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Sampling from convex sets with a cold start
using multiscale decompositions
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Abstract

A standard approach for sampling approximately uniformly from a convex body K € R” is to run a
random walk within K. The requirement is that starting from a suitable initial distribution, the random
walk should “mix rapidly”, i.e., after a number of steps that is polynomial in n and the aspect ratio
R/r (here, K is assumed to contain a ball of radius r and to be contained within a ball of radius R),
the distribution of the random walk should come close to the uniform distribution 7x on K. Different
random walks differ in aspects such as the ease of implementation of each step, or suitability for a
specific class of convex bodies. Therefore, the rapid mixing of a wide variety of random walks on convex
bodies has been studied.

Many proofs of rapid mixing of such random walks however require that the initial distribution of
the random walk is not too different from the target distribution 7x. In particular, they require that the
probability density function of the initial distribution with respect to the uniform distribution 7zx on
K must be bounded above by poly(n): this is called a warm start. Achieving such a warm start often
requires a non-trivial pre-processing step before the random walk can be started. This motivates the
problem of proving rapid mixing from “cold starts”, i.e., when the density of the initial distribution
with respect to zx can be as high as exp(poly(n)). In contrast to warm starts, a cold start is usually
trivial to achieve. However, rapid mixing from a cold start may not hold for every random walk, e.g.,
the well-known “ball walk” does not have rapid mixing from an arbitrary cold start. On the other
hand, for the “hit-and-run” random walk, Lovasz and Vempala proved rapid mixing from a cold start.
For the related coordinate hit-and-run (CHR) random walk, which has been found to be promising in
computational experiments, a rapid mixing result starting from a warm start was proven only recently,
while the question of whether CHR mixes rapidly from a cold start remained open.

In this paper, we construct a family of Markov chains inspired by classical multiscale decompositions
of subsets of R” into countably many axis-aligned cubes. We show that even with a cold start, the
mixing times of these chains are bounded by a polynomial in n and the aspect ratio of the body. Our
main technical ingredient is an isoperimetric inequality for K for a metric that magnifies distances
between points that are close to the boundary of K. As a byproduct of the analysis of this new family of
chains, we show that the coordinate hit-and-run (CHR) random walk also mixes rapidly from a cold
start, and also from any point that is not too close to the boundary of the body.
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1 Introduction

The problem of generating a point distributed (approximately) uniformly over a convex set K € R" is an
important algorithmic primitive. It is usual to assume that the body K is presented by means of a “well
guaranteed membership oracle”, i.e., a membership oracle for K, along with values R > r > 0 such that the
body is contained in the radius R Euclidean ball and also contains the radius r Euclidean ball. The ratio R/r
is then referred to as the aspect ratio of the body.

The first provably polynomial time algorithm for this problem was given by Dyer, Frieze and Kan-
nan [DFK91]: their algorithm used a random walk on a uniformly-spaced lattice of points in a suitable
“smoothed” version of the original body K. More refined analyses of such lattice walks were given in
subsequent works [AK91,DF91,1.590]: we refer to [LS93] for a more complete discussion of the history.
Soon after, Lovasz [Lov90] and Lovasz and Simonovits [LS93] considered a more geometric random walk
not supported on a discrete lattice: the so-called ball walk. Here, one fixes a radius parameter 6, and given
a current point x € K, proposes a next point y from the Euclidean ball of radius § centered at x, and moves
to y if y € K. They prove (see [LS93, Remark on p. 398]) that when & is chosen appropriately, the lazy!
version of the ball walk mixes rapidly, i.e., it reaches a distribution that is e-close in total variation distance
to the uniform distribution 7x on K, after a number of steps which is polynomial in n, 1/€ and R/r, provided
that the initial point of the random walk is chosen according to a poly (n)-warm start. (A distribution y
supported on K is said to be M-warm if the density function of y with respect to 7 is bounded above by
M.) Another natural geometric random walk is the hit-and-run walk (see [Smi84], where it is attributed to
earlier work of Boneh and Golan, and of Smith). Here, if the current state is x € K, then the next point y is
sampled by first choosing a uniformly random direction @ from the unit sphere $"~!, and then picking y
uniformly at random from the chord of K in direction 7 passing through x. Lovasz [Lov99] proved that the
lazy hit-and-run walk also mixes in time polynomial in n, 1/¢ and R/r, again assuming that the initial point
is sampled from a poly (n)-warm start.

While a poly (n)-warm start can be achieved in polynomial time, it requires sophisticated pre-processing.
In contrast, a “cold start”, i.e., an M-warm start where M can be as large as exp(poly (n)), is very easy
to generate when R/r is at most exp(poly (n)): one can simply sample the initial point uniformly at
random from the radius r Euclidean ball. The first polynomial time mixing time result for the hit-and-run
walk from such a cold start, without the need for any further pre-processing, was proved by Lovasz and
Vempala [LV06].

An interesting variant of the hit-and-run walk is the coordinate hit-and-run (CHR) walk, where the
direction 4 is chosen uniformly at random from one of the coordinate directions. The CHR walk is
attractive in part because the implementation of each step of the chain can potentially be quite efficient:
Smith [Smi84, pp. 1302-1303] already mentioned some preliminary computational experiments of Telgen
supporting such an expectation in the important special case when K is a polytope described by a small
number of sparse inequalities. More recent computational work has also explored the CHR walk in various
application areas [HCT*17,FSA20]. However, few theoretical guarantees were known for the CHR walk,
and it was only recently that Laddha and Vempala [LV21] and Narayanan and Srivastava [NS22] proved
that with a poly (n)-warm start, the lazy CHR walk mixes in polynomial time. The question of its mixing
time from a “cold start”, i.e., from a exp(poly (n))-warm start, however has remained open.

A random walk is called lazy if the probability that it stays at its current state after one step is at least 1/2. A lazy version of
any random walk W can be obtained by considering the random walk in which at each step, the walk simply stays at the current
state with probability 1/2, and takes a step according to W with probability 1/2. Considering only lazy versions of walks is a
standard device for avoiding pathological periodicity issues, and therefore we will always work with lazy walks in this paper.



1.1 Contributions

We construct a new family of Markov chains inspired by classical multiscale decompositions of bounded
sets of R” into axis-aligned dyadic (i.e., of sidelength equal to a integral power of two) cubes. Our chains
M,, are parameterized by the £, norms on R", 1 < p < co. Our first contribution is to show that all of these
chains require only a polynomial (in n and the aspect ratio R/r, as before) number of steps to come within
€ total variation distance of the uniform distribution zg, even when started with an exp(poly (n))-warm
start. However, before describing the M,, chains and our mixing result for them in detail, we state the
following result that we obtain as a byproduct of their analysis. (Given the special status of the coordinate
directions in the coordinate hit-and-run walk, we parametrize the aspect ratio in terms of the £, unit ball
B, rather than in terms of the Euclidean unit ball B,.)

Theorem 1.1 (see Corollary 6.4). Let K € R" be a convex body such thatr - Boo € K C R Boo. Then starting
from an M-warm start, the lazy coordinate hit-and-run walk comes within total variation distance at most € of
the uniform distribution g on K after O (n’(R/r)?log(M/e)) steps.

The above result shows that the coordinate hit-and-run (CHR) random walk also mixes in polynomial
(in n and the aspect ratio R/r) time even from “cold”, i.e., exp(poly (n))-warm starts. As described above,
polynomial time mixing for the CHR walk had only been proved so far starting from a poly (n)-warm
start [NS22,LV21]: the dependence on M in the mixing time bounds obtained in [NS22,LV21] are proportional
to poly (M), as compared to the log M dependence in our Theorem 1.1. The above result can also be
extended to show that CHR mixes after a polynomial number of steps even when the starting distribution
is concentrated on a single point in K, provided that the point is not too close to the boundary of K - its
foo-distance from the boundary of K should be least R exp(— poly (n)). See Section 6.3 for further discussion
of this extension.

We now proceed to describe our main technical result: the construction of the M), random walks and
their rapid mixing from a cold start. The random walks M, are inspired from the classical decomposition
of bounded subsets of R” into axis-aligned cubes with disjoint interiors. Such decompositions have been
used since the work of Whitney [Whi34] (see, e.g., [Fef05, FK09] for more recent examples of their use). We
now informally describe the decomposition of K that we use for the M,, chain. For simplicity, we assume
that K is contained in the interior of the £, ball of radius 1. We start with the standard tiling of R” by unit
cubes with vertices in Z", and also consider all scalings of this tiling by factors of the form 27%, where k is a
positive integer. Our decomposition F = F?) of K into cubes with disjoint interiors is then obtained by
considering these cubes in decreasing order of sidelength and including those cubes Q for which

1. Q is contained within K, and in fact, relative to its own diameter, Q is “far away” from the exterior
R™\ K of K: the £,-distance of the center of Q from R" \ K is at least twice the £,-diameter of Q, and

2. no “ancestor” cube of Q, i.e., a cube containing Q is part of the decomposition ¥ .

A formal description of the construction of ¥ is given in Section 3, where it is also shown that such a
decomposition fully covers the interior K° of K, and also that if two cubes in ¥ abut along an (n — 1)-
dimensional facet, then their sidelengths must be within a factor of two of each other. We note that this
“bounded geometry”: namely that the ratio of the side lengths of abutting cubes are within a factor of two
of each other (see fig. 1), is a very useful feature of this construction for our purposes. In particular, this
feature plays an important role in relating the properties of the M, chains to the coordinate hit-and-run
random walk.



Figure 1: Local geometry of Whitney decompositions: the sidelengths of adjacent cubes are within a factor
of two of each other.

The chain M, can be seen both as a random walk on K and also as a random walk on the countably
infinite set of cubes in the Whitney decomposition ¥ = F®) of K described above, but the latter view
is easier to describe first. The stationary distribution 7 of M, is given by 7(Q) = vol (Q) /vol (K) for
each cube in F ). Given the current cube Q, the walk chooses to stay at Q with probability 1/2. With
the remaining probability, it performs the following step. Pick a point x uniformly at random from the
boundary dQ of the cube Q. With probability 1, there is a unique cube Q’ # Q in F?) to which x belongs.
The walk proposes a move to this cube Q’, and then accepts it based on a standard Metropolis filter
with respect to . The Metropolis filter ensures that the walk is in fact reversible with respect to , i.e.,
7(Q)Pm, (Q, Q") = m(Q")Pm, (Q, Q) where Py, (Q, Q') is the probability of transitioning to cube Q” in
one step, when starting from cube Q. This implies that 7 is a stationary distribution of M, (see Section 4
for details).

As stated above, M, can equivalently be seen as a Markov chain on K itself. To see this, note that
corresponding to any probability distribution v on  ?), there is a probability distribution vk on K obtained
by sampling a cube Q from ¥ ?) according to v, and then a point x uniformly at random from Q. It is easy
to see that the uniform distribution 7x on K can be generated from the distribution 7 above in this fashion.
Further, one can also show that the total variation distance between the distributions vx and g on K is
at most the total variation distance between the distributions v and 7 on ) (this follows directly from
the definition, and the easy details are given in the proof of Theorem 1.2 on page 27). Similarly, given a
probability distribution vg on K that is M-warm with respect to nx, one can obtain a distribution v on
#(P) that is M-warm with respect to 7. This is done as follows. Sample a point x according to vg. With
probability 1, x lies in the interior of some cube Q € F#) (this follows because vk is M-warm with respect
to mx and because the probability measure under 7x of the union of the boundaries of the countably many
cubes in F?) is zero). v is then defined to be the probability distribution of this random cube Q. Then
v(Q) = vk (Q) < Mg (Q) = Mvol (Q) /vol (K) = M (Q).

Our main theorem for M,, chains is the following. Here, B, := {x eR™ ¢ ||x]l, < 1} is the unit £,-ball
in R"™: note that the requirement r - B, C K is weaker than the requirement r - B, € K when p < oo.

Theorem 1.2 (see Corollary 5.5). Fix1 < p < co. Let K C R" be a convex body such thatr-B, C K C R Be.
Then, starting from an M-warm start, the M,, random walk on K comes within total variation distance at
most € of the uniform distribution ng on K after O (n4+f% -(R/r)?- log(M/e)) steps. .

Remark 1.3. In Theorem 5.6, we use a more refined analysis to establish essentially the same dependence

of the mixing time on n and R/r even when M, is started from a starting distribution supported on a single
cube Q € F®) (or equivalently, in light of the discussion in the previous paragraph, a point x € Q) that is



at least Wl(n) away from the boundary of K (a direct application of Theorem 1.2 would lose an extra factor

of O(n) in this setting).

Algorithmic implementation of M, We note that the tools we develop for the analysis of our multi-
scale chains M, play a crucial rule in our result for the CHR walk (Theorem 1.1). In addition, M, chains are
of algorithmic interest in their own right. However, it may not be immediately clear how to algorithmically
implement each step of the M, chain from the above description of the chain and its state space F @) of
Whitney cubes. We show in Section 4.1 that each step of the M chain can be algorithmically implemented
in O(n) time using only a membership oracle for K. When p > 1, algorithmically implementing one step of
the M,, chain requires access to an oracle for the £,-distance of a point x € K to the boundary oK of K: such
oracles can be implemented efficiently for polytopes. We describe this construction as well in Section 4.1.

We now proceed to discuss the context for our results in the light of existing literature. Following this,
we give a overview of our results and proof techniques in Section 1.3.

1.2 Discussion

The notion of conductance has played a central role in most rapid mixing results for random walks on convex
bodies. For the discussion below, we fix a convex body K € R” such that rB, € K C RB;. Given a random
walk ‘W with stationary distribution as the uniform distribution zx on K, the conductance ®4y(S) of a
subset S C K is defined as the probability of the following randomly chosen point lying in K \ S: choose a
point uniformly at random from S, and then take a step according to “‘W. It follows from standard results in
the theory of Markov chains [LS93] that if ®qy(S) > 1/poly (n, R/r) for every measurable S C Q, then the
random walk ‘W mixes rapidly from a exp(poly (n))-warm start. However, in several cases, one only gets
the weaker result that only large enough subsets have good conductance: a formalization of this is through
the notion of s-conductance [LS93, p. 367], which can capture the phenomenon that, roughly speaking, the
lower bound obtained on the conductance of S degrades as the volume s of the set S becomes smaller. Under
such a bound, one usually only gets rapid mixing from a poly (n)-warm start (see, e.g., [LS93, Corollary
1.6]). The reason that one can only get a lower bound on the conductance of large sets may have to do
with the properties of the walk W itself (which is the case with the ball walk). However, it may also be an
artefact of the proof method rather than a property of the walk itself. For example, the original proof of
Lovasz [Lov99] for the rapid mixing of the hit-and-run walk was built upon an s-conductance lower bound
that approached zero as the size parameter s approached zero [Lov99, Theorem 3], and therefore required a
poly (n)-warm start. In contrast, the later proof by Lovasz and Vempala [LV06] established a conductance
bound for the same chain and thereby achieved rapid mixing from a cold start.

Rapid mixing proofs of random walks on convex sets often follow the plan of establishing a conductance
(or s-conductance) lower bound of the chain using an isoperimetric inequality for an appropriate metric
(roughly speaking, an isoperimetric inequality puts a lower bound on vol (K \ (S; U S;)) proportional to
the product of volumes of S; and S; and the distance § between S; and Sy, at least when § is a sufficiently
small positive number).” A unifying theme in the analysis of many random walks for sampling from convex
sets, starting from the work of Lovasz [Lov99], has been to prove such an isoperimetric inequality when
the underlying metric is non-Euclidean. For example, the underlying metric in [Lov99] is the Hilbert metric
defined using the logarithm of certain cross-ratios. This isoperimetric inequality was then used to give an
inverse polynomial lower bound for the s-conductance of the hit-and-run walk that degraded gracefully to

2 A notable exception to this general strategy is the work of Bubley, Dyer and Jerrum [BDJ98], discussed in more detail later in
the introduction.



zero as the size parameter s approached zero, thereby leading to a rapid mixing result for the hit-and-run
walk under a warm start. In later work, Lovasz and Vempala [LV06] obtained an inverse-polynomial lower
bound on the conductance of the hit-and-run walk by refining the isoperimetric inequality for the Hilbert
metric proved in [Lov99]: this improvement in the isoperimetric inequality thus led to a rapid mixing result
for the hit-and-run walk without the need of a warm start.

