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Abstract. Given an arbitrary subgraph� “ �= and ? “ ?= P p0, 1q, the planted subgraphmodel

is defined as follows. A statistician observes the union of the “signal,” which is a random “planted”

copy �˚ of �, together with random noise in the form of an instance of an Erdős–Rényi graph

�p=, ?q. �eir goal is to then recover the planted �˚ from the observed graph. Our focus in this

work is to understand the minimum mean squared error (MMSE), defined in terms of recovering

the edges of �˚, as a function of ? and �, for sufficiently large =.

A recent paper [MNS`23] characterizes the graphs for which the limiting (as = grows) MMSE

curve undergoes a sharp phase transition from 0 to 1 as ? increases, a behavior known as the

all-or-nothing phenomenon, up to a mild density assumption on �. However, their techniques

fail to describe the MMSE curves for graphs that do not display such a sharp phase transition. In

this paper, we provide a formula for the limiting MMSE curve for any graph � “ �= , up to the

same mild density assumption. �is curve is expressed in terms of a variational formula over pairs

of subgraphs of �, and is inspired by the celebrated subgraph expectation thresholds from the

probabilistic combinatorics literature [KK07]. Furthermore, we give a polynomial-time description

of the optimizers of this variational problem. �is allows one to efficiently approximately compute

the MMSE curve for any dense graph � when = is large enough. �e proof relies on a novel graph

decomposition of � as well as a new minimax theorem which may be of independent interest.

Our results generalize to the se�ing of minimax rates of recovering arbitrary monotone boolean

properties planted in random noise, where the statistician observes the union of a planted minimal

element � Ď r#s of a monotone property and a random Berp?qb# vector. In this se�ing, we

provide a variational formula inspired by the so-called “fractional” expectation threshold [Tal10],

again describing the MMSE curve (in this case up to a multiplicative constant) for large enough =.
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1. Introduction

Over the past two decades, several influential papers have addressed the limiting (normal-

ized) minimum mean squared error (MMSE) in high-dimensional statistical models, including

[DMK`16, LM17, MT06, RP19] among others. In this paper, we focus on understanding the lim-

iting MMSE in the fundamental problem of recovering planted discrete structures from noisy

random environments.

Amotivating example: planted clique. Averywell-studied discrete high-dimensionalmodel

is the planted cliquemodel, initially defined independently by Jerrum [Jer92] and Kučera [Kuč95].

To define it, we need two parameters, : “ := P ℕ and ? “ ?= P p0, 1q. We assume that the

statistician observes the union of a “signal,” which is a :-clique chosen uniformly at random from

the complete graph  = , and the “noise,” which is an instance of an Erdős–Rényi graph �p=, ?q.
�e goal of the statistician is to recover the planted clique from the observed graph. It should

be noted that there is a large body of work dedicated to understanding the special case where

? “ 1{2 and : “ $p
?
=q. However, it is beneficial for us here to consider the more general case

where : “ := and ? “ ?= can scale arbitrarily with =. �is generality has recently proven useful

in circuit lower bounds [GMZ23] and low-degree lower bounds [YZZ24], among others.

�e planted clique model has been studied extensively due to its conjectured computational

hardness in certain regimes, and has interesting implications for other high-dimensional statis-

tical models (see, e.g., [BBH18] and references therein). From a purely statistical perspective,

[MNS`23] recently computed the limiting MMSE of the model as = grows to infinity, proving

that it converges to a step function, a behavior known as the All-or-Nothing (AoN) phenome-

non (initially discovered in the context of Gaussian sparse regression, first conjectured to hold in

[GZ22] and proven in [RXZ20]).

�e planted subgraph model. Motivated by the extensive study of models similar to the

planted clique model, such as the planted matching model [MMX21, DWXY23] and the planted

dense subgraph model [DMW25], the authors of [MNS`23] initiated the study of the limiting

MMSE for general planted subgraphs (also independently introduced in [Hul22] and [ABI`23]

by the cryptography community). To define this model, for each = P ℕ, fix any (unlabeled) sub-

graph � “ �= of the complete graph  = and some ? “ ?= P p0, 1q. Next, draw a uniformly

random copy �˚ of � in the complete graph. �e statistician observes the graph � on = vertices

which is the edge union of the “signal” �˚ with “noise,” which is an instance of �0 „ �p=, ?q,
i.e., � “ �˚ Y �0. It is easy to verify that this more general model subsumes the problems of

planted clique and planted perfect matching as special cases.

