of Lemma 6.5; for the variance bound, we use the Efron-Stein inequality.

Proof of Lemma 6.21. For succinctness, define the random variable

X := ∑
C∈cc(H)

|C|2 · 1[|C| > 1].
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For distinct u, v ∈ [n], define the random variable Xuv = 1[u, v are in the same component]. Notice
that

X = ∑
u 6=v

Xuv .

Hence for the first moment it suffices to upper bound E[Xuv] = Pr[u, v are in the same component].
In fact, bounding E[Xuv] uses tools similar to what we used in the proof of Lemma 6.5.

Observe that for distinct u and v, they are in the same connected component only if there are
u′ and v′ (which need not be distinct) which satisfy the following:

• ℓu′ , ℓv′ > 0, so that u′ and v′ belong to nontrivial connected components.

• u ∈ Bℓu′ (u
′) and v ∈ Bℓv′ (v

′).

• There is a path between u′ and v′ in Cluster(G).

Note that if u′ = v′, we allow for self loops, as long as ℓu′ > 0; this is consistent with Definition 6.7.
Hence, we have

∑
u 6=v

Xuv 6 ∑
u′,v′∈[n]

|Bℓu′ (u
′)||Bℓv′ (v

′)|1[u′, v′ connected in Cluster(G)].

Fix a path length k, positive integers ℓi for i ∈ [k], and a path w1 · · ·wk with w1 = u′ and wk = v′.
Consider the event E whose probability we bounded in Lemma 6.9:

E := {ℓi = ℓ(wi) for i ∈ [k] and Bℓi
(wi) ∩ Bℓ j

(wj) 6= ∅ iff j = i± 1 for i ∈ [k]}

For the term at u′, v′ in the sum to be nonzero, the above event E must occur for some choice of k,
positive ℓi, and path from u′ to v′. On E , we can upper bound

|Bℓu′ (u
′)| · |Bℓv′ (v

′)| · 1[u′, v′ connected in Cluster(G)] 6 (d(1 + ε))ℓ1+ℓk ,

and a careful inspection of the proof of Lemma 6.9 establishes that

(d(1 + ε))ℓ1+ℓkPr[E ] 6 ∏
i∈[k]

2ℓ2
i · (d(1 + ε))2ℓi · exp

(
− ηd

2 (1 + ε
4)

ℓi

)
.

Indeed, in (14), only one factor of (d(1 + ε))ℓi is picked up for i ∈ {1, k}, as they have only one
neighbor in the chain.

Now choose ε such that
ηεd

16
> 2 log (d(1 + ε)) + 2,

which is satisfied for ε > 1500
(

100+log d
d

)1/3
. Summing up now over all k, ℓi, and paths from u′ to

v′, we obtain

E

[

∑
u′,v′∈[n]

|Bℓu′ (u
′)| · |Bℓv′ (v

′)| · 1[u′, v′ connected in Cluster(G)]

]
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6 n ∑
k>1

∑
ℓ1,...ℓk>1

∏
i∈[k]

2ℓ2
i · (d(1 + ε))2ℓi · exp

(
− ηd

2 (1 + ε
4)

ℓi

)

6 n ∑
k>1

∑
ℓ1,...ℓk>1

exp

(
−ηεd

16 ∑
i∈[k]

ℓi

)

6 n ∑
k>1

exp
(
−ηεkd

16

)
∏
i∈[k]

exp
(
− ηεd

16

)

1− exp
(
− ηεd

16

)

6 n ∑
k>1

exp
(
−ηεkd

16

)

6 2 exp
(
−ηεd

16

)
n,

where in the second-to-last line we have used the fact that ηεd
16 > 2 and exp(−2)

1−exp(−2) 6 1, and in the

last line we have used 1
1−exp(−2) 6 2. Hence, E[X] 6 2 exp(− ηεd

16 )n.