The Hilbert metric also appears in the analysis by Kannan and Narayanan [KN12] of another random
walk, called the Dikin walk, on polytopes. The Dikin walk was generalized by Narayanan [Nar16] to more
general convex sets equipped with a weighted combination of logarithmic, hyperbolic and self-concordant
barriers, and was analysed using a different Riemannian metric whose metric tensor is derived from the
Hessian of the combined barrier. The isoperimetric properties of this Riemannian metric were established
by comparison to the Hilbert metric. Improvements on this walk with better mixing times have been
obtained by Chen, Dwivedi, Wainwright and Yu [CDWY18] and by Laddha, Lee, and Vempala [LLV20].
The geodesic walk of Lee and Vempala [LV17] uses geodesics of the Riemannian metric associated with
the logarithmic barrier to define a walk on polytopes, whose properties again hinge on the isoperimetric
properties of the convex set equipped with the Hilbert metric and the uniform measure.

Beyond proving the isoperimetric inequality, there is also the need to relate these Markov chains to the
reference metric introduced. This was done for hit-and-run in [Lov99] using in part the well-known theorem
of Menelaus in Euclidean geometry. This step for the Dikin walk used facts from interior point methods
developed by Nesterov and Nemirovski. The analogous analysis was particularly involved in [LV17] and
used Jacobi fields among other tools. For a more detailed discussion of these and related developments, we
refer to the recent survey [LV22] by Lee and Vempala.

Unfortunately, it has not been possible to exploit the Hilbert metric to analyze the coordinate hit-and-run
(CHR) walk. However, in recent work, Laddha and Vempala [LV21] showed how to implement the program
of proving an s-conductance bound for the CHR walk using an isoperimetric inequality for an appropriate
metric: they proved rapid mixing for the CHR walk from a warm start via an isoperimetric inequality for
subsets of K that are far in the £y-metric and that are not too small in volume (the £,-distance between two
points in R" is the number of coordinates on which they differ).

Our result for the CHR walk (Theorem 1.1) also hinges on a similar £-isoperimetric inequality, Theo-
rem 6.2, which however extends to sets of all volumes (including arbitrarily small volumes). This is the
main technical ingredient that allows us to remove the requirement of a warm start in Theorem 1.1.

The proof of Theorem 6.2 itself goes via the proof of a conductance lower bound for the M, chains on
Whitney decompositions of K that we introduced above. The conductance analysis of the M,, chains, in
turn, proceeds by introducing a kind of degenerate Finsler metric on K (see Section 5), which is a scaled
version of £ that magnifies distances in the vicinity of a point x in K by a factor of 1/dist,, (x,R" \ K). Our
main technical ingredient is a new isoperimetric inequality (Theorem 5.1) for any convex body K under such
a metric. Part of the proof of this inequality requires an existing isoperimetric inequality for convex sets in
normed spaces proved by Kannan, Lovasz and Montenegro [KLMO06], but the bulk of the proof is handled
by a detailed analysis of “needles” analogous to those in the celebrated localization lemma of Lovasz and
Simonovits [LS93]. In the more refined analysis (Theorem 5.6) of the M,, chain from a fixed state that we
alluded to in the remark following Theorem 1.2, we also use results of Lovasz and Kannan [LK99] relating
rapid mixing to average conductance rather than worst-case conductance, thereby saving ourselves a factor
of O(n) in the mixing time. This in turn is made possible by the fact that for the degenerate Finsler metric
we introduce, the lower bounds we can prove on the isoperimetric profile of small sets are actually stronger
than those we can prove for large sets.

We now proceed to give a more detailed overview of our techniques.



1.3 Technical overview

Our result follows the general schema of establishing a conductance lower bound for the chain using an
isoperimetric inequality for an appropriate metric. As discussed above, the requirement of a warm start
in rapid mixing proofs is often a consequence of the fact that non-trivial bounds for the conductance
of the chain are available only for sets of somewhat large volumes. This in turn is often due to having
to “throw away” a part of the volume of K that is close to the boundary dK of K before applying the
isoperimetric inequality: this is the case, for example, with the original warm start rapid mixing proof
of the hit-and-run walk [Lov99]. The same issue also arose in two different proofs of rapid mixing for
the coordinate hit-and-run (CHR) walk starting with a warm start [LV21,NS22]: in both these proofs, an
isoperimetric inequality could only be applied after excluding a part of K close to JK.

Our motivation for considering a multiscale walk comes partly from the desire to avoid this exclusion
of the part of K close to its boundary. Notice that as our multiscale chain M, approaches the boundary
of K, the underlying cubes also become proportionately smaller, and the chain can still make progress to
neighboring cubes at a rate that is not much worse than what it would be from larger cubes in the deep
interior of the body. Note, however, that this progress cannot be captured in terms of usual £, norms: while
the chain does move to adjacent cubes, the distances between the centers of these adjacent cubes shrink as
the chain comes closer to the boundary of K. Thus, it seems unlikely that isoperimetric results for £,-norms
alone (e.g., those in [LS93,KLM06]) would be able to properly account for the progress the multiscale chain
makes when it is close to the boundary of K.

A metric and an isoperimetry result In order to properly account for this progress, we introduce
metrics that magnify distances close to the boundary 9K of K. More concretely, to analyze the chain M,,
we consider the metric g, which magnifies f.-distances in the vicinity of a point x € K by a factor of
1/dist, (x, 9K) (see Section 5 for the formal definition of the metric g,). Because of this scaling, this metric
captures the intuition that the chain’s progress close to the boundary is not much worse than what it is in
the deep interior of K. Our main technical result is an isoperimetry result for K endowed with the g, metric
and the uniform (rescaled Lebesgue) probability measure. We show that vol (K \ (S; U S;)) is significant in
proportion to min {vol (5;), vol (S;)} whenever S; and S, are subsets of K that are far in the g, distance:
see Theorem 5.1 for the detailed statement.

Our proof of Theorem 5.1 is divided into two cases depending upon whether S;, the smaller of the sets
S1 and Sy, has a significant mass close to the boundary of K or not. The easy case is when S; does not have
much mass close to the boundary, and in this case we are able to appeal to a isoperimetric inequality of
Kannan, Lovasz and Montenegro [KLMO06] for the standard £, norms: this is Part 1 (page 17) of the proof of
Theorem 5.1.

The case that requires more work is Part 2 (page 18), which is when a large constant fraction (about 0.95
in our proof) of the volume of S; lies within £,-distance C; /n of the boundary oK of K for some parameter
Cy. Our proof of this part is inspired by the localization idea of [LS93], but we are unable to directly apply
their localization lemma in a black box manner. Instead, we proceed by radially fibering the body K into
one-dimensional needles (see Definition 5.2), where the needles correspond to radial line segments in a
spherical polar coordinate system centered at a point x; in the deep interior of K. The intuition is that since
Sy and S, are at distance at least § > 0 in the g, metric, a large fraction of these needles contain a large
segment intersecting S3 = K \ (S; U S,). This intuition however runs into two competing requirements.

1. First, the S3-segment in a needle cannot be be too close to the boundary dK. This is because the g,
metric magnifies distances close to dK, so that a segment that is close to JK and is of length ¢ in



the g, metric may have a much smaller length in the usual Euclidean norm. The contribution to the
volume of S; of such a segment would therefore also be small.

2. Second, neither can the S3-segment in a needle be too far from the boundary dK. This is because,
by definition, a needle N is a radial line in a polar coordinate system centered at a point x, deep
inside K, so that the measure induced on N by the standard Lebesgue measure is proportional to
"1 where t is the Euclidean distance from x,. Thus, the measure of an S3-segment that lies close to
the center x, of the polar coordinate system may be attenuated by a large factor compared to the
measure of a segment of the same Euclidean length that lies closer to dK.

For dealing with these two requirements together, we consider the outer “stub” of each needle, which is
the part of the needle starting from oK up to a C,/n distance along the needle, where C, is an appropriate
factor that depends upon the needle (see eq. (61) and Definition 5.2 for the formal definition). For an
appropriate choice of C; and C,, we can show that for at least a constant fraction of needles (see the
definition of good needles in eq. (53)), the following conditions are simultaneously satisfied:

1. The stub of the needle contains a non-zero volume of S;.
2. A large fraction of the inner part of the stub (i.e, the part farthest from the boundary) is not in S;.

For a formal description, see egs. (72) and (74) in conjunction with fig. 2. Together, these facts can be used
to show that the inner part of the stub contains a large segment of S; (see page 21). This achieves both the
requirements above: the segment of S; found does not lie too close to the boundary (because it is in the
inner part of the stub), but is not too far from the boundary either (because the stub as a whole is quite
close to oK by definition).

Mixing time for the M, chains We then show in Section 5.2 that the isoperimetric inequality above
implies a conductance lower bound for the M,, chain, in accordance with the intuition outlined for the
definition of the g, metric. Rapid mixing from a cold start (Corollary 5.5) then follows immediately from
standard theory. In Section 5.5, we show that the fine-grained information that one obtains about the
conductance profile of the M,, chain can be used to improve the mixing time from a fixed state by a factor
of O(n) over what the vanilla mixing time result from a cold start (Corollary 5.5) would imply. We also
show in Proposition 5.4 that the conductance lower bound we obtain for the M, chain is tight up to a
logarithmic factor in the dimension.

Rapid mixing from cold start for coordinate hit-and-run Finally, we prove rapid mixing from cold
start for the coordinate hit-and-run (CHR) walk in Section 6. As described above, two different proofs were
recently given for the rapid mixing for this chain from a warm start [LV21,NS22], and in both of them,
the bottleneck that led to the requirement of a warm start was a part of the argument that had to “throw
away” a portion of K close to dK. In Section 6, we show that the conductance (even that of arbitrarily small
sets) of the CHR walk can be bounded from below in terms of the conductance of the multiscale chain M,
(Theorem 6.3). As discussed above, the conductance of the latter can be bounded from below using the
isoperimetry result for the g, metric. Together, this gives a rapid mixing result for the CHR walk from a
cold start (Corollary 6.4 and Theorem 1.1). To prove Theorem 6.3, we build upon the notion of axis-disjoint
sets introduced by Laddha and Vempala [LV21], who had proved an “f-isoperimetry” result for such sets.
However, as discussed above, their isoperimetry result gives non-trivial conductance lower bounds only
for sets of somewhat large volume. This was in part due their result being based on a (partial) tiling of



K by cubes of fixed sidelength, thereby necessitating the exclusion of a part of the volume of the body
close to the boundary. The main technical ingredient underlying our result for the CHR chain is a new
fy-isoperimetry result for axis-disjoint sets (Theorem 6.2) that applies to sets of all sizes, and that involves
the conductance of the multiscale Mo, chain described above.

Finally, we show in Corollary 6.5 that the mixing result for CHR from a cold start can be extended to
show that CHR mixes in polynomially many steps even when started from a point that is not too close
to the boundary. Roughly speaking, the mixing time scales with log(R/§) where § is the £ -distance of
the starting point to the boundary of the body K and where K C R - B,,. This extension formalizes the
intuition that after about O(nlogn) steps of CHR (i.e., when the chain has had the opportunity, with high
probability, to have made a step in each of the n coordinate directions), the resulting distribution is close to
a “cold start” in the sense of the mixing result in Theorem 1.1.

1.4 Open problems

We conclude the introduction with a discussion of some directions for future work suggested by this work.
The natural question raised by the application of the M., walk to the analysis of the coordinate hit-and-run
walk is whether the M,, chains, or the notion of multiscale decompositions in general, can be used to
analyze the rapid mixing properties of other random walks on convex sets.

An alternative to the approach of using isoperimetric inequalities for analyzing mixing times for random
walks on convex sets is suggested by an interesting paper of Bubley, Dyer and Jerrum [BDJ98], where a
certain gauge transformation is used to push forward the uniform measure on a convex set on to a log
concave measure supported on R”, whereafter a Metropolis-filtered walk is performed using Gaussian steps.
The analysis of this walk (which mixes in polynomial time from a cold start, or even from the image, under
the gauge transformation, of a fixed point not too close to the boundary) proceeds via a coupling argument,
and does not use the program of relating the conductance of the chain to an isoperimetric inequality. Such
coupling arguments have also been very successful in the analysis of a variety of Markov chains on finite
state spaces. It would be interesting to explore if a coupling based analysis can be performed for the M,
random walks or for the CHR random walk. Another possible approach to attacking these questions on
rapid mixing could be the recent localization scheme framework of Chen and Eldan [CE22].

Another direction for investigation would be to make the implementation of each step of M, especially
in the case p > 1, more efficient. In the current naive implementation of a step of the M,, chain (when
p > 1) on polytopes that is described in Section 4.1, the distances of a given point x to all the facets of the
polytope are computed in order to find the Whitney cube which contains x. In principle, it may be possible
to ignore far away facets as has been done by Mangoubi and Vishnoi [MV19] in the context of the ball walk,
leading to savings in the implementation time.

2 Preliminaries

2.1 Markov chains

We follow mostly the Markov chain notation used by Lovasz and Simonovits [LS93], which we reproduce
here for reference. For the following definitions, let M be a Markov chain on a state space Q, and let
P(-,-) = Pp(+, -) denote the transition kernel of the Markov chain. Let 7 be the stationary distribution of



the chain: this means that for any measurable subset A C Q,

/ m(dx)P(x,A) = n(A). (1)

x€Q

A Markov chain is said to be lazy if for every x € Q, P(x,x) > 1/2. All Markov chains we consider in this
paper will be lazy.

Definition 2.1 (Ergodic flow and reversible chains). Given measurable subsets A and B of Q, the ergodic
flow ¥p(A, B) is defined as

¥ (A, B) ::/ﬂ(dx)P(x,B). (2)
x€A

Informally, the ergodic flow from A to B is the probability of landing in B after the following process: first
sample a point from A with “weight” proportional to 7, and then take one step of the chain.

We also denote ¥p((A, Q \ A) as Pp((A). Note that for any Markov chain on Q with stationary
distribution 7, ¥o((A) = Yp(Q \ A) (see, e.g., [LS93, Section 1.C]). M is said to be reversible with respect
to  if ¥x((A, B) = ¥((B, A) for all measurable A, B C Q.

Definition 2.2 (Conductance). Given a measurable subset A of Q, the conductance ® 5((A) of A is defined
as Wp((A)/m(A). The conductance ® 5 of M is defined as the infimum of ® »(S) over all measurable S C Q
such that 7(S) < %:
D= inf  ®p(S5). 3
M= s ntizryy M) ®
Definition 2.3 (Conductance profile). For @ € (0,1/2], we define the value ®, ( of the conductance profile
of M at « as the infimum of ® 4,(S) over all measurable S C Q such that 7(S) < «a.

When the underlying chain M is clear from the context, we will drop the subscript M from the
quantities in the above definitions.

Definition 2.4 (Density and warmth). Given probability distributions 7 and v on Q, we say that v has
density f with respect to 7 if there is a measurable function f : Q — [0, c0) such that for every measurable
subset A of Q,

v(A) = [ f(x)x(dx). (4)
J

We will also use the notation f7 to denote the probability distribution that has density f with respect to 7.
Note that this implicitly requires that Ex..[f(X)] = v(Q) = 1.

A probability distribution v is said to be M-warm with respect to « if it has a density f with respect to
7 such that f(x) < M for all x € Q. Note also that 7 has as density the constant function 1 with respect to
itself.

Given a probability distribution 7 on Q, one can define the norms L” (), 1 < p < oo on the set of
bounded measurable real valued functions on Q as follows:

1/p

1fllze () = / FOP (dx) | =Exe [IFOIP]7. (5)

x€Q



We will need only the norms L! () and L?(x) in this paper. If v has density f with respect to z, then the
total variation distance dry (v, ) between v and 7 can be written as

dry (v,7) = sup [7(4) = v(A)| = Z[f = Vo s ©
ACQ

From Jensen’s inequality we also have that for every bounded measurable f,

WALy < NF Nl - (7)
Corresponding to L?(), we also have the inner product
Lo = / F(x)g(x)m(dx) = Ex-r [f(X)g(X)], (8)

x€Q

so that (f, f) 2 = IIf IIEZ(”). Note that any Markov chain M can be seen as a linear operator acting on
probability measures v on Q as

(WM)(A) = / Pap(x, A)v(dx), for every measurable A C Q, 9)

x€Q

and also on real valued function f on Q as

MF)(x) = / f(Y)Pp(x,dy), foreveryx € Q. (10)

yeQ

When M is reversible with respect to 7, we have (see, e.g., [LS93, eq. (1.2)])

M. Preiny = F- M 12y » (11)

and also that the probability distribution vM has density M f with respect to 7 when the probability distri-
bution v has density f with respect to 7. We will need the following result of Lovasz and Simonovits [LS93]
connecting the mixing properties of reversible chains to their conductance (the result builds upon previous
work of Jerrum and Sinclair for finite-state Markov chains [JS88]).