Following [MNS`23], the main object of interest for us is the (normalized) MMSE of the model,

defined as

MMSE=p?q “ 1

|�| min
�̂

�

”
}1�˚ ´ �̂p�q}22

ı
“ 1

|�|�
“
}1�˚ ´ �r1�˚ |�s}22

‰
, (1.1)
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where by 1�˚ we refer the indicator vector of the edges of �˚, 1�˚ P t0, 1up=2q 1. Observe that

MMSE=p?q P r0, 1s, since the trivial estimator �̂ “ 0 a�ains mean squared error 1.

�e main result of [MNS`23] is that for any “weakly dense”2 � “ �= , the planted subgraph

model for � “ �= satisfies the AoN phenomenon (i.e., the MMSE converges to a step function)

if and only if the graph � is balanced, in that max�Ď�
|�|
Ep�q

“ |�|
Ep�q

.3 �e main goal of this paper

is to go beyond the AoN phenomenon, and characterize the MMSE curve for an arbitrary weakly

dense �, for sufficiently large =.

Kahn–Kalai thresholds andBayesian approaches. An easy application of Bayes’ rule shows

that the posterior distribution of the planted subgraph model is the uniform distribution among

all the copies of � “ �= in the observed graph � “ �˚ Y �0, �0 „ �p=, ?q. As a result,

to understand the MMSE one needs to accurately calculate appropriate subgraph counts in �;

specifically, those of the copies of � in � that have a given overlap with the planted copy �˚.

Because the planted graph � “ �= may be arbitrary, naı̈ve first and second moment method

arguments fail to provide good estimates for these subgraph counts. To circumvent this issue,

we derive inspiration from probabilistic combinatorics in the study of the “null” model �p=, ?q,
specifically the “Kahn–Kalai” conjectures on the tightness of expectation thresholds [KK07, Tal10,

FKNP21, PP24].

�e expectation thresholds relate to the following question about subgraph counts: given an

(unlabeled) graph �, at what critical value of ? “ ?2p�q does a copy of � begin to occur in

�p=, ?q with high probability?4 �is has been studied for specific choices of � as far back as the

original works of Erdős and Rényi [ER59, ER60], and has spurred a rich body of work. A series

of conjectures by Kahn and Kalai, later refined by Talagrand, provide simple formulas that are

conjectured to yield the critical threshold ?2 up to a multiplicative $plog |�|q factor.
In particular, a conjecture of Kahn and Kalai, which remains unproven, asserts that the critical

threshold for any � is essentially given by its subgraph expectation threshold, max(Ď� ?1Mp(q,
up to a multiplicative $plog |�|q factor. Here, ?1Mp(q is the first moment threshold for the ap-

pearance of the subgraph (. A straightforward first moment calculation implies that ?1Mp(q is
approximately =´Ep(q{|(| for weakly dense (. More sophisticated first moment methods result in

the expectation threshold [KK07] and the fractional expectation threshold [Tal10], which are now

known to yield the critical threshold up to a multiplicative $plog |�|q due to the breakthrough

works [FKNP21, PP24]. It should also be noted that these results generalize well beyond subgraph

inclusion properties, and identify the critical thresholds for arbitrary monotone properties on a

random discrete universe of points under the product Bernoulli measure.

1�roughout the paper we identify a graph � with its edge set. Hence, by � Ď � we refer to the edge-induced

subgraph � of�. Moreover, note that the MMSE (1.1) in the planted subgraph model is measured in terms of number

of edges recovered.
2�is result concerns graphs � with |�| edges and Ep�q vertices that satisfy |�| “ $pEp�q log Ep�qq.
3Technically, [MNS`23] proves this equivalence for an asymptotic definition of balancedness, but we omit the

details for the introduction.
4More concretely, what is the value of ?2 such that ℙ�„�p=,?2q ra copy of � appears in �s “ 1{2?
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While the original proof of tightness of the fractional expectation threshold in [FKNP21] pro-

ceeds by careful combinatorial arguments, [MNSZ22b] provides an alternate Bayesian proof us-

ing an approach similar to that employed in [MNS`23] to prove the AoN characterization of the

MMSE in the planted subgraph model. In fact, [MNSZ22b] proves the tightness of the fractional

expectation threshold for any �, by bounding the limiting MMSE of the planted subgraph model

corresponding to � from below. �is leads to the following question:

Can one go the other direction, and use the expectation thresholds to characterize the

MMSE for a large family of subgraph models?