We now show that Var(X) = o(E[X]2), which implies the desired result by applying Cheby-
shev. To establish this, we appeal to the Efron-Stein inequality. Consider rerandomizing an edge
e in G. With probability at most 1− 2d/n, the rerandomized edge e agrees with the original edge,
so the value of X does not change. If it disagrees, then X changes only if e connects two connected
components or if e breaks a connected component into two smaller connected components. Either
way, we can upper bound the magnitude of the difference by maxC∈cc(H) 2|C|2.

By Lemma 5.16, maxC∈cc(H)|C|2 6 n
c log d

ε3d for some absolute constant c > 0, so

Var(X) 6
4d

n
· n

c log d
ε3d · n2

6 4 exp
(

log d +
c log d

ε3d
log n

)
n.

To conclude, it suffices to verify that for our choice of parameters

log d +
c log d

ε3d
log n < −ε3d +

1
2

log n.

Indeed, for ε >
(

K log d
d

)1/3
and any d = O(log n), the left-hand-side of the above inequality

is O(log log n) + c
K log n, whereas the right-hand-side is 1

2 log n−O(log log n). Hence, the above
inequality is satisfied for K a sufficiently large constant, which finishes the proof. �
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Eric Vigoda. On Mixing of Markov Chains: Coupling, Spectral Independence, and
Entropy Factorization. In Proceedings of the 2022 Annual ACM-SIAM Symposium on

Discrete Algorithms (SODA), pages 3670–3692. SIAM, 2022. 39

56



[BD97] Russ Bubley and Martin Dyer. Path coupling: A technique for proving rapid mixing
in Markov chains. In Proceedings 38th Annual Symposium on Foundations of Computer

Science, pages 223–231. IEEE, 1997. 1, 39

[BGGŠ24] Ivona Bezáková, Andreas Galanis, Leslie Ann Goldberg, and Daniel Štefankovič. Fast
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A Proofs omitted from the main text

A.1 Generalized MLSI for Ising models on pseudorandom near-forests

We begin with a proof of Lemma 4.19. While the proof we state in the main text which assumes
that all nonzero interactions are equal suffices for our purposes, a more general result holds.
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Lemma 4.19. Let H be a (∆, D)-pseudorandom tree on n vertices, and J an interaction matrix supported

on H with all interactions in
[
0, γ√

D

]
for some γ ∈ [0, 1). There is a constant c (depending on γ) such that

for any external field h ∈ Rn,

CMLSI(µJ,h) >
1

nec∆
.

Proof. To prove this statement, as in the simpler proof given in the main text, we will use Lemma 3.18
and Theorem 3.19, albeit with the stochastic localization using a time-varying control matrix. Again,
set s0 = γ√

D
. Consider the graph Ht on V(H) with edge set

E(Ht) =

{
ij ∈ E(H) : Jij > t · γ√

D

}
.

In particular, H1 is empty. The control matrix at time t is defined by Ct =
(
(1− s2

0) · BHHt

(
− γ√

D

))1/2
.

As in the simpler proof, this is a non-negative matrix that is well-defined due to Corollary 3.24. At
time t, the interaction matrix Jt is, on the off-diagonal elements, supported on the graph Ht, with
the interactions being at most γ√

D
. In particular, J1 is a diagonal matrix so µ1 is a product measure.

Now, for an arbitrary tilt h,

Cov
(
µJt,h

)
6 ∑

ℓ>0

(
γ√
D

)ℓ

A
(ℓ)
Ht

6 ∑
ℓ>0

(
γ√
D

)ℓ

A
(ℓ)
H = BHH(s0)

−1,

where the inequalities mean that the entries of the (non-negative) matrix on the left are at most
that of the corresponding entries on the right. Similarly, because Ht is a subgraph of H, C2

t 6

(1− s2
0)BHH(−s0). Using Corollary 4.16 and Lemma 4.18, we have that

∥∥Ct · Cov
(
µJt ,h

)
· Ct

∥∥ 6
∥∥Cov

(
µJt ,h

)
· C2

t

∥∥

6 (1− s2
0)
∥∥∥BHH(s0)

−1 · BHH(−s0)
∥∥∥

= (1− s2
0)

∥∥∥∥BHH(s0)
−1 ·

(
BHH(s0) +

2s0

1− s2
0
· AH

)∥∥∥∥

6 (1− s2
0) +

2s0

1− s2
0

∥∥∥BHH(s0)
−1 · AH

∥∥∥

6 1 +
8

(1− γ)2 ·
∆

D
.