Lemma 2.1 ([LS93, Corollary 1.8]). Suppose that the lazy Markov chain M on Q is reversible with respect
to a probability distribution m on Q. Let vy have density no with respect to 7, and define n; to be the density of
the distribution v; = voM! obtained after t steps of the Markov chain starting from the initial distribution v,.
Then

2\ 2t
“’71‘ - 1”%2(7.[) < (1 - 7) ”’70 - 1”%2(”),
where ® is the conductance of M.

Proof. Note that since M is reversible with respect to r, the density 7, of v; = vy M with respect to 7 is
M?1,. We now apply Corollary 1.8 of [LS93] with f in the statement of that corollary set to o — 1, and T
set to 2t. This ensures that Ex.,[f(X)] = 0. The corollary then gives

q)z 2t
(no -1 M*(no-1)) < (1 - ?) llvo — 1||iz(,,)- (12)
Now, by reversibility of M, we get (from eq. (11)) that
(no — LM (g — 1)) = (M (5o — 1), M* (1o — 1)) . (13)
The claim now follows since, as observed above, the reversibility of M implies that ; = M?n,. m|

10



2.2 Geometric facts

Notation For any subset S C R" we will denote by S° its open interior (i.e., the union of all open sets
contained in S), and by 9K the boundary of S, defined as S \ S°, where S is the closure of S. Note that S C S
if and only if S is closed. A convex body in R” is a closed and bounded convex subset of R" that is not
contained in any proper affine subspace of R"”. We will need the following standard fact.

Lemma 2.2. Fix p > 1 and let K be any convex body. Then, the function f : K — R defined by f(x) =
disty, (x, 9K) is concave.

Proof. Consider x,y € K such that f(x) = dist,, (x,9K) = a and f(y) = dist,,(y,9K) = b. If both a and b
are zero then there is nothing to prove. Otherwise, for any A € (0, 1), let z = Ax + (1 — 1)y. Now, for any
vector v such that [|v]|, < Aa+ (1 - A)b, we have z+v = Ax" + (1 — )y” where x" := x + m -v and
y =y+ Wb—ﬂ)b - 0. By construction, disty, (x, x") < a and dist,, (y,y’) < b so that x",y’, and therefore
z + v are all elements of K. Since v was an arbitrary vector with |[o]|, < Aa + (1 — A)b, this shows that
f(z) =dist;, (z,0K) 2 Aa+ (1 - A)b = Af(a) + (1 - ) f (D). m|

In the proof of Theorem 5.6, we will need the following well-known direct consequence of Cauchy’s
surface area formula (see, e.g., [TV17]).

Proposition 2.5. Let K and L be convex bodies in R" such that K C L. Then vol,—; (dK) < vol,_1 (dL).

3 Whitney decompositions

Hassler Whitney introduced a decomposition of an open set in a Euclidean space into cubes in a seminal
paper [Whi34]. The goal of this work was to investigate certain problems involving interpolation. Such
decompositions were further developed by Calderén and Zygmund [CZ52]. For more recent uses of
decompositions of this type, see Fefferman [Fef05] and Fefferman and Klartag [FK09]. We begin with the
procedure for constructing a Whitney decomposition of K°, i. e. the interior of K, for the £,-norm, along
the lines of Theorem 1, page 167 of [Ste70].

As in the statement of Theorem 1.2 we assume that K € {x : ||x||c < Re} Where Ry, < 1 is a positive
real, and that K 2 {x : ||x||, < r,} for some positive real r,. The assumption R, < 1is made for notational
convenience, and can be easily enforced by scaling the body if necessary. We discuss in a remark following
Theorem 3.1 below as to how to remove this assumption.

Consider the lattice of points in R” whose coordinates are integral. This lattice determines a mesh Q,
which is a collection of cubes: namely all cubes of unit side length, whose vertices are points of the above
lattice. The mesh @ leads to an infinite chain of such meshes {Qx},°, with Q; = 27%Qy. Thus, each cube in
the mesh Qy gives rise to 2" cubes in Qi1 which are termed its children and are obtained by bisecting its

sides. The cubes in the mesh Q) each have sides of length 2% and are thus of {,-diameter np2k.
We now inductively define sets 7; = 7’"1.([’ )i > 0as follows. Let Fo consist of those cubes Q € Q) for

which dist,, (center(Q), K) < #. Fix A = 1/2. A cube Q in F is subdivided into its children in Qp,; if
Adisty, (center(Q), 9K) < diamy, (Q), (14)

which are then declared to belong to F¢.;. Otherwise Q is not divided and its children are not in F.;.

Let ¥ = F?) = {0Q;,0o,..., 0, ...} denote the set of all cubes Q such that

1. There exists a k for which Q € 7; = 7*’ but the children of Q do not belong to Fis1 = 7.7

11



2. center(Q) € K°.

We will refer to 7 ) as a Whitney decomposition of K, and the cubes included in 7 ?) as Whitney cubes. In
our notation, we will often suppress the dependence of #® on the underlying ¢, norm when the value
of p being used is clear from the context. The following theorem describes the important features of this
construction.

Theorem 3.1. Fix p such that1 < p < co. Let R, < 1 and let K C Ry, - Bo be a convex body. Then, the
following statements hold true for the Whitney decomposition & = F ) of K.

1. UgerQ = K°. Further, if Q € F, then Q ¢ Qq.
2. The interiors Q; are mutually disjoint.

3. For any Whitney cube Q € F,
2 diamg, (Q) < dist, (center(Q),R" \ (K®)) < ;diamgp(Q).
4. For any Whitney cube Q € ¥ andy € Q,
- diam (Q) < disty, (3 B" \ (K)) < 5 diamy, Q).

In particular, this is true when dist,, (y, R" \ (K®)) = dist,, (Q,R" \ (K°)).
5. The ratio of sidelengths of any two abutting cubes lies in {1/2,1,2}.
The proof of this theorem can be found in Appendix A.2.

Remark 3.2. For notational simplicity, we described the construction of Whitney cubes above under the
assumption that K C R - Bo with Ry, < 1. However, it is easy to see that this assumption can be done
away with using a simple scaling operation. If R, > 1, let 2¢ be the smallest integral power of two that
is larger than R.. For any p such that 1 < p < oo, denote by 7 ) (K/2%) the Whitney decomposition of
the scaled body K /2% (which can be constructed as above since R./2* < 1). Now scale each cube in the
decomposition 7 ) (K /2%) up by a factor of 2, and declare this to be the Whitney decomposition ) of K.
Since only linear scalings are performed, all properties guaranteed by Theorem 3.1 for () (K/2%) remain
true for 7 (), except possibly for the property that unit cubes Q € Q) do not belong to ¥ #). Henceforth,
we will therefore drop the requirement that K has to be strictly contained in By, for it to have a Whitney
decomposition F ).

4 Markov chains on Whitney decompositions

Fix a convex body K as in the statement of Theorem 3.1, and a p such that 1 < p < co. We now proceed to
define the Markov chain M,,.

The state space and the stationary distribution The state space of the chain M, is the set ¥ = F (P)
as in the statement of Theorem 3.1. The stationary distribution 7 is defined as

vol (Q)

Q)= ST

for every Q € F. (15)
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Transition probabilities In describing the transition rule below, we will assume that given a point
x which lies in the interior of an unknown cube Q in F®), we can determine Q. The details of how to
algorithmically perform this operation are discussed in the next section.

The transition rule from a cube Q € ¥ is a lazy Metropolis filter, described as follows. With probability
1/2 remain at Q. FElse, pick a uniformly random point x on the boundary of Q. Item 4 of Theorem 3.1
implies that x is in the interior K° of K. Additionally, pick a point x” such that ||x" — x|, = w and
x" — x is parallel to the unique outward normal of the face that x belongs to. With probability 1, there is a
unique abutting cube Q” € ¥ which also contains x. By item 5 of Theorem 3.1, Q’ is also characterised by
being the unique cube in ¥ that contains x” in its interior. If this abutting cube Q’ has side length greater
or equal to Q, then transition to Q’. Otherwise, do the following: with probability % accept the
transition to Q” and with the remaining probability remain at Q.

We now verify that this chain is reversible with respect to the stationary distribution 7 described in
eq. (15). Let P(Q, Q') = P, (Q, Q') denote the probability of transitioning to Q" € ¥ in one step, starting
from Q € ¥. We then have

n_ 1 vol,,—1 (8Q N 3Q") o sidelength (Q’)
PQ.9") = 2 vol,_1 (3Q) o {1’ sidelength (Q) } ' (16)
We thus have (since sidelength (Q) - vol,—; (Q) = 2n - vol, (Q))
,_ vol (Q) 1 vol,—1 (dQ N 3Q") o sidelength (Q")
HQPQO) =TT 2 vl (a0) B {1’ sidelength (Q) } (7)
= ﬁ . VOI”_LS)(QK? %) - min {sidelength (Q’), sidelength (Q)} (18)
=7(Q")P(Q’,Q), by its symmetry in Q and Q. (19)

4.1 Finding the Whitney cube containing a given point

The above description of our Markov chain assumed that we can determine the Whitney cube g € ¥ that a
point z € K° is contained in. We only needed to do this for points z that are not on the boundary of such
cubes, so we assume that z is contained in the interior of g. In particular, this implies that g is uniquely
determined by z (by items 1 and 2 of Theorem 3.1).

Suppose that sidelength (q) = 27, where b is a currently unknown non-negative integer. Note that
since z lies in the interior of g, the construction of Whitney cubes implies that given b and z, ¢ can be
uniquely determined as follows: round each coordinate of the point 2°z down to its integer floor to get
a vertex v € Z", and then take g to be the unique axis-aligned cube of side length 277 with center at
27%(v + (1/2)1). It thus remains to find b.

Assume now that we have access to an “f,-distance inequality oracle” for K, which, on input a point
x € K and an algebraic number y answers “YES” if

dists, (x, R" \ (K°)) >y

2%0-01_fa ctor multi-

and “NO” otherwise, along with an “approximate £,-distance oracle”, which outputs an
plicative approximation dofd (x) := distg, (x,R" \ (K°)) for any input x € K°. When p = 1, such oracles
can be efficiently implemented for any convex body K with a well-guaranteed membership oracle. However,
they may be hard to implement for other p unless K has special properties. We discuss this issue in more

detail in Section 4.1.1 below: here we assume that we have access to such £,-distance oracles for K.
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+0.01

Now, since d is a 2% factor multiplicative approximation of d(x), item 4 of Theorem 3.1 implies that

oo 14 2.4 o
2 5 Up < sidelength (q) < 3 Tip 2001,
Since sidelength (q) = 27?, this gives
3n!/P 3n!/p 10
{logz (7) —-0.01{<b< {logz (7) +10g2 (?) + 001J . (20)

Let byin and by, be the lower and upper bounds in eq. (20). Note that the range [bpin, bmax ] has at most two
integers. We try both these possibilities for b in decreasing order, and check for each possibility whether
the corresponding candidate g obtained as in the previous paragraph is subdivided in accordance with
eq. (14). By the construction of Whitney cubes, the first candidate q that is not subdivided is the correct g
(and least one of the candidate cubes is guaranteed to pass this check). Note that this check requires one
call to the £,-distance inequality oracle for K.

4.1.1 {,-distance oracles for K

When p = 1, the distance oracle can be implemented to O(27%) precision as follows. Given a point x € K°,
consider for each canonical basis vector e; and each sign ¢ = +1, theray {y : (y — x) € Ry - o¢;}. The
intersection y; , of this ray with the boundary of the convex set can be computed to a precision of O(27%)
using binary search and L + O(1) calls to the the membership oracle. The ¢ distance to the complement of
K from x equals min(||y;» — x||1 : i € [n],0 € {-1,1}), provided all the ||y; , — x||; are finite and the point
x is not in K otherwise. The implementation of the ¢;-distance inequality oracle also follows from the same
consideration: for x € K, dist, (x, 9K) > y if and only if all of the points {x + oye; : 1 <i <n,o € {-1,1}}
are in K°.

When p > 1, and K is an arbitrary convex body, there is a non-convex optimization involved in
computing the £,-distance. However, for polytopes with m faces with explicitly given constraints, the
following procedure may be used.

We compute the £,-distance to each face and then take the minimum. These distances have a closed
form expression given as follows. Let K be the intersection of the halfspaces H;, where H; is given by
{y : a; - (y — x) < 1}. The ¢,-distance of x to R" \ H;j is given by

inf x|, = lla; |5}, 21
nf =l = el @)

for 1/p+1/q = 1. To see (21), note that for any a;, equality in ||y — x|, - [|a;|lg = 1, can be achieved by some

y in R \ H; by the fact that equality in Holder’s inequality is achievable for any fixed vector a;.

A note on numerical precision Since we are only concerned with walks that run for polynomially
many steps, it follows as a consequence of the fact that the ratios of the side lengths of abutting cubes lie
in {%, 1,2} (item 5 of Theorem 3.1) that the distance to the boundary cannot change in the course of the
run of the walk by a multiplicative factor that is outside a range of the form [exp(n~C), exp(n®)], where
C is a constant. Due to this, the number of bits needed to represent the side lengths of the cubes used is
never more than a polynomial in the parameters n, R/r and M in Theorem 1.2, and thus L in the description
above can also be chosen to be poly (n, R/r,log(M)) in order to achieve an “approximate ¢ distance oracle”
of the form considered in Section 4.1.1.
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5 Analysis of Markov chains on Whitney decompositions

5.1 An isoperimetric inequality

In this subsection, we take the first step in our strategy for proving a lower bound on the conductance of the
,-multiscale chain M,,, which is to equip K with a suitable metric and prove an isoperimetric inequality
for the corresponding metric-measure space coming from the uniform measure on K. We then relate (in
Section 5.2) the conductance of the chain to the isoperimetric profile of the metric-measure space.

The metric we introduce is a kind of degenerate Finsler metric, in which the norms on the tangent
spaces are rescaled versions of £, by a factor of dist,, (x, 9K )1 so that the distance to the boundary of K in

_1
the local norm is always greater than Q (n Z ) In order to prove the results we need on the isoperimetric

profile, we need to lower bound the volume of a tube of thickness § around a subset S; of K whose measure
is less than 1/2. This is done by considering two cases. First, if S; has a strong presence in the deep interior
of K, we look at the intersection of S; with an inner parallel body, and get the necessary results by appealing
to existing results of Kannan, Lovasz, and Montenegro [KLMO06]. The case when S; does not penetrate
much into the deep interior of K constitutes the bulk of the technical challenge in proving this isoperimetric
inequality. We handle this case by using a radial needle decomposition to fiber Sy, and then proving on a
significant fraction of these needles (namely those given by eq. (53)) an appropriate isoperimetric inequality
from which the desired result follows. We now proceed with the technical details.
Equip K with a family of Minkowski functionals F, : K° X R" — R4, p > 1, defined by

Fp(x,0) = (disty, (x, 0K)) |0l o (22)

for each x € K° and v € R". Note that each F,, is a continuous map that satisfies Fj, (x, av) = |a| F,(x,0)
for each x € K°,v € R" and a € R. Given this, the length lengthgp(y) (for each p > 1) of any piecewise
differentiable curve y : [0,1] — K°, is defined as

1
length, (y) ::/Fp(y(t),y'(t)) dt. (23)
0

(Note that the length of a curve defined as above does not change if the curve is re-parameterized.) This
defines a metric on K° as usual: for x,y € K°,

dist, (x,y) = inf lengthgp () (24)
Y

where the infimum is taken over all piecewise differentiable curves y : [0,1] — K° satisfying y(0) = x and
r(1) =y.