Indeed, in this work, we prove that for large =, the MMSE curve is approximately given by a

piecewise-constant function, whose discontinuity points are precisely modifications of the (frac-

tional/subgraph) expectation thresholds of �.

1.1. Main Contributions. As mentioned, our main result is a characterization of the MMSE for

the planted subgraph model for all weakly dense graphs� “ �= (for large enough =). To present

the theorem, recall, as mentioned above, that the subgraph expectation threshold of any weakly

dense � from [KK07] is (approximately) given by max�Ď� =
´Ep�q{|�| (see Lemma A.3 for an exact

statement and a proof of this simple fact). Motivated by this, we define, for any @ P r0, 1q, the
@-modified subgraph expectation threshold of �:

!@ “ p!@q= “ min

"
max

"
=

´
|+p�qz+p(q|

|�z(| : � Ď �, � Ľ (

*
: ( Ď �, |(| ď @|�|

*
. (1.2)

Also set !1 ≔ 0. Inwords, we define !@ as theminimumpossible subgraph expectation threshold

of �z( among all choices of ( with at most @|�| edges.5
Why are the thresholds p!@q@Pr0,1s potentially relevant for the MMSE curve? Assuming the

validity of the subgraph version of the Kahn–Kalai conjecture, !@ approximately corresponds

to the critical density ? such that for some ( Ď � with at most @|�| edges, the graph �z(
appears in �p=, ?q with high probability. In particular, in the planted model, this is precisely the

threshold at which a copy of � appears in the noise that intersects �˚ at some subgraph ( with

at most @|�| edges. �is suggests that !@ could be the threshold such that, as soon as ? ą !@ ,

it is impossible to recover more than a @ fraction of the edges of �˚ because another copy of �

appears in � with |� X �˚| ď @|�|. �en, using standard Bayesian techniques, the above can

be equivalently phrased as ? “ !@ being the threshold at which the MMSE hits 1 ´ @.

However, this line of argument cannot be applied directly to conclude the desired result. Per-

haps the most crucial issue is that the subgraph version of the Kahn–Kalai conjecture remains

open for a growing � “ �= (even restricted to weakly dense �); moreover, even if proved, it

is only expected to approximate ?2p�q to within a multiplicative $plog |�|q factor of the true

critical threshold. Despite such barriers, we are able to prove that the threshold p!@q@Pr0,1s in-

deed characterize (with no multiplicative slack) the points that the MMSE crosses the values

p1 ´ @q@Pr0,1s in the planted subgraph model, confirming the above intuition.

More specifically, our main result can be informally stated as follows.

5Here, by �z(, we refer to the “graph cut” constructed a�er we delete all edges from ( from �: see Definition 2.2

for a precise statement.
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�eorem 1.1 (Informal version of Theorem 3.1 and Theorem 3.6(c)). Let � ą 0, and � “ �= an

arbitrary weakly dense graph. �en, for sufficiently large =, there exists an integer 1 ď " ď |�|
and thresholds 1 “ @" ą ¨ ¨ ¨ ą @1 ą @0 “ 0, such that the following holds for the planted subgraph

model corresponding to �.

‚ For all 8 “ 0, 1, . . . , " ´ 1, if ? P pp1 ` �q!@8`1 , p1 ´ �q!@8q, it holds that
MMSE=p?q “ 1 ´ @8`1 ` >p1q.

For ? ě p1 ` �q!@0 , MMSE=p?q “ 1 ´ >p1q.
‚ �e “discontinuity” points p!@8q8“1,2,...," can be computed in polyp=q time.