The measure at time 1 is almost surely a product measure, therefore

CMLSI(µJ,h) >
1
n
· exp

(
−
∫ 1

0
sup
h∈Rn

∥∥Ct ·Cov
(
µJt,h

) · Ct

∥∥
)

>
1
n
· exp

(
−
(

1 +
8

(1− γ)2 ·
∆

D

))
=

1
neO(∆)

. �
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A.2 Bounds on various probabilities in sparse random graphs

Next, we prove numerous lemmas from Section 6, including Lemmas 6.4, 6.14, 6.17 and 6.19. In
the sequel, we study random graphs G sampled from SBM(n, d, λ)|σ where σ is a “balanced”

community assignment. In particular, we assume that 1
n |〈1, σ〉| < O

(√
log n

n

)
. This holds with

probability 1 if G is an Erdős–Rényi graph, and more generally with probability 1 − on(1) for
2-community SBMs with nontrivial priors.

Lemma A.1. For any vertex v in V(G) and r > 1, for η = min
{

ε2

54 , 1
18

}
,

Pr[|Br(v)| > (d(1 + ε))r] 6 exp
(
−ηd

(
1 +

ε

4

)r)
.

Proof. Consider a Galton-Watson tree T with branching random variable Poi(d(1 + on(1)). It is
well-known (see e.g. [Roc24, Example 4.2.8]) that Poi(d) stochastically dominates Bin(n − 1, d

n ),
so one can construct a monotone coupling between the local neighborhoods of G and the Galton-
Watson tree T in the following way. Suppose α is the fraction of vertices v such that σ(v) =

+1. Then, the number of neighbors of a given vertex v is distributed as Bin
(

αn− 1, d+λ
√

n
n

)
+

Bin
(
(1− α)n, d−λ

√
n

n

)
, which is dominated by Poi

(
α · d+λ

√
d

2 + (1− α) · d−λ
√

d
2

)
. Since α = 1

2 ±

O

(√
log n

n

)
, the number of neighbors is stochastically dominated by Poi(d(1 + on(1))). For sim-

plicity of notation, for the rest of the proof we replace d(1+ on(1)) with d. Since ε = Ω(log d/d)1/3,
we can increase the implicit constant to ensure that the original tail bound as stated holds.

Let u be the root of T. Set NGW

ℓ
(u) to be the set of vertices at depth exactly ℓ in the Galton-

Watson tree, and BGW

ℓ
(u) to be the set of vertices at depth at most ℓ. By the above monotone

coupling, |BL(v)| is stochastically dominated by |BGW

L (u)|, so it suffices to show the relevant tail
bound for |BGW

ℓ
(u)|.

For ease of notation, set Rt = |NGW
t (u)| and Bt = |BGW

t (u)|. Also let Bt = 0 for t < 0. Markov’s
inequality implies that for any s > 0,

Pr [|Br| > (d(1 + ε))r] 6 e−s(d(1+ε))r
E
[
esBr

]
.

Now, for t > 2, using the recursion Bt = Bt−1 + Rt, we have

E
[
esBt

]
= E

[
esBt−1 · esRt

]

= E
[
esBt−1 · ed(es−1)Rt−1

]
(Poisson MGF)

= E
[
esBt−2 · e(d(es−1)+s)Rt−1

]
.