We are now ready to state our isoperimetric inequality.
Theorem 5.1. There exist absolute positive constants Cy, C; and C, such that the following is true. Let K
be a convex body such that r,B, C K C ReBe. Let S1,S;,S3 be a partition of K into three parts such that
disty(S1, Sz) > 8, and vol (S1) < 3vol (K). Define pp, :=rp/Reo < 1. Then, for § < 1, we have the following: if
vol (S1) > exp(—Cyn) - vol (K) then

Pp vol (K)
> LS. . . .
vol (S3) > C; - d-vol (S1) - log (1 +0 9V01 5 (25)
and if vol (S1) < exp(—Cyn) - vol (K) then
vol (53) >Cy- Pp - d - vol (Sl) . (26)
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In the proof of Theorem 5.1, we will need to consider needles analogous to those that appear in the
localization lemma of [LS93]. As described above, however, we will have to analyze such needles in detail
in part 2 of the proof. We therefore proceed to list some of their properties that will be needed in the proof.

Definition 5.2 (Needle). Fix some x, € K such that dist,, (xo, 0K) = maxyex dist, (x,9K) > rp. By a
needle, we mean a set
N, :=Kn{xg+tu : t >0}

where u € S"! is a unit vector. Also define £(N,) := sup{t : xo + tu € K} and in general, £,(N,) :
&(Ny) - lullp.

IA

Note that by the choice of xo, £,(N) > r, for any p and any needle N. Similarly, we also have £, (N)
2Rw.
Let N denote the set of all needles. Clearly, N is in bijection with S""!, and we will often identify a
needle with the corresponding element of S"~!. Let o denote the uniform (Haar) probability measure on
S" 1 and w, the (n — 1)-dimensional surface area of S”"!. Then, for any measurable subset S of K, we
can use a standard coordinate transformation to polar coordinates followed by Fubini’s theorem (see, e.g.,
[BC13, Corollary 2.2] and [EG15, Theorem 3.12]) to write

vol (S) = / Is(x)dx (27)
xeR™\{xo}
= wp, / / Is(xo + rit)r" Ydr o(dit) (28)
r=0 gesn-1
On n
=2 [ )" (50 Nootdw), )
nesSn-1

where for any needle Ny, the probability measure pn, on N is defined as

n

J(SNNy) i=——— - [ Is(xo+rd)r"'d 30
(80N = i [ I+ i lar (30

r=0

t(Ng)

= Lﬂ . Is(xo + ra)r" 'dr for every measurable S C K. (31)

& (Ni) .

r=

More generally, Fubini’s theorem also yields the following. Let A be a Haar-measurable subset of S"~1, S a
measurable subset of K, and set

T=sn| )N (32)

UeA
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Then T itself is measurable and

©n / Ia(@1) - & (Ng)" - pun, (SN Ng)o(di) = a)n/ / Ly (@) Is(xo + rﬁ)r"_ldra(dﬁ) (33)
n
aesn1 r=0 jegn-1
= w, / / Ir(xo + ri)r" Ydro(di) (34)
r=0 gesn-1
=vol (T). (35)

The following alternative description of yy;, will be useful. Let us label the points in N = N, by their
{, distance, along N, from the boundary 9K: thus x, is labelled £,(N). In what follows, we will often
identify, without comment, a point x € N with its label labeln (x) € [0, £,(N)]. Note that labely (xo + tit) =
£,(N) - (1 —t/6(N)). By a slight abuse of notation, we will denote the inverse of the bijective map labely
by N. Thus, the label of the point N(x) € N, where x € [0, £,(N)], is x. The pushforward of yx under the
bijective label map labely is then a probability measure on [0, £,(N)] with the following density, which we
denote again by uy by a slight abuse of notation:

n—1
n X
NG =N (1 - @(N)) ' (36)

We are now ready to begin with the proof of Theorem 5.1.

Proof of Theorem 5.1. Letc; < ¢; < 1and f < a < 1/2 be positive constants to be fixed later. The proof is
divided into two parts, based on the value of Py.g, [distgp (x,9K) 2 cirp/ n].

Part 1: Suppose that Pyg, [dist[P (x,0K) > clrp/n] > p.
In this case, let
K’ := {x € K : dist;, (x,9K) > e17p/n}. (37)

Lemma 2.2 then implies that K’ is convex, and further that xo + {(1 — ¢1/n) (z —x0) : z € K} C K’. This
inclusion implies that
vol (K’) > 0.95vol (K) (38)

provided ¢; < 0.05. Now, by the assumption in this part,

vol (51 NK') ,
Tl (S Py.s, [x €K'] = . 39)

If vol (S3) > %VOI (S1), then we already have the required lower bound on the volume of S;. So we assume
that vol (S3) < %VOI (S1), and get vol (S; U S3) < %vol (K) (where we use the fact that vol (S;) < %VOI (K)).
From eq. (38), we therefore get

1
vol (S, NK’) > vol (K') —vol (S; U S3) > gvol (K). (40)

Note also that since disty, (x, 9K) > c1rp/n for every x € K’, we have

c1rpd

. ’ n < Stp . ’ n < Stp .
dist, (S NK',S$;NK') > — - dlstgP(Sl NK,SNK') > —- dlstgp(Sl,Sz) >
n n
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The isoperimetric constant of K’ can now be bounded from below using a “multiscale” isoperimetric
inequality of Kannan, Lovasz and Montenegro (Theorem 4.3 of [KLMO06]), applied with the underlying
norm being the £, norm.> Applying this result to K’, along with eqgs. (39) to (41) we get

vol (S3) > vol (S3 N K") (42)
c1rpd  vol (S; NK’) vol (S NK”) loe 1+ vol (K’)? (43)
" 2nRs vol (K) vol (§; N K”) vol (S; N K”)
Perrpd vol (K")
> -vol (S;7) -1 1 44
" 16nRy vol (S1) - log | 1+ vol (S;) (44)
peirpd 9 vol(K)
>——-vol(S5)) -1 1+—- i . (38). 45
2 Tonke vol (S1) -log |1+ 0 vols) )’ using eq. (38) (45)
Part 2: Suppose now that P,._g, [diSt[p (x,0K) > clrp/n] < p.
In this case, for any needle N, define the sets
Ni, :=NN {x : disty, (x, 9K) > clrp/n} , and (46)
Nou: :=N N {x : disty, (x, 0K) < clrp/n}, (47)
and consider the set B, of inside-heavy needles, defined as a subset of S"™! as
Bae, = {ﬁ :HNG (Sl N Nﬂ,in) > - UN, (Nan Sl)} . (48)

Note that B, , is a measurable subset of S"~!. Integrating this inequality over all such needles using the
formula in eq. (35), we get

a-vol| SN U N | £ vol[S; N {x : distgp(x, oK) > clrp/n} N U Ny (49)

U€EBy ¢ U€By
< vol (51 N {x : disty, (x, 9K) > clrp/n}) . (50)
By our assumption for this case, we have

vol (51 N {x : disty, (x, 9K) > clrp/n})

vl (5) =Pys, [distgp (x,0K) > clrp/n] < p. (51)
Substituting eq. (51) in eq. (50) gives
vol[S; N U Ny | < b -vol (§1) . (52)
a

UEBy ¢

which shows that when f is small enough compared to @, a point sampled randomly from S; is unlikely to
land in an inside-heavy needle. Let G, , be the set of good needles defined as follows (again, as a subset of
srhy:

Ga,cl = Sn_l \Ba,cl = {12 S Sn_l ¢ HN, (Nﬁ’in N 51) < OUN, (Nﬁ N Sl)} . (53)

3The inequality in [KLMO6] is stated for distance and diameters in £ only, but exactly the same proof works when the distance
and the diameters are both in £ (or in any £, norm), because the final calculation is on a straight line, just as is the case for [LS93].
See Appendix B.1 for details.
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Equation (52) then gives that
vol[S; N U N | > (1 - é)Vol (S1) . (54)
1€Gg,c, a
Our goal now is to show that for every @ € G, ,, we have for the needle N = N
Un(SsNN) > C- un(S; N N). (55)

for some C = C(K). Indeed, given eq. (55), we get that (identifying each needle with the corresponding
element in S"! for ease of notation)

vol (S5) > vol| S5 N U N (56)
NeGg,,
2405 On 6(N)™ - iy (S 1 N)o(dN) (57)
n JGye,
. (55)
e S [ (N (S 0 N)Yo(dN) (58)
N JGg,,
“LVevol|sin | ) N (59)
NEeGg,,
. (54)
o C(l—é)vol (). (60)
[04

We now proceed to the proof of eq. (55). Given a needle N € G, , as above and ¢, > cy, define stub,, (N) as
stub, (N) := {N(x) : x €0, cz{’p(N)/n]} . (61)
In particular, for every y € [0, 1] we have

< x(stuby (N)) =1 (1= %) <y 62)

N <

Note also that since N (£,(N)) = xo with disty, (xo, 9K) > rp, and N(0) € 9K, Lemma 2.2 implies that

£, (N r
i )),aK) > r,
n n

disty, (N ( (63)

More generally, the concavity of dist, (-, 9K) along with the fact that dist,, (xo, 9K) > r, > c17p/n implies
that the labels of the points in the sets Nj, and No,; form a partition of the interval [0, £,(N)] into disjoint
intervals, with xo = N(£,(N)) € Nj, and N(0) € Noy;. Further, from eq. (63), we get that

Nour € N([0,¢1£,(N)/n)]) C stub, (N), and (64)
Nin 2 N((c1£p(N) /n, £,(N)]). (65)

whenever ¢; < ¢s.

19



Nout Nin

c1tp(N) c2tp(N)

Nout Nm

N = stub,, (N)

Figure 2: Various parts of a needle

Some estimates We now record some estimates that follow directly from the above computations. Recall

that ¢; < ¢y. Let N denote stub, (N). Similarly, define (see fig. 2)
Nyys = stub,, (N), and N, := stube, (N) \ stubg, (N).
From eqs. (64) and (65), we then get that

Ny € Nout and N, C NN Nip.

We then have
eq. (67) - eq.(62)
,UN(Nout) < ,UN(Nout) < ¢y
eq. (68)
un(Nin) = 1-c, since N, and Ny, form a partition of N, and

~  €q.(67) ~ ~ ~ eq. (62) ¢
UN(Nin "N) = un(Nin) = un(N) = pn(Nowr) 2 Ez -ci.

Now, when N € G,,, we also have

- eq. (67) -
UN(NinN'S1) < un(Nin NN NS;) < a, and

- eq. (67) ~ Cy
EIN(Nim NN N (52U83)) 2 pun(Nin N (S2 U S3)) = 5 Ta-a

(66)

(67)

(71)

(72)

Here, eq. (71) follows from eq. (53) because N € G, ,. Equation (72) then follows from egs. (70) and (71).
Along with the fact that N;;, and N,,; form a partition of N, eq. (53) for N € G, also yields

UN(S1 N Nowr) < UN (Nour) eq‘<(68) 1

SiNN) < < .
'uN(l ) l1—-«o l1—-« 11—«

20
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Proving eq. (55). Since the conclusion of eq. (55) is trivial when un(S; N N) = 0, we assume that
UN(NNS;) > 0. As N € Gy, eq. (73) yields

- eq. (67) eq. (73)
UN(Nowr N'S1) 2 pN (Nowr NS1) > (1-a)un(N N Sy) > 0. (74)
We now have two cases.
Case 1: un(Niy N'S,) = 0. In this case, eq. (72) implies that
~ c
Un(S3 N N) > pun (S N Niy) > 52 o (75)

Combined with eq. (73), this gives

¢y —2(c1 +a)

S3NN)=2(1-a)-
pn(S50N) 2 (1-a) - =25

-un(S1 N N). (76)

Case 2: yN(Nin N S,) > 0. In this case, we define
t' :=inf {x : N(x£,(N)/n) € Nix N S;} = inf {x € (c1,c2) : N(x{,(N)/n) € S} (77)

and note that that the assumption for the case means that ¢’ exists and satisfies t" > ¢;. We then

define
s:=sup {x <t : N(xt,(N)/n) € S1}. (78)
It follows from eq. (74) that s is well defined. Again using eq. (74) followed by the definition of s, we
then have 2
~ eq. (62
(1-a)pn(S1 N N) < pn(S1 N Noyr) < pn(stubs (N)) < s, (79)
Now, define
ti= inf{x>s : N(xt,(N)/n) 652}. (80)

Note that s <t < t/, and the open segment of N between the points N(sf,(N)/n) and N(t£,(N)/n)
is contained in S3. Thus,

un(SsNN) > un (N((st’p(N)/n,tt’p(N)/n))). (81)

Further, since dist,, (S1,S2) > &, we get that the g, length of the segment from N(s£,(N)/n) to
N(t£,(N)/n) along N must also be at least §. From eq. (63), we see that for any point 7 on this
segment,

. srp
dist,, (z, 9K) > - (82)

Using the definition of the g, metric (see eqgs. (22) to (24)) we therefore get

5 < dist,, (N(st,(N)/n), N(tt,(N)/n)) . oo (N) t—s,

ST
b3 r S
n P

(83)

where £ (N) is the £ length of N (this is because the segment from N(sf,(N)/n) to N(t£,(N)/n)
of N constitutes a (¢ — s)/n fraction of the length of N, in any £; norm). Rearranging, we get

f—s> 2 g5 (84)




Now, a direct calculation using eq. (62) and the convexity of the map x + (1 — x/n)" gives

pn(Ss N N) > pn (N ((s€,(N)/n, t,(N)/n))), from eq. (81), (85)
=(1=s/n)" = (1-t/n)", from eq. (62) (86)
> (1-t/m)" ' (t—s) > (1-cy)(t—s), since t < ¢y, (87)
>(1-cy)-0- [0:8\]) -5, from eq. (84) (88)
>(1-a)-(1-¢c) -6 {’o:(—pN) - pun(S1 N N), from eq. (79). (89)
Combining egs. (76) and (89) we therefore get that eq. (55) holds with
c=min{(1—a)-(1—c2)-5-{mr&), (1—a)-W}. (90)

We can now choose ¢; = 0.05,¢; = 0.5, = 0.1 and f = 0.05. Then, since § < 1, and £o(N) < 2R, the right
hand side above is at least C’p,,é for some absolute constant C” (recall from the statement of the theorem
that p, =r,/Re < 1).

We now combine the results for the two parts (eq. (45), and egs. (60) and (90) and the discussion in the
previous paragraph, respectively) to conclude that there exist positive constants C] and C; such that

vol (K)

. , 1
vol (53) > min {Cl’ ; IOg (1 +0.9- T(Sl)

)} - Cyppd - vol (Sy) . (91)
The existence of constants Cy, C; and C;, as in the statement of the theorem follows immediately from
eq. (91), by considering when each of the two quantities in the minimum above is the smaller one. O

5.2 Bounding the conductance

In this subsection, we prove Theorem 5.3 which gives a lower bound on the conductance of the M, random
walks on Whitney cubes described earlier. In the proof, we will need the following two geometric lemmas,
whose proofs can be found in Appendix A.1. In Section 5.3, we further show that in the worst case, the
conductance lower bound we obtain here for the M, random walks is tight up to a factor of O(logn),
where n is the dimension.

Lemma 5.1. Let K be a convex body, ¥ a Whitney decomposition of it as described in Section 3, and consider
any set S C F. As before, we identify S also with the union of cubes in S. For any cube Q € S, we have

vol, ((Q + €Bx) \ S)
. .

vol,—1 (35S N 9Q) = lim (92)
€lo
Recall that the general definition of surface area uses Minkowski sums with scalings of the Euclidean
unit ball B;. The reason we can work instead with the f,-unit ball B, in Lemma 5.1 is because all the
surfaces involved are unions of finitely many axis-aligned cuboidal surfaces.
The following lemma relates distances in the £,,-norm to distances in the g, metric defined before the
statement of Theorem 5.1.
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Lemma 5.2. Fix a convex body K C R". Then there exists § = (n, p) such that for all € € [0, ], and all
points x,y € K° with
lIx = yllo > € - disty, (x, 9K), (93)

it holds that
disty, (x,y) > —. (94)

N m

We are now ready to state and prove our conductance lower bound.

Theorem 5.3. Fix p such that1 < p < oco. Let K be a convex body such thatry, - B, € K C Rw * Beo. Define
Pp = rp/Rw < 1 as in the statement of Theorem 5.1. The conductance ® = ® p(, of the chain My, on the

Whitney decomposition FP) of K satisfies

o> PP

> —. (95)
O(n2+5)

More precisely, letting Cy be as in the statement of Theorem 5.1, the conductance profile &, for a > exp(—Con)
satisfies

0.9
o, > L0 — - log (1 + —) (96)
and for a < exp(—Con), @, satisfies
Oy > —2 (97)

Proof. Let S € F = F P be such that 7(S) < (1/2). We shall often also view S as the subset of K
corresponding to the union of the cubes in it. For each Q € S and € > 0, consider the set Q. defined by

Qe = U (x + 2¢ disty, (x, aK)Boo) ) (98)
x€Q

Then, by item 4 of Theorem 3.1, we have that dist,, (x,9K) < 5diam,, (Q). Thus, we get that for some
absolute constant C > 0

Qc € Q + Ce diamy, (Q)B = Q + ¢ - Cn'/Psidelength (Q) Be.