Our proof is in fact able to provide an intuitive characterization of the “critical” subgraphs of

�˚ that are recoverable from � as one gradually decreases the noise level ? from one to zero,

revealing that they are in fact highly structured. �e first subgraph of �˚ that is recoverable is

(perhaps naturally) the densest one, i.e., the subgraph �1 a�aining the maximummax�Ď� |�|{Ep�q,
which happens at the critical threshold ? “ !0 “ =´Ep�1q{|�1|. �is results in the first “jump” of

the MMSE from 1 to 1 ´ @1 where @1 “ |�1|
|�|

; in particular, if ? ă !@1 , a @1-fraction of the edges

of � (corresponding to the subset �p1q :“ �1) can be recovered. As we continue decreasing ?,

the next critical subgraph is the densest one a�er deleting the graph �1 from �. �is produces

the next jump in the MMSE at critical probability ? “ !@1 “ max�Ď�z�1 =
´Ep�q{|�| “ =´Ep�2q{|�2|

from 1 ´ @1 to 1 ´ @2 for @2 “ |�2|`|�1|
|�|

; in particular, if ? ă !@2 , a @2-fraction of the edges of

� (corresponding to �p2q
≔ �1 Y �2) can be recovered. Continuing this “peeling process” of �

produces a sequence of these critical subgraphs �p8q, 8 “ 1, 2, . . . , " which we define later as

the “onion decomposition” of � (see Figure 1 for a pictorial depiction of these thresholds, and

Definition 3.3 for more precise details). We direct the reader to Corollary 3.8 and the discussion

a�er it for more precise statements.

Our proof of �eorem 1.1, in addition to employing Bayesian statistical tools such as the

planting trick [ACO08], is combinatorial in nature and involves a novel minimax argument (see

Lemma 6.3)—we are able to show that the min and max in the definition of !@ can be swapped,

which is crucial in establishing our main result and to the best of our knowledge not implied by

any standard minimax result. We believe that the onion decomposition, and the aforementioned

minimax result we prove with it, may be of independent interest. We also remark that we give

an efficient algorithm to compute the onion decomposition of any graph (see Theorem 3.6), and

hence its approximate MMSE curve for large =. A pictorial depiction of this decomposition, and

its relation to the MMSE, is shown in Figure 1.

Althoughwe do not prove the subgraph Kahn–Kalai conjecture (also called the “second” Kahn–

Kalai conjecture in [MNSZ22a]), our work gives a clear statistical meaning to (variants of) the

subgraph expectation thresholds from probabilistic combinatorics. For example, our main result

implies that as long as @1 “ |�1|
|�|

“ Ωp1q for �p1q the densest subgraph of �, the original subgraph

expectation threshold of �, max�Ď� =
´Ep�q{|�|, is exactly (without any logarithmic multiplicative

error!) the critical noise level ? at which the MMSE jumps from being trivial (equal to 1), to a

non-trivial value (i.e., a value strictly less than 1). �e location of the noise level at which the

MMSE ceases to be trivial is a well-studied object in the literature known as the “weak recovery”
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@1 @2 @3 @4

?

MMSE

!@3 !@2 !@1 !@0
0 “ 1 ´ @4

1 ´ @3

1 ´ @2

1 ´ @1

1

Figure 1. A pictorial representation of the onion decomposition of a graph (le�)

and the corresponding MMSE curve (right). Each @8 represents the cumulative

fraction of the graph included in all layers starting from the center till the 8th

layer; hence @4 “ 1. �e critical thresholds described above are denoted by !,

following the notation in our theorem statement below.

threshold of � in the planted subgraph model and there has been an intense study of the weak

recovery thresholds for various planted models in the statistical physics, information theory and

statistics communities (see e.g., [COKPZ17] and references therein).

Let us now define the weak recovery threshold in our context.

Definition 1.2. For any � “ �= and � P p0, 1q we define the �-recovery recovery threshold

?� “ ?�p�q as
?� “ ?�p�=q :“ supt? P r0, 1s : MMSE=p?q ď 1 ´ �u.

�e planted subgraph model for � is said to have a (sharp) weak recovery threshold if for some

�0 ą 0, for all 0 ă � ă �0, if = is sufficiently large, it holds that

?� “ p1 ` >p1qq?�0 ,

that is, the MMSE “jumps” at the value ?�0 from 1 ´ >p1q to 1 ´ Ωp1q. In that case, we call the

sharp weak recovery threshold of � “ �= to be

?WR “ ?WRp�q ≔ ?�0 .

We state this result in the following informal corollary.