Define g : R2
>0 → R>0 by

g(x, s) = d(ex − 1) + s,

so for any r > 1, E[esBr ] 6 eg◦r(s,s), where g◦1(x, y) = g(x, y) and g◦(t+1)(x, y) = g(g◦t(x, y), y).
Now, define sk = δ(d + 2δ)−k for some δ > 1/d that we shall set later. Then, for any 1 6 t 6 r,

g(st , sr) = d(est − 1) + sr
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6 dste
st + sr

6 st−1 ·
(

dest

d + 2δ
+

sr

st−1

)

6 st−1 ·
(

dest

d + 2δ
+

1
d + 2δ

)

6 st−1 ·
(

d exp
(

δ
d+2δ

)

d + 2δ
+

d

d + 2δ

)
(t > 1)

6 st−1.

Here, the final inequality follows from the fact that

exp
(

x
1+2x

)

1 + 2x
+

1
1 + 2x

6 1

for x > 1, which we have applied with x = δ
d . We also have

g(s0, sr) = d(es0 − 1) + sr 6 dδeδ + sr 6 dδeδ + δ.

Consequently,

E
[
esr−1Br

]
6 edδeδ+δ.

Therefore,

Pr [|Br| > (d(1 + ε))r ] 6 edδeδ+δ · e−sr−1(d(1+ε))r

= exp
(

dδeδ + δ
)
· exp

(
−δ · (d(1 + ε))r

(d + 2δ)r−1

)

6 exp
(

dδeδ + δ
)
· exp

(
−δd ·

(
1 + ε

1 + 2δ
d

)r)
.

Now, choose δ = min
{

ε
4+2ε , log

(
1 + ε

8

)}
. Recall that ε = Ω

(
log d

d

)1/3
, so this is indeed at least

1/d. This implies that 1+ε
1+ 2δ

d

> 1 + ε
2 . Furthermore,

exp
(
dδeδ + δ

)
· exp

(
−δd

(
1 + ε

2

)r
)

exp
(
− δεd

4+ε

(
1 + ε

4

)r
) = exp

(
dδeδ + δ− dδ

((
1 +

ε

2

)r
− ε

4 + ε

(
1 +

ε

4

)r
))

6 exp
(

dδeδ + δ− dδ

(
1 +

ε

2
− ε

4 + ε

(
1 +

ε

4

)))

= exp
(

dδeδ + δ− dδ
(

1 +
ε

4

))

= exp
(

dδ

(
eδ +

1
d
−
(

1 +
ε

4

)))

6 exp
(

dδ
(

eδ −
(

1 +
ε

8

)))
6 1,
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where in the last line we used ε > 8
d . To conclude, we set

η :=
δǫ

4 + ε
=

ε

4 + ε
·min

{
ε

4 + 2ε
, log

(
1 +

ε

8

)}

> min
{

ε

6
,

1
3

}
·min

{
ε

9
,

1
6

}

> min
{

ε2

54
,

1
18

}
. �

First, observe that Lemma 6.14, restated below, is an immediate corollary of the above.

Lemma 6.14. For κ = 4
ε log log n

ηd , we have:

Pr[∃v ∈ [n] s.t. ℓ(v) > κ] = o(1) .

Now, we proceed to fill in other missing proofs.

Lemma 6.4. With probability 1− o(1), for every vertex v in G and ℓ > 0, |Bℓ(v)|
(d(1+ε))ℓ

= o(log n).

Proof. As in the proof of Lemma A.1, set Rℓ to be the number of vertices at depth ℓ in a Galton-
Watson tree with branching random variable Poi(d) rooted at v. We shall show that

Pr
[

Rℓ > (d(1 + ε))ℓ · ∆
]
6

1
n3

for some ∆ = o(log n) (∆ is o(log n) uniformly for all ℓ). Given this, we are done by taking a union
bound over 0 6 ℓ 6 n and then all n vertices v. Again, define

g(x) = d(ex − 1),

so for any s > 0,

Pr
[

Rℓ > (d(1 + ε))ℓ · ∆
]
6 e−s∆(d(1+ε))ℓ · eg◦ℓ(s).