Consequently, using Lemma 5.1,

ol Q) _ vol ((Q + Ce diamy, (Q)Bw) \ s)

li 99
ello € T €lo € (99)
= Cdiamy, (Q)vol,—1 (9Q N 9S)
= Cn'/Psidelength (Q) vol,_; (90 N 3S) . (100)
Define S, similarly by
Se = U (x + 2e disty, (x, 8K)Boo) ) (101)
xX€S

Clearly, Se = Uges Qe- Before proceeding, we also note that it follows from Lemma 5.2 that when € € (0, 1)
is sufficiently small (as a function of n and p) then

disty, (S, (K'\ Se)) > e. (102)
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We now compute the ergodic flow of M, out of S.

¥(s) = > mQP(Q.Q) (103)
QeS Q¢S
B 1 vol (Q) . vol,—1 (dQ N 3Q") o sidelength (Q’)
T4z vel(K) vel @) {1’ sidelength (Q) } (from eq. (16)) (104)
B 1 i N sidelength (Q")
= © ; sidelength (Q) Q%‘gvoln_l (0Q N 9Q’) - min {1, —sidelength %) } (105)
> Wll(l() QZES sidelength (Q) - vol,—1 (dQ N 3dS)  (from item 5 of Theorem 3.1) (106)
1 . vol(Qe\S)

> m & lelﬂ’]l — (from eq. (100)) (107)

1 lim Z vol (O \ S)

—1i (from the dominated convergence theorem, see below)
8Cn*1/pyol (K) elo

QeS €
1 ) vol (8¢ \ S) . _
> m hnellsoup — (since S = U Qe). (108)

QeS

Here, to interchange the limit and the sum in eq. (107), one can use, e.g., the dominated convergence
theorem, after noting that %,pcg vol (Q) = vol (S) < oo, and that for all0 < € < 1, and all Q € §, the
discussion following the definition of Q. in eq. (98) implies that

vol (Q¢ \ S) < vol (Qc \ Q)
- €

€

(1 + 2¢ - Cnl/P)n -1

€

< vol (Q) - < vol (Q) - gn,p,

where &,, == (1+ 2Cn1/p)n is a finite positive number that depends only on n and p, and not on Q or €.
Now, as noted above, Lemma 5.2 implies that when € € (0, 1) is sufficiently small (as a function of n and p)
then dist,, (S, (K \ S¢)) > €. We can therefore apply Theorem 5.1 after setting 6 = €, S; = S, S3 = (Sc \ S),
and S; = (K'\ S¢). Let Cy be as in the statement of Theorem 5.1. Applying Theorem 5.1, we then get that if
S is such that 7 (S) < exp(—Cyn), then

w > 0(1)  p, - vol (1) . (109)

Substituting this in eq. (108), we thus get that for such S,

¥(S) > —22 . a(s). (110)

1

O(n1+f7)

We thus get that the value of the conductance profile &, at a« < exp(—-Cyn) is

o, > —LP —. (111)
O(n1+§)
Similarly, when S is such that % > 7(S) > exp(—Cyn), Theorem 5.1 gives
vol (S¢ \ S) Pp vol (K)
> -vol (S;) -1 1+0.9 . 112
e 2 0@ VoG log|1+0.9707s (112)
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Substituting this in eq. (108), we thus get that for such S,

% 1(S) - log(l + ﬂ) (113)

¥(S) = o) 205)

Combining this with eq. (111), we get that the value of the conductance profile ®, at « > exp(—Cyn)
therefore satisfies

9
By > —L2 -log(l + 0—). (114)

Combining egs. (111) and (114), we also get that the conductance ® = @, of the chain M, satisfies

o> L2
O(n2+;)

5.3 Tightness of the conductance bound

We now show that at least in the worst case, the conductance lower bound proved above for the M,, chains
is tight up to a logarithmic factor in the dimension.

Proposition 5.4. Fix1 < p < oo, and the convex body K = [—%, %]”, and consider the Markov chain M, on
the Whitney decomposition F = FP) of K. We then have

logn)

2+

(I)MPSO( -
nr

Proof. We consider the half-cube S; = K N H, where H is the half-space {x : x; < 0}. Note that the
construction of F implies that the boundary of H does not intersect the interior of any Whitney cube in ¥.
Thus, the set S € ¥ of Whitney cubes lying inside S; in fact covers S; fully. In particular, this implies that
m(S) = g (S;) = 1/2.

We now proceed to bound the ergodic flow ¥4, (S) from above. Let A C S be the set of Whitney cubes
whose boundary has a non-zero intersection with the boundary of H. We then note that Py, (g F\S)=0
when g € S\ A (because M,, only moves to abutting cubes) and also that

1
Pm, (g F\S) < o when g € A, (115)
n

since M), chooses a point uniformly at random from the boundary dq of g to propose the next step, and
only one of the 2n faces of g can have a non-trivial intersection with the boundary of H. It follows that

Yar (S) < iJr(A). (116)
p 2n

We will show now that 7(A) < O

logn ) which will complete the proof.

n1+%, ’

To estimate 7(A), we recall that sampling a cube from the probability distribution 7 on ¥ can also be
described as first sampling a point x according to the uniform distribution 7x on K, and then choosing the
cube g € ¥ containing x (as discussed earlier, with probability 1 over the choice of x, there is a unique g
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101 ogn

containing x). Now, let A denote the set of those x € S; which are at £,-distance at most from the
boundary of K, and also at £-distance at least IOOIOgn from the boundary oH of H. Formally,
~ 101 1001
A= {x : disty, (x, 0K) < ogn} N {x : disty_(x,0H) > l—ogn} Si (117)
n
n #

The first condition for x being in A implies, due to item 4 of Theorem 3.1, that the Whitney cube g € 7

1010g" . The sidelength of this q is therefore at most Ologn Combined
n P

with the second condition in the definition of A, this implies that if x € A, then g € S and q ¢ A. Since
A C S, we can now use the translation described above between the probability distributions 7 on ¥ and
g on K to get

7k (A) = Pyory [x € A] < Pgor[qg€Sandq ¢ Al = 2(S\ A) = 2(S) — n(A). (118)

containing x has £,-diameter at most

Now, note that since K is an axis aligned cube, we have diSt[p (x, 9K) = dist,_ (x, 9K) for any x € K and any
fy,-norm, where 1 < p < oo. Using this, a direct calculation gives

. 1 201 ™ 1001 1 1001
JTK(A)ZE'(I—(I— Og”))— Ognzg(l—n‘z‘)) To8R (119)

1 1
n n1+p n1+P

10010gn

Plugging this into eq. (118) and using 7(S) = 1/2 gives 7(A) < n™%/2 + . Using eq. (116), this

gives ¥y, (S) < O IOg"

D, (S) = ¥, () /anS) of S. O

. Since 7(S) = 1/2, this yields the claimed upper bound on the conductance

5.4 Rapid mixing from a cold start: Proof of Theorem 1.2

Given the conductance bound, the proof for rapid mixing from a cold start will from a result of Lovasz and
Simonovits [LS93] ([LS93, Corollary 1.8], as stated in Lemma 2.1). Recall that we denote the multiscale
chain corresponding to the £,-norm by M,,. We say that a starting density 7o is M-warm in the L*(r) sense
if ||no — 1llz2(r) < M. Note that if [|7o]|lc < M — 1, then this criterion is satisfied.

Corollary 5.5. Let 0 < € < 1/2. The mixing time T of M,, to achieve a total variation distance of €, from
any M-warm start (in the L>(rr) sense), obeys

442
M
T<O0 n log
Pp

Proof. If § is bounded above by a polynomial in n, so is p;l. Recall that fz denotes the probability
distribution with density f with respect to 7. As in Lemma 2.1, let nr denote the density (with respect to )
of the distribution obtained after T steps of chain. Since we have

2dry (e, 1) = ll7r = Ul ) < /007 = 1,77 = Doy,
this corollary follows from Lemma 2.1 and the fact that
_Pr
o(n*r)

as shown in eq. (95) in Theorem 5.3. m]

P >
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Proof of Theorem 1.2. The theorem follows immediately from Corollary 5.5 after a few substitutions. Recall
that the notation fv denotes the probability distribution that has density f with respect to v. Let 5, be
the density of the initial M-warm start (with respect to 7x) in the statement of Theorem 1.2, and let
vy = N7k be the corresponding probability distribution on K. Let 1o be the density (with respect to the
distribution 7 on F?)) of the probability distribution v, on ¥ obtained by first sampling a point x
according to v§ and then choosing the cube in %, in which x lies. As argued in the paragraph preceding
Theorem 1.2, the probability distribution v is also M-warm with respect to 7 in the sense that ||7g]|cc < M.
This implies that ||7o — 1[[z2(r) < M + 1. Next, note that p, = R/r by definition, where R and r are as
in the statement of Theorem 1.2. Corollary 5.5 then implies that the total variation distance between
the probability distributions vy := prz and 7 on F® is at most e. This implies that for any function
f:F® - o1],
Egur[f(X)] = Eouur [f(X)] < €. (120)
To prove Theorem 1.2, we now need to show that the probability distribution v/. := 7.7k on K obtained
by first sampling a cube Q from vy = nrx, and then sampling a point uniformly at random from Q (as
discussed in the paragraph preceding Theorem 1.2) is within total variation distance at most ¢ from the
uniform distance zx on K. To do this, we only need to show that for any measurable subset S of K, we have

g (S) —vi(S) < e. (121)

Recall that my denotes the uniform probability distribution on W, where W is any measurable set. For any
measurable subset S of K and a cube Q € ¥ ?), we then have 7x(SNQ) = mo(SNQ) g (Q) = mp(SNQ) 7 (Q)
and v4.(S N Q) = mo(S N Q)vr(Q). Now, since the cubes in F = F (») form a countable partition of K°
(items 1 and 2 of Theorem 3.1), we get that

7 (S) = vi(8) = D mo(SN Q)m(Q) = Y mo(SNQ)vr(Q) (122)
QeF QeF
eq. (120)
=Eg-r [10(SN Q)] =Eg~yy [10(SN Q)] < e (123)
Here, the inequality in eq. (120) is applied with f(Q) := mo(S N Q) € [0, 1]. Equation (123) thus proves
eq. (121) and hence completes the proof of the theorem. ]

5.5 An extension: rapid mixing from a given state

In the following theorem, we state an upper bound on the time taken by M, to achieve a total variation
distance of € from the stationary distribution 7 on the set of cubes starting from a given state. By using
the notion of “average conductance” introduced by Lovéasz and Kannan in [LK99], we save a multiplicative
factor of O(n) (assuming that the starting state is at least 1/poly (n) away from the boundary of the body
K) from what would be obtained from a direct application of the conductance bound above. This is possible
because our lower bound on the value of the conductance profile for small sets is significantly larger than
our lower bound on the worst case value of the conductance.

Theorem 5.6 (Mixing time from a given state). Fix p such that1 < p < oo. Let K be a convex body such
thatr, - By € K C R * Bo. Define pj, := 1 /Reo < 1 as in the statement of Theorem 5.1. Consider the Markov
chain My, defined on the Whitney decomposition F ) of K. Let X; be a Markov chain evolving according to
My, where Xo = Q € F. Suppose that dist, (center(Q), 9K) = d. Given e € (0,1/2), after

1 n'*h nRe 4 n
T=Cloge — | {log —— +n""log | —
Pp d Pp€
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steps, the total variation distance drv (X, 7r) is less than €, for a universal constant C.

In the proof of this theorem, we will need an auxiliary finite version of the M,, chain, that we now
proceed to define. For notational convenience, we will also assume in the proof that the body K is scaled so
that R < 1 (to translate the calculations below back to the general setting, we will need to replace d by
d/Rs).

5.5.1 A family of auxiliary chains M, ,

We consider a finite variant of the multiscale chain M, which we term M, ; where p corresponds to the
fy-norm used and a > 1 is a natural number. In this chain, all the states Q in M, that correspond to cubes
of side length less or equal to 27¢ are fused into a single state, which we call Qo,, which we also identify
with the union of these cubes. The transition probabilities P, , of M, , to and from Q. are defined as
follows, in terms of the transition probabilities P, of M,,. Suppose (the interior of) Q” is disjoint from Qc..

Ppa(Q00) = > Pp(Q.0).

?BQQQDO

2 7m(Q)PF,(Q. Q")

F30C0x

x  7(Q)

¢9Q ngo

Pp,a(QOO> Q/) =

For two cubes Q, Q’ that are disjoint from Q,
Pp,a(Q’ Q,) = PP(Q> Q’)

Finally

% % m(Q)Pp(Q, Q")
F30"C0c0 F350C0x

2 7(Q)

F350C0x

Pp,a(QOOs QOO) =

We now proceed with the proof of Theorem 5.6.

Proof of Theorem 5.6. To avoid cluttering of notation in this proof, we will adopt the standard convention
that different occurrences of the letters C and c can refer to different absolute constants.
By item 3 of Theorem 3.1, for any Whitney cube Q € F,

9
disty, (center(Q), R™ \ (K°)) < 2 diamy, (Q).
Let 277 denote the side length of Q, where b is a positive natural number. Thus,

1
2dn »
5

27t = np diamy, (Q) >

With the notation of Lemma 2.1, we have

(o — 1m0 — 12y = 27" (22"") (vol (K)) — 2(27") (2"") + 1 < 2" (vol (K)).
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Thus, using the inequality 1 — x < exp(—x) for positive x together with Lemma 2.1, we have
(1 =107 = Vi < exp (~07T) 2" (vol (K)).

Since

7z =1l oy < = 1llzzm =y 7 = 177 = Dreey

and R, < 1, we have
O’T\ ne+)
I = Ul r) < exp -2

Substituting ® > ——~—— from eq. (95) we have
O(n**?) R

n(b+1)

2
p n(b+1)
lnr — g < exp _(T) T|27=2 .
O(n""?) - Reo

In order to have || — 1{|11(5) < 2e, it suffices to have

N n(b+ 1)ln2) (O(n2+ll’) -Rm)z‘

T >T(e) := (Iog ((20)7) 2

"p

Let f, 4 be the function from M, to M, , that maps a cube Q € M, to Q if Q is not contained in Q.., and
otherwise maps Q to Q. Recall that X; is a Markov chain evolving according to M, where Xy = Q ¢ Q.
So fpa(X;) evolves according to M, , until the random time 7(Q, Qw) that it hits Q. Let d(e) be the
minimum a such that Q. satisfies the following property:

€

P(7(Q,00) > T (g)] >1- 2. (124)

Let 7 denote the stationary measure of the chain M, , for any nz}tural number a. Note that 7%(Q’) = 7(Q’)
for all Q' that are not contained in Q. Therefore, for any T < T (§), we have the following upper bound:

= €
drv (Xr, 7) < drv (fpa(o (Xr), 1) + 2. (125)

We will next obtain an upper bound on the right hand side by finding an upper bound on the mixing time
of My, 4. The conductance profile of M, , dominates that of M, because for any subset S of the states of
Mp.a; fra(S) is a subset of the states of M, of the same measure, and the transitions of M, , correspond
to that of a chain obtained from fusing the states in Qs as stated in Section 5.5.1.