Corollary 1.3 (Informal, based on Theorem 3.6 and Corollary 3.8). Let � ą 0, and � “ �=

an arbitrary weakly dense graph. Suppose that for �p1q “ argmax�Ď� |�|{Ep�q it holds that @1 “
|�1|{|�| “ Ωp1q; a property referred to as � being delocalized in [MNS`23, Definition 4.3]. �en,

the planted subgraph model for � has a sharp weak recovery threshold. Moreover, this threshold

?WRp�q is equal to the subgraph expectation threshold of �, that is,

?WRp�q “ p1 ` >p1qqmax
�Ď�

=´Ep�q{|�|.
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Notably, the weak recovery threshold has also been called “the condensation threshold” of the

model in the literature of statistical physics [COKPZ17], due to an underlying I-MMSE relation

linking the discontinuities of the MMSE and the first-order discontinuities of the free energy of

the model. Interestingly, no such I-MMSE relation is currently known for the planted subgraph

model for all �, despite multiple partial results for specific choices of �. To our knowledge, the

best such general result is a one-sided I-MMSE relation proven in [MNS`23, Lemma 5.9].

Beyond (weakly dense) graphsN “ Nn : planting arbitrarymonotone properties. Recall

that the theory of fractional expectation thresholds has been established in [FKNP21] (as conjec-

tured in [Tal10]) to correctly predict the critical threshold ? for any � up to a multiplicative

logarithmic factor. More generally, it predicts the critical threshold ? at which any monotone

property is satisfied in an instance of Bernoullip?qb# (again, up to a multiplicative logarithmic

factor). Given this, it is natural to ask whether our result can be generalized to understand the

limiting MMSE curve when planting arbitrary monotone properties in Bernoullip?qb# noise.

We succeed in doing so, albeit at the cost of a constant multiplicative loss in the threshold. Our

results hold under a worst-case prior over the planted element of the property, a standard se�ing

known as the study of minimax estimation rates in statistics. As a special case, our result applies

to the planted subgraph model for any subgraph � “ �= and yields the order of the density ?

under which the MMSE of the planted subgraph model for � crosses any specific value in p0, 1q.
We direct the reader to Section 4 for details on this general case.

�e proof of this result is based on a modification of the fractional expectation thresholds

(analogous to how !@ is a modification of the subgraph expectation threshold), a strong duality

trick first observed by Talagrand [Tal10], and finally a modification of the Bayesian proof of the

spread lemma in [MNS`23]. We refer the reader to Theorem 4.5 for a precise statement of this

result.

Relatedwork. �e limitingMMSE of various high dimensional statistical models has been ana-

lyzed in a number of recent influential works. Notable characterizations of the limiting MMSE in-

clude the exact computation for the spiked rank-onematrixmodel under Gaussian noise [DMK`16,

LM17] (conjectured in [LKZ15]) and the random linear estimation problem with a Gaussian fea-

ture matrix [MT06, RP19] (conjectured in [Tan02, GV05]). In many cases, the approach begins

with a non-rigorous yet remarkably precise calculation of themodel’s free energy via the “replica”

or “cavity” methods, which also yields a conjectured exact formula for the limiting MMSE. In

some cases, such as those mentioned above, the validity of these conjectured formulas has later

been rigorously proven. However, our techniques fundamentally differ from those used here, and

operate in a se�ing where typical assumptions in statistical physics literature do not hold. For

instance, for our main result Theorem 1.1, the planted subgraph � “ �= is only assumed to be

weakly dense for each =, and in particular no product-like structure is assumed on its entries as is

o�en the case for statistical physics techniques. Moreover, for our general results on monotone

properties (Theorem 4.5), no assumption whatsoever is made on the planted discrete structure

other than it being of a known cardinality.

In another related line of work, the goal is to prove properties of the limiting MMSE curve for

specific planted models. Notable examples include [RXZ20] that understood the limiting MMSE
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curve in sparse linear regression and proved the AoN phenomenon, and [DWXY23, GSXY25] that

studied the MMSE for the planted matching problem. Our work again differs from these results

in that it applies to a larger family of priors with much less structure—for instance, the planted

matching model is a special case of our planted subgraph model with � a perfect matching so

Theorem 4.5 is directly applicable (as the perfect matching is not a weakly dense graph, we cannot

apply the stronger Theorem 3.1). Moreover, our proof crucially differs in the proof techniques we

employ to the previous works. Most of the above works are based on involved second moment

methods (e.g., in [RXZ20]) or algorithmic construction arguments (e.g., in [DWXY23]). Yet, in

this work we analyze the limiting MMSE curves by leveraging Bayesian techniques, such as the

planting trick [ACO08], alongside state-of-the-art combinatorics results and arguments using

the structure of the (fractional) expectation thresholds, such as the duality trick of Talagrand

[Tal10]. We hope that the combinatorics techniques introduced in this work will be useful in

understanding more minimax rates or MMSE curves in the high-dimensional statistics literature.