Alternately, set

h(x) = g−1(x) = log
( x

d
+ 1
)

,

so we get that for any q > 0,

Pr
[

Rℓ > (d(1 + ε))ℓ · ∆
]
6 e−h◦ℓ(q)∆(d(1+ε))ℓ · eq.

Now, set q = log n and

∆ =
4 log n

(d(1 + ε))ℓ · h◦ℓ(log n)
.

Clearly, this yields the 1/n3 bound claimed earlier. Further, we have

min
ℓ>0

{
(d(1 + ε))ℓ · h◦ℓ(log n)

}
= ω(1),

so ∆ = o(log n). �

64



The key idea in the proof of Lemma 6.19 is the following observation.

Observation A.2. Let S ⊆ V be any set of vertices in G and ℓ be a positive integer. For any vertex
v ∈ V and conditioning on the induced subgraph on S, we have that Nℓ(v) \ S is a uniformly
random subset of V \ S of size |Nℓ(v) \ S|.

Lemma 6.19. Let S, T1, T be disjoint subsets of vertices, and say T = T2 ⊔ T′. Let E be an (arbitrary)

conditioning of the edges adjacent to vertices in S, T1, T such that for any A = S, T1, T, we can write

A = Ain ⊔ Aout such that the following holds.

• |A| = o(n).

• Every edge incident on vertices in Ain is fixed in a way that there are no edges between Aout and Ac.

• Further, there is no conditioning done on the edges between Aout and (Sin ∪ (T1)in ∪ Tin)c.

Let u ∈ [n] and ℓ > 0. Then, for n sufficiently large,

Pr [u is ℓ-light and Bℓ(u) ∩ Ti 6= ∅ for i ∈ {1, 2} | E ] 6 2ℓ2 · (d(1 + ε))2ℓ · |T1| · |T2|
n2 .

Proof of Lemma 6.19. The idea is that due to Observation A.2 — since the sets S, T1, T are all o(n)

in size, we are essentially picking uniformly random small subsets of vertices on V and checking
whether they intersect.

To formalize this, consider growing out the ball around u incrementally. Let us first introduce
some additional notation. Set L to be the event that u is ℓ-light, and let F be the event in the
lemma statement whose conditional probability we wish to bound:

F := L ∩ {Bℓ(u) ∩ Ti 6= ∅ for i ∈ {1, 2}}

For r > 1 and i ∈ [2], let Er,i denote the event that Br(u) ∩ Ti 6= ∅ but Br−1(u) ∩ Ti = ∅, that is, r

is the smallest radius at which the ball intersects Ti. Noting that Er,i are disjoint events for fixed i,
we have

Pr [F | E ] =
ℓ

∑
r1,r2=1

Pr [L ∩ Er1,1 ∩ Er2,2 | E ] . (16)

In words, we are splitting this into cases depending on when T1 and T2 are hit. To complete the
proof, we shall bound each of the terms in this summation by

2(d(1 + ε))2ℓ · |T1| · |T2|
n2 .

Fix r1, r2 with r1 6 r2. Let Lr be the event that |Br(u)| 6 (d(1 + ε))ℓ. We have

Pr [Er1,1 ∩ Er2,2 ∩ L | E ] 6 Pr [Er1,1 ∩ Er2,2 ∩ Lr2 | E ]
6 Pr [Er1,1 ∩ Lr2 | E ] · Pr [Er2,2 | Lr2 ∩ Er1,1 ∩ E ]
6 Pr [Er1,1 | Lr1 ∩ E ] · Pr [Er2,2 | Lr2 ∩ Er1,1 ∩ E ] .
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Let us start by bounding the first of these two probabilities; refer to Figure 4 for a depiction of the
sets involved. For convenience, we will denote V ′ = V \ (T2 ∪ S). Suppose that Br1−1(u), |Nr1 (u)|
and |Nr1(u) ∩ V ′| were fixed in a way that Br1−1(u) does not intersect T1 or T′, and Lr1 is satisfied.
Then, Nr1(u) ∩ V ′ is in fact a uniformly random subset of V ′ \ Br1−1(u) of the appropriate size.
Since T1 is assumed to be contained in V ′, it follows that