In preparation for applying the average conductance result of Lovasz and Kannan [LK99] to the chain
My (e), we denote

1
2

1
Hi= — 4 / daz . (126)
q)l/Z (Xq)a

(2a(e)nyo] (K))~1

Here, 1/(2%(9"vol (K)) is a lower bound on the stationary probability 7%(€)(q) of any state g of the finite
state Markov chain M, ;(¢), and ®, = @ Mo 18 the conductance profile of M,. As argued above, this
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conductance profile is dominated by that of M a(e), i, P M, ;0.0 = PM,,« for every my < a < 1/2, where
7o is the minimum stationary probability of any state of M, 5(¢). Using the discussion in [LK99, p. 283,
especially Theorem 2.2] (see also the corrected version [MS01, Theorem 2.2]), we thus get that the mixing
time to reach a total variation distance of €/2 from any state of the finite Markov chain M,, ;) is at most
(for some absolute constant C)

2

CH log (—) . (127)

€
Therefore, by eq. (125), CH log (%) is an upper bound on the the time needed by M, starting at the state
Q to achieve a total variation distance of ¢ to stationarity. It remains to estimate (127) from above. As a
consequence of egs. (96) and (97) in Theorem 5.3,

Pr_ . (x+10g(0.9)), ifx < Con

i
) o(—x) = Oo(n"'?)
p (=) Po if x > Cyn.
O(nHT’)
Therefore,
1
1 d
H o= L / il (128)
D12 ad?
(2a(e)nyo] (K))~1
In(24(9)myol (K))
1 -2
= m+ / @exp(_x)dx (129)
In2
-2 -2
< L2 ) tageon| L2 | (130)

where in the last line we use the assumption Ry, < 1 to upper bound vol (K).
Lastly, we will find an upper bound for a(e). Observe that, by reversibility (see the discussion following
eq. (11)), we have that for all t > 0, ||s+1llc0 = IMp.a(e)ntllco < |7t lloo, and consequently, for all positive ¢,

I7ellee < lImolle < 2"vol (K). (131)

We now proceed to upper bound the total volume of all cubes contained in Q., for any value of the
parameter a used in its definition. Since any cube in Q. has side length at most 274, it follows from item 4
of Theorem 3.1 that any point in such a cube must be at an Euclidean distance of at most 5n?2™¢ < Cn©27¢
from 0K. Define the inner parallel body K, to be the set of all points in K at a Euclidean distance at
least r from K. This set is convex as can be seen from Lemma 2.2. From the above discussion, we also
vol (Qw) < vol (K° \ Kppycg-a).

Now, by the coarea formula for the closed set R” \ K° (see Lemma 3.2.34 on p. 271 of [Fed96]), letting
u(x) be the £, distance of x to R" \ K° (and therefore also to dK), we have

r

vol (K°\ K;) = | Hup_1(u"'(t)) dt = | vol,_; (9K;) dt (132)
frawwa-

0
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where H,,_; is the (n — 1)-dimensional Hausdorff measure. In particular, this, together with
VOln_l (aKt) < VOln_l (aK) s

(which follows from Proposition 2.5) implies

vol (K°\ K,) = / vol,_1 (0K;) dt < r - vol,_1 (9K) . (133)
0

Thus (again using Proposition 2.5, along with the assumption R, < 1, which implies K C By,),
vol (Qw) < C27%nvol,_; (9K) < C2791Cvol,_ (0Bs) < C27%pCHL,

Thus, for all a such that .

onb+2 (f (g))

we have (using eq. (131), and recalling that 1,7 is the probability distribution with density 5, with respect
to %)

Cz—a+nnC+1 <

5

I(5)
P[00 <T(5)| = 3 (nea(Q) <2 (147 (5)) - vol (Q) < .

=0
Thus, from eq. (124), we see that d(e) only needs to satisfy

ce

g-ale) < .
on(b+1) pC+1 (T (%))

Since
T(e/2) < (loge™ +nb) (O(ncp;z)),

we see that d(e) can be chosen so that

2+ pCH+ (Jog €71 + nb) (O(ncpzjz))

a(e) < log ,
ce
which simplifies to
a(e) < C (nb +1log (l)) : (134)
Pp€
Finally, putting together (130) and (134), we have for all € < %,
2 n4+f% n n
CHlog - < Cloge™! log = +n~'log[—|].
Woge_ oge (pf,)(()gd+n Og(ppe))

In light of the discussion following eq. (127) and the choice of d(e), this completes the proof of the claimed
mixing time for M, as well (recall that we assumed by scaling the body that R, < 1). O
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6 Coordinate hit-and-run

Given a convex body K in R” and x; € K, the steps x1, xs, . . ., of the Coordinate Hit-and-Run (CHR) random
walk are generated as follows. Given x;, with probability 1/2, we stay at x;. Otherwise, we uniformly
randomly draw j from [n] and let ¢ be the chord (x; + ¢;R) N K, and then set x;,; to be a uniformly random
point from this segment ¢. In this section, we prove Theorem 1.1, which shows that the CHR random walk
on convex bodies mixes rapidly even from a cold start. Our main technical ingredient is an improvement
(Theorem 6.2) of an isoperimetric inequality of Laddha and Vempala [LV21].

6.1 Isoperimetric inequality for axis-disjoint sets
We need the following definition, due to Laddha and Vempala [LV21].

Definition 6.1 (Axis-disjoint sets [LV21]). Subsets S, S; of R" are said to be axis-disjoint if for all i € [n],
(51 +¢R) NS, = @, where e; is the standard unit vector in the ith coordinate direction. In other words, it is
not possible to “reach” S; from S; by moving along a coordinate direction.

The main technical result of this section is the following isoperimetric inequality for axis-disjoint sets.

Theorem 6.2. Let K be a convex body in R". Denote by ® pq the conductance of the Markov chain M
defined on the Whitney decomposition ) of K. Suppose that K = S; U S; U S is a partition of K into
measurable sets such that Sy, Sy are axis-disjoint. Then,
Pm ,
vol (S3) = Q (n?’_/;) -min{vol (S1),vol (S3)}.

Combined with the results already proved for the multiscale chain M, this implies a conductance bound
(Theorem 6.3), followed by rapid mixing from a cold start (Theorem 1.1), for the CHR walk. Theorem 6.2
should be compared against the main isoperimetric inequality of Laddha and Vempala [LV21, Theorem 3;
Theorem 2 in the arXiv version]. The result of [LV21] essentially required the sets S; and S, to be not too
small: they proved that for any € > 0 and under the same notation as in Theorem 6.2,

vol (S3) = €-Q ( ) - (min{vol (S1),vol (S2)} — € - vol (K)), (135)

n3/2 . R
when the body K satisfies rB, € K € RB;. Such an inequality gives a non-trivial lower bound on the
ratio of vol (S3) and min{vol (S;), vol (Sz)} only when the latter is at least ¢ - vol (K). Further, due to the €
pre-factor, the volume guarantee that it gives for vol (S;) as a multiple of min{vol (S;),vol (Sz)} degrades
as the lower bound imposed on the volumes of the sets S; and S, is lowered. Thus, it cannot lead to a
non-trivial lower bound on the conductance of arbitrarily small sets. As discussed in the technical overview,
this was the main bottleneck leading to the rapid mixing result of Laddha and Vempala [LV21] requiring a
warm start. The proof strategy employed by Narayanan and Srivastava [NS22] for the polynomial time
mixing of CHR from a warm start was different from that of [LV21], but still faced a similar bottleneck:
non-trivial conductance bounds could be obtained only for sets with volume bounded below. In contrast,
Theorem 6.2 allows one to prove a non-trivial conductance bound for sets of arbitrarily small size: see the
proof of Theorem 6.3.

The proof of the inequality in eq. (135) by Laddha and Vempala [LV21] built upon an isoperimetry result
for cubes (Lemma 6.1 below). At a high level, they then combined this with a tiling of the body with a lattice
of fixed width, to reduce the problem to a classical isoperimetric inequality for the Euclidean metric [LS93].
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In part due the fact that they used a lattice of fixed width, they had to “throw away” some of the mass of
the K lying close to the boundary 9K, which led to the troublesome —evol (K) term in eq. (135) above. The
inequality in Theorem 6.2 is able to overcome this barrier and provide a non-trivial conductance bound
even for small sets based on the following two features of our argument. First, at a superficial level, the
multiscale decomposition ensures that we do not have to throw away any mass (on the other hand, not
having a tiling of K by a fixed lattice makes the argument in the proof of Theorem 6.2 more complicated).
Second, and more fundamentally, the multiscale decomposition allows us to indirectly use (through the
connection to the conductance of the M., chain) our isoperimetric inequality (Theorem 5.1), which is
especially oriented for handling sets with a significant amount of mass close to the boundary oK.

We now proceed to the proofs of Theorems 6.2 and 6.3. We begin by listing some results and observations
of Laddha and Vempala [LV21] about axis-disjoint sets.

Lemma 6.1 (Laddha and Vempala [LV21, Lemma 1 in the arXiv version]). Let S;,S; be measurable
axis-disjoint subsets of an axis-aligned cube Q. Set S5 := Q \ (S; U S,). Then,

1 . 1
7o (S3) > on min{7g(51), 7o(S2)} = o 7o(S1) - 7o (S2).
In particular, if mp(S1) < (2/3), then
1
7TQ(53) > QEQ(Sl).
For completeness, we include the proof.

Proof of Lemma 1 of [LV21]. Without loss of generality, we assume that Q = [0, 1]" and vol (S;) < vol (S,),
so that 75 (S) = vol (S1) < (1/2). Denote by projj(Sl) C R™! the (n — 1)-dimensional projection

projj(sl) ={(x1, .., Xj_1, Xj41, .- Xn) * X € Sy}
of S; onto the jth hyperplane. Since S; and S, are axis-disjoint, we have, for every 1 < j < n,

S1 C {x €Q : (X1,...,Xjm1, Xju1, - .., Xp) € projj(Sl)} C (5;US3),

so that vol (S;) > vol,,_; (projj (Sl)) —vol (51). Averaging this over j,

n

7o (83) = vol (S3) > %Z (VOln—l (projj(sl)) —vol (51))

Jj=1

v

n 1/n
(1_[ vol,_1 (projj (Sl))) —vol (S;) (AM-GM inequality)
j=1

\%

vol (S)™/™ —vol (Sy) (Loomis-Whitney inequality)
vol (S;) (21/" - 1) (because vol (S;) < 1/2)

[\

\%

%vol (S1) = % min{7g(S1), 7o (S2)}-

The final comment in the statement follows by considering separately the cases 7o (S;) < 1/4 and 7g(S2) >
1/4. O
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We will need the following corollary.

Lemma 6.2. Let S be a countable union of axis-aligned cubes in R" with disjoint interiors. Let S1,S;, € S
be axis-disjoint and define S3 = S \ (51 U S,). Suppose that np(S1) < (2/3) for each cube Q € S and
7s(S1 U S;3) = 1. Then,

n
S3) > —.
75(S3) > Ton

Proof. If ms(S1) < (n/2), we are done. If (n/2) < 75(S1), the previous lemma gives that
1 1 n
ms(S3) = ) mo($)ms(Q) 2 o ) mo(S)ms(Q) = -ms(S) = 0
Q€S QeS
We will also need the following simple observation.

Lemma 6.3. Let q,q" be axis-aligned cuboids with a common facet, and Sy, S,, S5 a partition of (q U q’) such
that Sy and S, are axis-disjoint. Then, g (S U S3) 2 74(S1).

Proof. Assume without loss of generality that the standard unit vector e; is normal to the common facet f.
By the definition of axis-disjointness, S; does not intersect T := (S; N q) + e;R. In particular,

gNTCq NS US;s).

To conclude,
vol (¢'NT) vol(gNT)

’ U =
T (S1U8) = T T el (g

> ﬂ'q(sl). O

We are now ready to prove Theorem 6.2.

Proof of Theorem 6.2. Assume without loss of generality that vol (S;) < vol (S;). Let ¥ = F(*) be a
multiscale partition of K into axis-aligned cubes as described in Section 3, and split it as

Fi = {Q €F : mp(51) < 2/3} and
Fo={QeF : no(S1) > 2/3}.

As before, given a collection of cubes ¥’ C ¥, we interchangeably use it to denote (Jpes Q. Note that
vol (S; N F7) +vol (S N F7) = vol (S1). Now, if vol (§; N 1) = (1/2)vol (S;), then

vol (S3) > Z vol (53N Q)

Qeh

1
> Z —vol (5N Q) (Lemma 6.1)
8n
Qe

1 1
= 5V01 (Sl N 7:1) = EVOl (51) s

and the claimed lower bound on the volume of S; follows. Therefore, we can assume that
vol (%) = vol (S; N F3) > (1/2)vol (Sy). (136)

For any cube g € ¥, and facet f of g, denote by 7 the fraction of the facet that is incident on %7, and set

Mg =5~ Z nf- (137)

2
n facet f of q
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We shall show that for some universal constant c,

c
vol (S3) > =7 Z ngvol (q) . (138)
qe%2

Let g2 € ¥ and f a facet of g, such that ¢ # 0.

1. Case 1. f is between two cubes of the same sidelength.

Case 1. The red cube is g2 € ¥, and the green is g € #;. The blue facet is f.

Let g be the cube other than g, that is bordering f. Observe that 7 = 1.
Using Lemma 6.3 on g, and g, we get that 7,(S; U S3) > 74,(S1) > (2/3). By Lemma 6.2, 74(S3) >
1/(24n) so
1
vol (S3N¢q) > %ryfvol (g2) - (139)

2. Case 2. The cubes other than g; incident on f are smaller than gs.

4

Case 2. The red cubes are in ¥, and the green in 75. The blue facet is f.

Let T be the set of all cubes of smaller size incident on f, and set T” := T N #7. Recall from item 5 of
Theorem 3.1 that all cubes in T must then have sidelength exactly half the sidelength of g,. We use
two consequences of this fact. First, that, vol (T”) = n¢vol (T) = (1/2)n¢vol (qz). Second, that the
graph with vertex set equal to the set of cubes in T in which two vertices are adjacent if and only if
the corresponding cubes are adjacent and have a facet in common is exactly the (n — 1)-dimensional
Boolean hypercube.
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(a) Case 2(a). ny = (1/2). In this case, vol (T \ T’) < (1/2)vol (T). Using Lemma 6.3 on q; and T,
77 (81 U S3) > 7m4,(S1) = (2/3), so vol (T N (S U S3)) > (2/3)vol (T). Combining, we get

vol (T" N (S1 U S3)) > vol (TN (S;US3)) —vol (T\T') > évol (T) > %VO] (T).

As aresult, 77/ (S; US3) > (1/6). By Lemma 6.2, 77/ (S3) > ﬁ (since each cube in T’ lies in ¥7),
so that

1 1
1 NT) > vol NT) > —vol (T > — 1 . 140
vol (831 T) 2 vol (S0 T") 2 g—vol (T') 2 o—rpvol (g2) (140)

(b) Case 2(b). ny < (1/2). By Lemma 6.3, for any cube g in T’ adjacent to a cube in (T \ T’) C %,
we have 7,(S; U S3) > (2/3). Since g € T” C F1, Lemma 6.2 then implies 7,(S3) > 1/(24n), so
that for such cubes

1
vol (gNS3) > — -vol (q) . (141)
24n

We shall show that there are many such cubes.

To do this, consider the (n — 1)-dimensional hypercube graph with vertex set equal to the set
of cubes T and with two vertices being adjacent if and only if the corresponding cubes are
adjacent in the sense of sharing a facet. Due to Harper’s Theorem [Har66], the vertex expansion
of T” in the hypercube graph is Q(n"'/?) (see Corollary B.3 for more details). In particular, an
Q(n~'/?) fraction of the cubes in T’, which therefore constitute at least an 7 fQ(n_l/ 2) fraction
of the cubes in T, are adjacent to a cube in (T \ T’). The total volume of these cubes is thus
rny(n_l/z) -vol (gz2) /2. Consequently,

5\ €040 1 -1/2 -3/2
vol(S3NT)=vol(S35NT") > T Q(n~“)npvol (qz2) = Q(n"*)npvol (q2) . (142)
n

3. Case 3. The cube g; other than g, incident on f is larger than g5.

/

Case 3. The red cubes are in ¥, and the green in 7.
The blue facet is f. f is the larger facet it is part of.

In this case, ¢ = 1 again. Further, from item 5 of Theorem 3.1, the sidelength of g; is exactly twice
that of go. Let f; be the facet of g; that contains f, and let g be the fraction of f; that is incident on
F2. Let T be the set of all cubes of smaller size incident on f}, and T’ = T N ¥, (note that T’ is now
defined in terms of 3, unlike in Case 2). Clearly, vol (T’) = ngvol (T) = (55 /2)vol (q1). For each
cube g in T, let f; be the facet of q contained in fi, so 7z, = 1 for all such q.
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Noting that 77 (S1) > 7 (S1)2r(T") > (2/3)n5 and using Lemma 6.3 on T and q;, we get that
7q, (81U S3) > (2/3)ny,, so that by Lemma 6.2,

A
S3 N > .
”ql( 30 q1) > 24n
So,
Nfi 1 , 1
> — = — = — .
vol (S3Nqy) = 24nvol (q1) 12nvol (T") o E ng,vol (q) (143)

q€eT’

This allows us to associate a volume of S5 N q; of measure ﬁn 1, vol (q) to each cube g € T, such
that the volumes associated with distinct cubes in T” are disjoint.