2. Getting started

We now define several notions that will be useful in presenting and proving our main results

below.

2.1. Graph�eory. We start by introducing a few definitions from graph theory.

First, as mentioned in the introduction, in this paper we identify a graph ) with its edge set

) Ď
`r=s

2

˘
. Moreover, its vertex set+p)q is the set of all vertices in  = adjacent to at least one edge

of ). Hence, we use the notations |)| to refer to the number of edges in ) and Ep)q ≔ |+p)q| to
refer to the number of vertices in ). Finally, we define it’s density as �p)q ≔ |)|{Ep)q.
We now define the notion of a weakly dense graph.

Definition 2.1. Consider a sequence of graphs � “ �= , = P ℕ. We say that a graph � “ �= is

weakly dense if

lim inf
=

|�=|
Ep�=q log Ep�=q “ `8.

We o�en simplify notation in this work and refer to � “ �= as a graph, instead of a sequence

of graphs indexed by =.

Now, we introduce a non-standard definition in graph theory, which we term a “graph-cut,”

which can intuitively be viewed as a graph “modulo” a specific subset of its vertices. �is defini-

tion will be useful in understanding the properties of the onion decomposition of a graph � (see

Section 5).

Definition 2.2. A “graph-cut” on = vertices is defined by a triplet � “ p+, (, �q, where ( Ď + Ď
r=s, and

� Ď  +z ( “ ttD, Eu : D, E P + and at most one of D, E is in (u .
We further denote its number of edges |�| ≔ |�|, its number of vertices Ep�q ≔ |+z(|, and if

( Ĺ + , its density

�p�q ≔ |�|
Ep�q “ |�|

|+z(| . (2.1)
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If +z( “ H, we define �p�q :“ `8, using the convention that 1
�p�q

“ 1
8 “ 0. Note that any

graph can trivially be considered a graph-cut by choosing ( “ H.

Towards succinctness, given a graph )1 and subgraph )2 Ď )1, we use )2|)1 to denote the

graph-cut p+p)1q, +p)2q, )1z)2q. In particular,

�p)1|)2q ≔
|)1| ´ |)2|

|+p)1qz+p)2q| . (2.2)

2.2. MonotoneProperties andExpectation�resholds. Nowwe turn to some required back-

ground from combinatorics. Let X be a finite universe of points. We start with defining a mono-

tone property.

Definition 2.3. A monotone property �̃ in the finite universe X is a collection of subsets of X ,

such that for any � P �̃ if � Ď � then � P �̃. An element � P �̃ is called a minimal element of

�̃ if there is no �1 P �̃ with �1 Ĺ �.

Observe that a monotone property �̃ is fully characterized by the set of minimal elements of

�̃. We can define the fractional expectation threshold of a monotone property as in [Tal10].

Definition 2.4 (Fractional expectation threshold). Fix any monotone property �̃ in a finite uni-

verse X. We define

?FEp�̃q ≔ max
FP,

 
ℰ

´1
F p1{2q

(
,

where ℰFp?q ≔
ř
)ĎX Fp)q?|)|, and, is the set of all “fractional covers”F which are functions

F : 2X Ñ r0, 1s such that for any minimal element � of �̃,
ř
)Ď� Fp)q ě 1.

It turns out that that the fractional expectation threshold is a natural lower bound for the critical

probability ?2p�̃q (via a relatively simple “fractional” union bound argument) for the property of

interest to be satisfied under the product Berp?qmeasure onX [Tal10]. Importantly, because of its

fractional nature, a strong duality trick observed by Talagrand in [Tal10] leads to a representation

of ?FEp�̃q in terms of so-called “spread” measures on the minimal elements of �̃ [ALWZ20].

�en, the breakthrough work [FKNP21] used this representation and proved that ?FEp�̃q also

upper bounds ?2p�̃q, up to a logarithmic multiplicative factor. As the critical probability ?2p�̃q
is not the focus of this work, we refer the interested reader to [FKNP21] for more details. We

only highlight that the same duality trick is in fact crucial in our work in order to obtain our

general connection between minimax rates and variants of the fractional expectation thresholds

in Section 7.