Pr [Er1 ,1 | Lr1 ∩ E ] 6
E
[
|Nr1(u)|

∣∣∣Lr1 ∩ E
]
· |T1|

n− o(n)
6

2(d(1 + ε))ℓ · |T1|
n

.

Similarly, we also get that

Pr [Er2,2 | Lr2 ∩ Er1,1 ∩ E ] 6
2(d(1 + ε))ℓ · |T2|

n
.

Plugging these two bounds into (16), we get that

Pr [F | E ] 6 2ℓ2 · (d(1 + ε))2ℓ · |T1| · |T2|
n2 ,

as claimed. �

Lemma 6.17. Let u1, u2, . . . , ur ∈ [n] and ℓ1, ℓ2, . . . , ℓr > 0. Then,

Pr
[
ℓ(ui) = ℓi ∀i ∈ [r] and Bℓi

(ui) ∩ Bℓ j
(uj) = ∅ ∀i 6= j ∈ [r]

]
6 ∏

i∈[r]
exp

(
−ηd

(
1 +

ε

4

)ℓi
)

.

The key observation for this proof is the following.

Observation A.3. Let S ⊆ V be a (small) subset of vertices in G. Consider a partial conditioning
of the edges for which

• the edges within S are arbitrarily conditioned on.

• for any potential edge e from S to Sc, either e is not conditioned on at all, or is conditioned to
be absent.

Now, fix some vertex u, and suppose we grow out a radius r ball from v, conditioned on it not
intersecting S. Then, this is equivalent to growing out a radius r ball from v within a smaller
completely random graph on V \ S, and then adding back the edges corresponding to S, with a
further conditioning that there are no edges between Br−1(u), the interior vertices of the ball, and
V \ Br(u) (which, in particular, includes S).

Consequently, any monotonically nondecreasing function of the sizes of neighborhoods in the
conditioned graph are stochastically dominated by their versions without conditioning. In par-
ticular, the random variable ℓ(v) in the conditioned graph is stochastically dominated by ℓ(v) in
G(n, d/n).
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Proof of Lemma 6.17. We will upper bound the probability inductively; the base case immediately
follows from Lemma A.1.

Let Ar denote the event that ℓ(ui) = ℓi for every i ∈ [r], i.e. the first r balls are heavy. Further,
let Br denote the event that Bℓi

(ui) ∩ Bℓ j
(uj) = ∅ for all distinct i, j ∈ [r], i.e. the first r balls are

pairwise disjoint. Noting that Br = Br−1 ∩ {Bℓr
(ur) ∩ Bℓi

(ui) = ∅ ∀i ∈ [r− 1]}, we have

Pr [Ar ∩ Br] = Pr[Ar−1 ∩ Br−1] · Pr
[

Bℓr
(ur) ∩ Bℓi

(ui) = ∅ ∀i ∈ [r− 1]
∣∣∣Ar−1 ∩ Br−1

]

· Pr
[
ℓ(ur) = ℓr

∣∣∣Ar−1 ∩ Br

]

6 ∏
i∈[r−1]

exp(−ηd(1 + ε)ℓi) · Pr
[
ℓ(ur) = ℓr

∣∣∣Ar−1 ∩ Br

]

6 ∏
i∈[r]

exp(−ηd(1 + ε)ℓi),

where in the last line we have used Observation A.3 and Lemma A.1 with S =
⋃r−1

i=1 Bℓi
(ui). �
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