From eqs. (139), (140), (142) and (143), we see that each facet f of a cube g in ¥, which abuts a cube in 74
can be associated with a volume of S5 which lies in cubes in ¥ that abut f and which is of measure at least
32y rvol (g), for some universal constant c.

Observe also that for distinct facets f, f” of cubes in ¥, whose normal vectors pointing out of their
respective cubes point in the same direction, these S; volumes are disjoint. Indeed, if f falls in Cases 1
or 2 above, then the cubes in #; which contain the S; volume associated with f and f’ are disjoint. If f
falls in Case 3, f” can share the cube in #; which contains the S;-volume associated with f only if f” abuts
the same cube ¢; in 77 as f does. But in this case, the remark after eq. (143) shows that the S5 volumes
associated with f, f” are still distinct.

Since there are only 2n distinct directions for the outward normal of a facet (two each in each of the n
dimensions) we therefore get

c-n

c
2n-vol (S3) > 7 Z Z ngvol (q) (144)
n qeF, facet f of g
=2n- ZnL?’/Z Z ngvol (q) , using the definition of 1,4 in eq. (137), (145)
qe72

proving eq. (138). Now, note that 7(72) < (3/2)7(S;) < (3/4). In the multiscale walk discussed in earlier
sections, the ergodic flow out of 7, C F was (noting that 1 = F \ 72)

vol,—1 (g’ N 9q) min {1 sidelength (q’)}

BT\ = Y @) 5 Y

P 7 vol,—1 (9q) sidelength (q)
q' abuts q
< Z nq7(q)-
qes2

In particular, because 7(%3) < (3/2)7(S;) < (3/4), we have that

1 1

D 1am(@) = W (Fa F\Fo) 2 J0p, - m(F2) = S @p ().

qc72
Here, the second inequality uses min {7 (%), 7(F \ F2)} = n(F)n(F\F2) = %7{(7“2) (which follows since
7(F2) < 3/4), while the third inequality uses eq. (136) (where it was argued that it is enough to consider
the case where 7(%, N S;) > 7(S1)/2). Plugging this back into eq. (145), we get
D M
vol (S3) = Q (3—/;) vol (51) . |
n
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6.2 Rapid mixing of CHR from a cold start: Proof of Theorem 1.1

Armed with the new isoperimetric inequality for axis-disjoint sets given by Theorem 6.2, we can now
replicate the argument of [LV21] to get a conductance lower-bound bound even for small sets, in place of
the s-conductance bound obtained in that paper, which approached zero as the size of the set approached
zZero.

Theorem 6.3. Let K be a convex body in R", and let ® 51 denote the conductance of the Markov chain Mo
on the Whitney decomposition ) of K. Then, the conductance of the coordinate hit-and-run chain on K is
Q(D n—5/2).

Proof. As stated above, the strategy of the proof is essentially identical to that of [LV21], with the new
ingredient being the isoperimetry for axis-disjoint sets given by Theorem 6.2. Let K = S; U S; be a partition
of K into two parts with 7(S;) < 7(S;z). Fori = 1,2, let

, 1
i =X € Si : PCHR(x’ 53—1') < .
4n

We claim that 5] and S; are axis-disjoint. Suppose instead that they are not, and there is an axis parallel
line ¢ intersecting both of them, with x; € £ N S for i = 1, 2, say. Then,

1 1 V011 (f N S3_i)
- > P .5 S _i Z - —9
4n CrR (i> S3-1) 2n vol; ({NK)

sovol; (/N K) > 2voly (¢NS;) fori = 1, 2. However, this is clearly impossible as vol; (£ N Sy)+vol; (£N Sy) =
vol; (£ N K).

Now, if vol (S]) < (1/2)vol (S;) (or similarly vol (S;) < (1/2)vol (S;)), then (here ¥cur(-, -) denotes
the ergodic flow for the coordinate hit-and-run chain),

’ 1 ’/ 1
Yenr(S1, S2) = Yenur((S1 )\ S7), S2) = Eﬂ(& \S)) > aﬂ(sl)

and we are done. So, assume that vol (S]) > (1/2)vol (S;) for i = 1, 2. In this case

1 7’ /7 o] +1°
Yenr(S1, S2) = 2 (Perr(S1\ S7,S2) + ¥enr(S1,S2 \ S;)) by reversibility,

L (5 \ 8] + (52 \ )

8n

1
8—7T(K\ (S US;)), since K = S; U Sy,
n

v

CCI)/\/(00 ) ’
> Tn(sl) (from Theorem 6.2, since vol (S;) > (1/2)vol (S;))
n
for some universal constant ¢, completing the proof. O

Corollary 6.4. Let K be a convex body such that ro - Boo € K C Reo - Beo. Let poo := F'oo/Reo. Let 7t denote the
uniform measure on K. Let 1 denote the indicator of K. Let 0 < € < 1/2. The number of steps T needed for
CHR to achieve a density nt with respect to &t such that ||nt — 1k||12(x) < €, from a starting density no (with
respect to i) that satisfies ||no — 1x||r2(r) < M obeys

? M
TSO(n—zlog—).
P €
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Proof. Lemma 2.1 applied to CHR gives the following. Let the CHR walk be started from a density o € L?(r)
with respect to the uniform measure on K. Then, after T steps, the density 57, of the measure at time T
with respect to 7, satisfies

2
CHR

2

2T
It = 1kt — 1K)z < (1 - ) (Mo — 1k, Mo = 1K)12 ()

The corollary now follows by applying Theorem 6.3 and the fact that

> P
7 0(n?)

D pq

as shown in eq. (95) in Theorem 5.3. O

Proof of Theorem 1.1. The theorem follows immediately from Corollary 6.4 after a few substitutions. Let 7
be the density of the initial M-warm start vy, with respect to 7. This means ||7o||cc < M, which implies that
7o — 1llz2(ry < M + 1. Next, note that po, = R/r by definition, where R and r are as in the statement of
Theorem 1.1. The theorem now follows from Corollary 6.4 by noting that that the density nr (with respect
to ) of the measure vr obtained after T steps of the CHR walk satisfies

T = 1kl < lln = 1xllez (),

so that Corollary 6.4 implies dry (vr, ) = %”UT = 1gllp1(r) < €/2 for the same T. O

6.3 Mixing of CHR from a point

As discussed in the introduction, a cold start is often trivial to achieve. For example, in the context of
Theorem 1.1 for the coordinate hit-and-run (CHR) walk, where the body K satisfies r - Boo € K C R - Beo,
an exp(poly (n))-warm start can be generated simply by sampling the initial point uniformly at random
from r - Be, provided that the mild condition that R/r < exp(poly (n)) is satisfied. However, for aesthetic
reasons, one may want to prove that the chain mixes rapidly even when started from a given point (i.e.,
when the initial distribution is concentrated on a point). To avoid pathological issues that may arise at a
“corner” of the body, it is usual to assume that this initial point is somewhat far from the boundary of the
body: say at a distance of at least R exp(— poly (n)).

In this section, we prove the following corollary, which shows that the CHR walk mixes in a polynomial
number of steps even when started from a distribution concentrated on a single point of K, provided that
that point is not too close to the boundary of K.

Corollary 6.5 (Mixing time of CHR from a point). There is a universal constant C such that the following is
true. Let K be a convex body such thatr - Boo € K C R - Be,. Consider the coordinate hit-and-run chain on K
started from a point X, satisfying disty_(Xo, 0K) > 8, and let X7 denote the random state of the chain after T
steps. Let € € (0,1/2) be given, and set = [2nlog(6n/e)]. Then, provided that

10R2

T>C —;

R 67
. 10g5+r-10g? , (146)

the total variation distance drv (Xt, k) is less than €.
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Lovasz and Vempala [LV06, Corollary 1.2] pointed out that their mixing time result for the usual
hit-and-run walk from a cold start [LV06, Theorem 1.1] immediately implies a corresponding mixing time
result for hit-and-run starting from a point at distance § > 0 from the boundary as well, by considering the
“warmth” of the distribution obtained by taking a single step of the hit-and-run walk from such a point. The
intuition for the above result for the CHR walk is similar, with the only apparent difficulty being the fact
that after any constant number of steps from a single point, the distribution generated by the CHR walk is
a finite mixture of distributions on lower dimensional subsets of R”, and hence cannot be M-warm with
respect to mx for any finite M (since all such lower dimensional sets have zero probability mass under 7).
The obvious fix is to consider the distribution after about 2nlog(n/e€) steps: by this time, with probability
at least 1 — ¢, the chain would have taken a step in each of the coordinate directions. All we need to check
is that in this time, the chain does not come too close to the boundary either. The proof of Corollary 6.5
formalizes this intuition.

In the proof of Corollary 6.5, we will need the following simple observation.

Observation 6.6. Let K be a convex body, and let x be a point in K such that dist,_(x, dK) > 8. Consider
a chord PQ of K that passes through x (so that P,Q € dK). For a € [0,1], define P, := ax + (1 — a)P and
Qg = ax + (1 —a)Q. Then the segment P,Q, covers a (1 — a)-fraction of the length of PQ, and for any y on
the segment Py, Qg

disty_(y, 9K) = af. (147)

Proof. The claim about the ratios of the length of P,Q, and PQ follows immediately from the definition of
P, and Q. For the second claim, assume without loss of generality that the point y lies between x and P,
(the argument when it lies between x and Q,, is identical). Then, there exists f satisfying 1 > > « such
that y = fx + (1 — f)P. We now use the concavity of dist,_ (x, dK) (Lemma 2.2) to get

disty_ (y, 9K) = dist,_ (fx + (1 — B)P,dK) > pdist, (x,dK) + (1 — p) dist,_ (P, dK) > ad. O
We are now ready to prove Corollary 6.5.

Proof of Corollary 6.5. For convenience of notation, we assume, after scaling the body if necessary, that
R =1 (to translate the calculations below back to the general setting, we will need to replace § by §/R). Let
7 = [2nlog(6n/e)] be as in the statement of the corollary. We will show that after 7 steps, the probability
distribution v of the state X; of the chain can be written as a convex combination of two probability
measures Veold and Vyest:

V= peold + (1 = P) Veests (148)

where 1 > p > 1—¢/3, viest is an arbitrary probability distribution on K, and v¢q is a probability distribution
on K which is M-warm with respect to 7x, for an M satisfying

1 6
long4n-(log%+r-log£ - (149)

Given this, the claimed mixing time result will follow from a direct application of the mixing time bound for
CHR from a cold start (Theorem 1.1). We now proceed to prove the decomposition claimed in eq. (148). The
intuition is that such a decomposition with a reasonable upper bound on M should follow whenever during
the first 7 steps, the chain, with high probability, (i) takes a step at least once in each of the n coordinate
directions, and (ii) does not come too close to the boundary of K. For the above choice of 7, both of these
conditions are seen to be true with high probability. We now proceed to formalize this intuition.
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To do this, we consider the following alternative description of the run of the chain till time 7. Let D;,
for 1 < i < 7, beiid. random variables taking values in {0, 1,2, ..., n} such that for each i, P [D; = 0] = 1/2,
andP [D; = j] = 1/(2n) for 1 £ j < n(the random variables D; capture the direction the CHR walk chooses
when generating the ith point, with D; = 0 corresponding to the lazy choice of not making a step). Fix
K :=¢/(67), and let G;, for 1 < i < 7, be i.i.d. Bernoulli random variables with a parameter of (1 — k).

Now, the distribution of the random variables X, Xy, . . ., X; representing the first r states of the CHR
walk started at X can be described as follows. Given X;_;, where 1 < i < 7, X; is generated as follows: if
D; = 0, set X; = X;_;. Otherwise, let P(Xi=) Q(Xi-1) be the chord of K (with P*Xi-1), Q(Xi-1) ¢ 9K) through
Xi_1, parallel to the standard basis vector ep, of R”. Define P,EXH), Q,(CX"’I) as in Observation 6.6. Let A; be a
point chosen uniformly at random from the segment P01 and let B; be a point chosen uniformly
at random from the remaining length P(Xi-1) Q(Xi-1) \ P,EX"‘I)Q,(CX"‘I) of PXi-) 9Xi1) | Get

i=

(150)

Ai if Gi =1, and
B; ifG;=0.

The independence of the D; and the G;, taken together with the fact that P,EXH) Q,(CXH) constitutes a (1 — k)

fraction of the chord P(X"*)Q(XH), then implies that the distribution of (Xy, X1, X5, . . ., X;) generated in
the above way is identical to the distribution of the first 7 steps of the CHR walk started from X;. Note also
that for any realizations g € {0, 1}" of the G; and d € {0,1,2,...,n}" of the D;, the above process induces a
probability distribution v, on K, such that the probability distribution v of X; can be written as the convex
combination
y = Z P[D =dand G = g] v4,. (151)
de{0,1,2,..,n}"
gef{o.1}7
If G; = 1, then Observation 6.6 implies that dist;_(X;, 0K) > k - dist,_ (Xj—1, 9K). Thus, if G; = 1 for all i,
1<i<r,then
dist,_(X;, 0K) > k'8 > k"5 forall1 <i < 7. (152)

Call avectord € {0,1,2,...,n}" complete if it includes each of the numbers {1, 2, ...,n} at least once. Let p
be the probability that G; = 1 for all 1 < i < 7, and that (D4, Dy, ..., D;) is complete. Then, breaking apart
the sum in eq. (151) into those d and g that satisfy this requirement and those that do not, we get

V= PVgood + (1 - P) Vrests (153)

where vgo0d is a convex combination of those v4, for which d is complete and g = 1, while vyt is a convex
combination of the remaining v 4. From a simple union bound argument, we also get

1 T
1—p£r1<+n(1—%) < €/3. (154)
Thus, to establish the decomposition in eq. (148), we only need to show that when d is complete and g = 1,
Va,g is M-warm with respect to zx for an M satisfying eq. (149) (since a convex combination of M-warm
distributions is also M-warm).

We now prove that for any realization d of the D; and g of the G;, such that d is complete and g = 1,
Va,q satisfies the required warmth condition. For 0 < i < 7, let vg4; be the distribution of X; under this

realization. Let S(i) denote the set of coordinate directions corresponding to the distinct non-zero values
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among di, ds, . . ., d;. For convenience of notation, we relabel the coordinate directions in the order of their
first appearance in d, so that S(i) = {ej 11<j< |S(i)|}. Since d is complete, |S(7)| = n. Define

M; = (1 —x) 7 (2k78) 71D, (155)

Note that the probability distribution vy ,; is supported on the |S(i)|-dimensional set (X, + RISOI
{0}"_|S(i)|) N K. We will show by induction that vy ,; is M;-warm with respect to the standard |S(i)|-
dimensional Lebesgue measure on (X, + RSO x {0} 5D Let p; denote the density of 04,4,i With respect
to the |S(i)| dimensional Lebesgue measure on (X, + RIS® x {0} IS@Iy (implicit in the inductive proof of
warmth below will be an inductive proof of the existence of these densities). Since g = 1, we have from
eq. (152) that forall0 < j < 7,

pj(y) > 0 only if dist, (y, oK) > K/ > Kk'S. (156)

In particular, if p;(y) > 0, then the length of any chord of K through y in any coordinate direction is at
least 2x/§ > 2x76.

In the base case i = 0, we have S(i) = 0 and M; = 1, and vy 4 trivially has density py = 1 (supported
on the single point Xj). In the inductive case i > 1, the density does not change when from step i — 1

to i if d; = 0, so that we get using the induction hypothesis and the form of the M; that at each point z,
pi(z) = pi—1(z) £ Mj_; < M;. We are thus left with the case d; > 1. We break this case into further cases.

Case 1: S( ) = S(i — 1). Note that X; = z is possible only if X;_; = y lies on the chord PQ of K (where
P, Q € 9K) through z in the direction eq,. For such a y, we also have PO = PWQW (where, as defined
in the description before eq. (150), P(y)Q(y) is the chord through y in the direction eg,). Further, since
gi = 1, we see from eq. (150) that the density at z is given by:

(¥) ()
I[z € P, ]
p@= [ ot Ly 157)
y€15Q~ VOll (PK QK )
Using PO = PW QW) we get from Observation 6.6 that
voly (P(y)Q(y)) = (1 - x)vol, (P<y>Q<y>) = (1 - x)vol, (PQ) : (158)

Substituting this along with the induction hypothesis in eq. (157), and using S(i) = S(i — 1), we get
that for every z,

vol; (f’(j) My

— = (1-x)7(2x78)"1SE-DI = pyp, (159)
(1 —x)vol (PQ) 1-x

pi(z) < Mj_y -

which completes the induction in this case.