3. Main Results I: Planting a Weakly Dense �

3.1. Characterizing theMMSE curve via the !@ thresholds. We start with our first andmain

result in this section. For any @ P r0, 1q, we identify the noise level ? (up to 1 ` >p1q error) at
which the MMSE curve crosses the threshold 1 ´ @. Recall the definition of !@ from (1.2).

�eorem 3.1. Consider any (sequence of) weakly dense � “ �= and @ P r0, 1q. �en, for the

planted subgraph model corresponding to �, the following holds as = grows to infinity.
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(a) If lim inf= ?{!@ ą 1, then

lim inf
=

MMSE=p?q ě 1 ´ @.

(b) If lim sup= ?{!@ ă 1, then

lim sup
=

MMSE=p?q ď 1 ´ @.

In particular, for any constant @ P r0, 1s, there exists some sequence of noise levels ? “ ?= satisfying

lim
=
?{!@ “ 1

for which it holds

lim
=

MMSE=p?q “ 1 ´ @.

�e proof of the theorem is deferred to Section 6.

Remark 3.2 (�e MMSE curve using the discontinuities of !@). Theorem 3.1 can be used to

extract non-trivial structure for the MMSE=p?q curve from the behavior of the points p!@q@Pr0,1q.

Observe that !@ is a piecewise constant function of @, since for any � “ �p�q ą 0 small enough,

!@ “ !@`�. For example, this holds if tp@ ` �q|�|u “ t@|�|u since in both these cases the same

collection of subsets ( Ď � is considered inside the minimum operation in the definition of !@ .

�is implies that one can choose the minimal possible integer 0 ď " ď |�| for which there

exist points 1 “ @" ą @"´1 ą . . . ą @1 ą @0 “ 0 such that !@ is constant on the intervals

r@8`1, @8q, 8 “ 0, 1, . . . , " ´ 1. In terms of the MMSE, Theorem 3.1 implies that if for some

8 “ 0, 1, . . . , " ´ 1 we have !@8 “ p1 ` Ωp1qq!@8`1 , then for any � ą 0 if ? satisfies

p1 ` �q!@8`1 ď ? ď p1 ´ �q!@8

then

MMSE=p?q “ 1 ´ @8`1 ` >p1q,

and if ? ě p1 ` �q!@0 , MMSE=p?q “ 1 ´ >p1q.
Indeed, if ? ď p1 ´ �q!@8 then for any � ą 0 we have ? ď p1 ´ �q!@8`1´� and therefore

MMSE=p?q ď 1 ´ @8`1 ` � ` >p1q by Theorem 3.1(b). Since � ą 0 can be made arbitrarly small,

we conclude MMSE=p?q ď 1 ´ @8`1 ` >p1q. For the other direction, we have p1 ` �q!@8`1 ď ?

and thus MMSE=p?q ě 1 ´ @8`1 ´ >p1q again by Theorem 3.1(a) and the fact that MMSE=p?q is
a non-increasing function of ?. �e result follows. �e proof when ? ě p1 ` �q!@0 is analogous.

Based on Remark 3.2, to further understand the MMSE curve one needs to understand the

discontinuity points of the piecewise constant function, p!@q. At first sight, !@ is a minimax

problem over exponentially many subgraphs, suggesting that such an analysis would be very

challenging. Despite this, our next result is a full combinatorial characterization of !@ based on

a peeling process which we term the onion decomposition of �.
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3.2. Simplifying the !@ thresholds via the onion decomposition of �. We start with for-

mally defining the onion decomposition here. Recall fromDefinition 2.2 that �p�1|�2q ≔ |�1z�2|
|+p�1qz+p�2q|

for any graphs �2 Ď �1.

Definition 3.3 (Onion decomposition of �). Let � “ �= be an arbitrary graph � “ �= .

Consider the following procedure generating an increasing sequence of subgraphs �p0q, �p1q, ¨ ¨ ¨
of �.

(i) Set �p0q “ H.

(ii) For each C ą 0, let �pCq be a maximal subgraph in argmax�Ľ�pC´1q �p�|�pC´1qq6.
(iii) If �pCq “ �, stop.

Let " “ "p�q ď |�| be the number of steps required until the above process terminates. We

refer to the outcome of this process, �pCq, C “ 0, 1, 2, . . . , ", as the onion decomposition of �.