Case 2: |S(i)| = |S(i — 1)| + 1. In this case, the ith step is the first occurrence of the direction ey, in the
run of the chain. Again, X; = z is possible only if X;_; = y lies on the chord PQ through z in the
direction ey,. But in this case, for each z € (X +RISDI% {O}”_ls(i) |) NK, there is at most one y = y(z),

obtained by setting the d;th coordinate of z equal to the d;th coordinate of x,, for which p;_1(y) > 0

and which lies on a chord through z in the direction e4,. Since we also have g; = 1, we therefore get
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from eq. (150) that the density p; (which is now with respect to an (|S;—;| + 1)-dimensional Lebesgue
measure), is given by
Iz € P 0]

vol; (P,Ey) Q,(cy))
Again, since we have g = 1, we see from eq. (156) (applied with j = i — 1) that if p;_;(y) > 0 then

vol; (P,Ey) Q,(Cy)) = (1-«)voly (P(y)Q(y)) > 2(1 — k) (k7). Substituting this along with the induction
hypothesis in eq. (160), we thus get (using |S(i)| = |S(i — 1)| + 1)

pi(z) = pi-1(y) - (160)

M;_; . ieri
i(2) € ———— < (1-x)71(2k76)"ISE=VIFD = pyp, 161
pile) < oo < (=07 2'D) (161

which completes the induction in this case as well.

We thus get that when d is complete and g = 1, then vgy = vgg4. is M;-warm with respect to the
n-dimensional Lebesgue measure on R" (and is, of course, supported only on K). Since 7 has density
I[- € K]/vol, (K) with respect to the Lebesgue measure, it follows that v4 4 (for such d and g) is M,vol (K)-
warm with respect to 7x. Now, since we assumed K C RB., with R < 1, we have vol (K) < 2". Thus, we
see that when d is complete and g = 1, vg 4 is ((1 —x)™" - 2" - (2x75)™")-warm with respect to 7x. Given
the discussion around eqs. (152) and (153), this completes the proof of the decomposition in eq. (148) (after
recalling that 0 < € < 1/2,7 = [2nlog(6n/e)], and k = ¢/(617)).

Given the decomposition in eq. (148), the claimed bound on the mixing time now follows using an
application of Theorem 1.1 for M-warm starts. From that theorem, we see that that there is an absolute
constant C’ such that when ¢t > T’ := C’ ”952 log(6M/€) (where M is as in eq. (149)) then

r

€
dTV(VcoldMé‘HR, 7g) < g (162)
Using the decomposition of v in eq. (148) and the triangle inequality, this implies that
drv (VMg ) < pdrv (VeoldaMEgr k) + (1 = p)dry (Veest MEgps TK) (163)
eq.(162) ¢ eq. (154) ¢
< pg+(1—p) < 2 (164)

Since v = Ax, M., Where Ay, is the probability distribution on K which puts probability mass 1 on X,
we therefore get that the mixing time from X, up to a total variation distance of € to 7k is at most T’ + 7,
and the claimed bound in the statement of the theorem follows from the expressions given above for M, T’
and 7. |
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Appendix

A Proofs omitted from main text

A.1 Geometry

Here, we provide the omitted proofs of Lemmas 5.1 and 5.2, both of which we restate here for convenience.

Lemma 5.1. Let K be a convex body, ¥ a Whitney decomposition of it as described in Section 3, and consider
any set S C F. As before, we identify S also with the union of cubes in S. For any cube Q € S, we have

vol, ((Q + €Bx) \ S)

€

vol,—1 (8S N dQ) = lim (92)
€lo

Proof. From item 5 of Theorem 3.1, we know that each axis-aligned dyadic cube in S that abuts the axis-
aligned dyadic cube Q must have sidelength whose ratio with the sidelength of Q lies in {2‘1, 1, 2}. Thus,
the area dQ N 9S can be partitioned into a finite set T of disjoint (n — 1)-dimensional axis-aligned cuboids
lying on the surface of Q, each having a non-zero surface area. Let a > 0 be the minimum sidelength over
all the sidelengths of cuboids in T, and let A := vol,_; (dQ N 3S) denote the total surface area of cuboids in
T. Let € be small enough: e.g. € < a/100 suffices. By considering the cuboids obtained by expanding each
side of each cuboid in T by € in both directions, we can then sandwich the n-dimensional volume of the set
(Q + €Bw) \ S as follows:

e\n-1
Ae < vol, ((Q +€Bw) \ S) < Ae - (1 + ;) . (165)

The lemma now follows by dividing by € throughout in eq. (165) and then taking the limit as € | 0. O

Lemma 5.2. Fix a convex body K C R". Then there exists § = 5(n, p) such that for all € € [0, 5], and all
points x,y € K° with
lIx = yllo > € - disty, (x, 9K), (93)

it holds that .
disty, (x,y) > 2 (94)

Proof. Pick & := 1/(2n'/?). Consider the cube L := x + 0.9¢ dist,, (x, 9K)Bs. We then have x € Land y ¢ L.
Further, for any point z € L, we have

dist,, (z, 9K) < disty, (x, 9K) + 0.9€ dist,, (x, 9K) - n'/? <15 dist,, (x, 9K), (166)

since € < 8 = 1/(2n'/?). Now, let y : [0,1] — K° be any piecewise differentiable curve with y(0) = x
and y(1) = y. To prove the lemma, we only need to show that the length of any such curve (in the g,
metric) is at least €/2. We now proceed to do so, by considering the part of the curve that lies within L. Let
to :=1inf {t : y(t) ¢ L}. Note that since y(0) =x € Land y(1) =y ¢ L, t, € (0,1) and y(ty) € dL. We then
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have

[y’ ()leo

ty
length > —dt
ene 99(’/)—/ dist;, (v(2), oK)
0

lo
2
> — "(t)|lcodt, applyi .(166) to y(t) € L,
2 S ey I (Ollde applving . 166)to (1)
0

2

> I =y (o)l = -

2 T < X o Z 7

3 dist, (x, 9K) rito 2

where the last inequality uses that y(#) € JL so that ||x — y ()]l = 0.9€ dist, (x, 9K). Since the curve y is
an arbitrary piecewise differentiable curve connecting x to y, this completes the proof. O
A.2 Properties of Whitney cubes

Here,

we provide a proof of Theorem 3.1, which we restate here for convenience.

Theorem 3.1. Fix p such that1 < p < co. Let Ry, < 1 and let K C Ry - Be be a convex body. Then, the
following statements hold true for the Whitney decomposition F = F?) of K.

1

2.

5.

Uger Q = K°. Further, if Q € ¥, then Q ¢ Q.
The interiors Q; are mutually disjoint.

For any Whitney cube Q € F,
9
2 diamy, (Q) < dist,, (center(Q),R" \ (K°)) < 2 diamy, (Q).
For any Whitney cube Q € ¥ andy € Q,

- diam (Q) < disty, (3 B" \ (K)) < 5 diamy, Q).

In particular, this is true when dist,, (y, R" \ (K°)) = dist,, (Q, R" \ (K®)).

The ratio of sidelengths of any two abutting cubes lies in {1/2, 1, 2}.

Proof of Theorem 3.1. Throughout the proof, we use A = 1/2. At several places in the proof, we will also use
the following simple fact without comment: If Q is an axis-aligned cube and x € Q, then for any 1 < p < oo,
dist,, (center(Q),x) < (1/2) diam,, (Q).

1.

Let x € K°. Choose a positive integer k such that n!/? /2% < ) disty, (x, 9K) /4. Let Q; € Q such that
x € Oy, and let (Ql’){‘:_o1 be cubes such that Q] € Q; is the cube whose child is Q!,, € Q;,;. Note that
each Q] also contains x. Suppose, if possible, that x ¢ (JpesQ. Now consider Q) € Q as above,
which, by its definition, contains x. Observe that

dist, (center(Qy), K) < dist,, (center(Qp), x) < (1/2) diamy, (Q;) = n'/P /2,
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so Q) € Fo. On the other hand, since k was chosen so that (1/2) - diam,, (Q;_,) = diam,,(Q;) =
nl/p j2k < ) dist,, (x, 9K) /4, we have
Adist,, (center(Qy._,), 9K) > Adist,, (x, 9K) — A dist,, (x, center(Qy _,))
> Adisty, (x, 0K) — (1/2) diamy, (Q;._,)
> (2-1/2) diamgp(Q,’c_l) > diamgp(Q,'c_l),
so that even if Q; | were present in %1, it would not be subdivided into its children: this implies

that Q; & F%. Since Q; € ¥y, it follows that there exists a j satisfying 0 < j < k such that Q} €F;
but Q}+1 ¢ ¥jr1. We shall show that QJ’. eF.

To do this, it suffices to show that center(Q;.) € K°. By the definition of j, Q]’. is not sub-divided, so
that we have A dist,, (center(Q}), 9K) > diamy, (Q;.). Suppose, if possible, that center(Q;.) € R™"\ (K°).
Then, dist,, (center(Q}), oK) = dist,, (center(Q;),K), so that

(1/2) diam,, (Q}) > dist,, (center(Q7}), x) > dist, (center(Q}), K) > (1/4) diamy, (Q}),

which is a contradiction since A = 1/2. We have thus shown that K° C Jges Q.

The reverse containment follows because for any cube Q € 7,

dist,, (center(Q),R" \ (K°)) = disty, (center(Q), oK) (because center(Q) € K°)
> (1/2) diamy, (Q) (Q is not further subdivided)
> diamy, (Q), (since A = 1/2)

and as aresult, Q N (R™\ (K°)) = @. This proves the first part of item 1. The second part then follows
since K C R - B With Ry, < 1 implies that K cannot contain any cube in Q.

. If possible, let Q € #; € Q; and Q" € ¥; C Q; be distinct Whitney cubes with i < j, such that
Q° N (Q’)° # @. Note that the interiors of any two distinct cubes in Q; do not intersect, so it must be
the case that i < j. Then, since cubes in Q; are obtained by a sequence of subdivisions of cubes in
Q;, it must be the case that Q’ is a descendant of Q, i.e., obtained by a sequence of subdivisions of Q.
However, since Q € 77, the construction of ; implies that no child of Q can be present in ¥;,;. This
implies that no cube obtained by subdivisions of Q is present in any ¥; for j > i, and thus leads to a
contradiction since Q” € ¥; was required to be a descendant of Q.

. The first inequality is direct since if it did not hold, we would have further subdivided Q, so that Q
would not be in . From item 1, we know that Q ¢ Q; 2 F. So, let k > 0 be such that Q € ¥4, and
let Q’ € F% be its parent whose subdivision led to the inclusion of Q € F¢.;. We then have

2 diamy, (Q) = diam,, (Q”)
> Adist,, (center(Q),R™ \ (K°)) (since Q’ was subdivided)
> Adist, (center(Q),R" \ (K°)) — Adist,, (center(Q’), center(Q))
> Adisty, (center(Q),R"™ \ (K°)) — (1/2) diamy, (Q),

where the last inequality uses the fact that center(Q’) is a vertex of Q. This implies

dist,, (center(Q), R" \ (K°)) < (% + %) diam,, (Q) = gdiamgP(Q). (167)
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4. Set x = center(Q). Also let zy,z, € R" \ (K°) such that dists, (x,zyx) = dists, (x,R" \ (K°)) and
disty, (y, zy) = distg, (y,R" \ (K°)). Then,

disty, (y, zy) > disty, (x, zy) — dist,, (x, y) > dist,, (x, z) — disty, (x, y),

and similarly,
dist,, (y, z,) < disty, (y, zx) < disty, (x, 2x) + dist, (x,y).

Using the upper and lower bounds on disty, (x, zx) derived in item 3 along with the above inequalities
and the bound dist, (x,y) < (1/2) diamy, (Q) yields the claimed bounds.

5. Let Q1,Q; € ¥ be abutting cubes with diam(Q;) > diam(Q;), and let y € Q1 N Q5. Item 4 applied to
both Q; and Q, then gives

gdiamgp (Q1) < disty, (y,R" \ (K°)) < 5diamy, (Q2).

This implies

diamg, (Q2)  sidelength (Q;) _ 3
1> — = — > —.
diam,,(Q1)  sidelength (Q;) — 10

Since the ratio of sidelengths of any two Whitney cubes is an integral power of two, this forces the
ratio of the sidelengths of Q; and Q; to be 1/2. We conclude that if two cubes Q;, Q; € ¥ are abutting,
then the ratio of their sidelengths is an element of the set {1/2, 1, 2}. O

B Some results used in proofs

B.1 The isoperimetric inequality of Kannan, Lovasz and Montenegro

In the proof of Theorem 5.1, an isoperimetric inequality due to Kannan, Lovasz and Montenegro [KLMO06]
was used. In their paper, Kannan, Lovasz and Montenegro state their inequality only when the distance
between the sets and the diameter of the convex body are both measured using the #,-norm. However,
since their proof uses the localization lemma framework of Lovasz and Simonovits [LS93] to reduce the
problem to the setting of a line segment, it applies without any changes even when the corresponding
quantities are measured in any other £, norm, where 1 < p < oo (see, e.g., the statement of Corollary 2.7 of
[LS93]). For completeness, we reproduce the statement of the isoperimetric inequality of Kannan, Lovasz,
and Montenegro in this more general form, and also provide a short sketch of how their proof applies also
in this setting.

Theorem B.1 (Kannan, Lovasz, and Montenegro [KLMO06, Theorem 4.3]). Fix p satisfying1 < p < oo.
Let K be a convex body, and let S1, S, be disjoint measurable subsets of K. Define S3 := K \ (§; U S;). Let
€, D > 0 be such that for any two points x,y € K, dist[p (x,y) < D, and such that distgp (51,S2) > €. Then

€ vol (S1) vol (S5) ‘

1 (K)?
vol (S3) = ) log |1+ vol (K)

vol (K) vol (S1) vol (S2) )~

Proof sketch. The theorem above is stated and proved by Kannan, Lovasz and Montenegro for the case
p = 2 in Section 6.4 of [KLMO06]. To prove the result for other p, simply repeat the same proof (with ¢ and
D defined with respect to £, instead of ;). The only point one has to note is that when [KLMO06] apply
their Lemma 6.1 in the last paragraph of their proof, they only need to consider ratios of lengths which lie
along the same line segment, and such a ratio does not depend upon which £,-norm is used to measure the
corresponding lengths. O

(168)
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B.2 Vertex expansion of the hypercube graph

In this section, we elaborate on the bound on the vertex expansion used in Case 2(b) of the proof of
Theorem 6.2, and restate the relevant results in [AGK76]. We begin by restating some of the notation from
[AGK76].

Let % be a finite set, W a probability distribution on %, and define the product probability distribution
W" on " as

why) = | | W)
i=1
fory e #". Fory,y’ € ¥", introduce the Hamming distance
dy.y) =H1<i<n:y#y}l
For a set 8 C %", define the Hamming neighbourhood I'% of % as
IB:={ye¥" :d(yy’) <1forsomey’ € B}

and the inner boundary 0% of 9 as
OB :=TRB NAB.

Also set
(1) = (2m) 72712,

t

d(t) = / @(x)dx, and
f(s) = @(@7'(5)).

Setting & = {0} in Theorem 5 of [AGK76], we obtain the following.

Theorem B.2 ([AGK?76]). There is a constant a depending only on W such that for any B C %",
W"(0RB) > an” 2 F(W"(B)).

Corollary B.3. Let Q, be the n-dimensional hypercube graph (V,E), where V = {0, 1}" and vertices u,v are
adjacent if and only if their Hamming distance is 1. Set ji to be the uniform distribution on {0, 1}". For any
S C V with u(S) < (1/2), there exists a universal constant ¢ such that

pIEINS)
s - ’

where T'(S) denotes the neighbourhood of vertices in S.

Proof. Setting % = {0,1}, # = S, and W as the uniform distribution on {0, 1} in the previous theorem, we
get that
p(T(S) N S) = en 2 f(u(S)).

To conclude, we note that for p(S) < (1/2), f(u(S)) = ¢’u(S) for a universal constant c. O
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