In words, the decomposition proceeds by se�ing �p1q as the densest subgraph of �, then re-

moves �p1q and denotes by �p2q the new densest subgraph, and so on.

Remark 3.4. Observe for intuition that if the graph is balanced [ER60], that ismax�Ď� |�|{Ep�q “
|�|{+p�q, then " “ 1 and �p0q “ H, �p1q “ �.

Remark 3.5. Note that we refer to Definition 3.3 as the onion decomposition of �. �is is be-

cause, as stated in Theorem 3.6 below, the choice of �pCq turns out to be unique for all C.

�e following key combinatorial lemma establishes an important relation between the onion

decomposition and the function p!@q@Pr0,1s.

�eorem 3.6. For any graph � “ �= , let �
pCq, C “ 0, 1, 2, . . . , " be its onion decomposition from

Definition 3.3. �e following holds.

(a) For any C “ 0, 1, 2, . . . , " ´ 1, given �pCq, the choice of �pC`1q is unique in step (ii) of the

procedure. �at is, the onion decomposition of a given graph � is unique.

(b) For any @ P r0, 1q, let C “ Cp@q be such that |�pCq|{|�| ď @ ă |�pC`1q|{|�|. �en

!@ “ =
´

|+p�pC`1qqz+p�pCqq|

|�pC`1qz�pCq| “ =
´ 1

�p�pC`1q|�pCqq ,

i.e., the pair p( “ �pCq, � “ �pC`1qq is a minimax optimal pair in the definition of !@ in (1.2).

(c) �e onion decomposition of �, and in particular, the function p!@q@Pr0,1s can be computed in

time which is polynomial in |�|.
�e proof of these parts are based on a novel minimax duality principle that could be of inde-

pendent interest. We defer the proof to Section 5.

Remark 3.7. (On the computability of !@ .) Recall that !@ is defined using theminimax optimiza-

tion problemwhere both the minimum and the maximum operation is defined over exponentially

many subsets of �. Fortunately, the simple structural characterization of Theorem 3.6 (a) and (b)

allows us to reduce the problem to a modification of the densest subgraph problem, for which a

polynomial time algorithm is known due to [Cha00]. �e fact that we are working with graph-

cuts introduces some complications, see Section 5.3 for details.

6Maximality here means that there is no �1 Ľ �pCq such that �1 also maximizes the density �p�|�pC´1qq.
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Now notice that Remark 3.2 characterizes the MMSE using !@ , and Theorem 3.6 character-

izes !@ using the onion decomposition of �. Hence, their combination allows us to obtain the

following corollary directly, which characterizes the MMSE at a much finer detail than before.

Corollary 3.8. For any weakly dense graph � “ �= let �pCq, C “ 0, 1, 2, . . . , " be its onion

decomposition from Definition 3.3. If for some C “ 0, 1, 2, . . . , " ´ 1 it holds that

|+p�pC`1qqz+p�pCqq|
|�pC`1qz�pCq|

´ |+p�pCqqz+p�pC´1qq|
|�pCqz�pC´1q|

“ Ω

ˆ
1

log =

˙
, (3.1)

then for any � ą 0 if

p1 ` �q=
´

|+p�pC`1qqz+p�pCqq|

|�pC`1qz�pCq| ď ? ď p1 ´ �q=
´

|+p�pCqz+p�pC´1qq|

|�pCqz�pC´1q| , (3.2)

where in (3.2) we treat for convenience =´0{0
≔ 1, it holds that

MMSE=p?q “ 1 ´ |�pCq|{|�| ` >p1q.

Moreover, for any � ą 0 if ? ď p1 ´ �q=
´

|+p�p"qz+p�p"´1qq|

|�p"qz�p"´1q| then

MMSE=p?q “ 1 ´ |�p"q|{|�| ` >p1q “ >p1q.

�e proof is deferred to Section 8. Some remarks are in order.

Remark 3.9. (On the “jump” assumption (3.1).) Assumption (3.1) asks that at the pC`1qth step of
the onion decomposition, the maximum density |�pCq|{|+p�pCqq| reached has a non-trivial “jump”

from the Cth step. �e role of the assumption is to ensure that the interval for ? considered in (3.2)

is non-vacuous. Besides being of a technical nature, we highlight that the assumption is in fact

satisfied for many � of interest: for example, it can be straightforwardly checked to be satisfied

for all steps C for any graph � with size sub-logarithmic, i.e., satisfying |�| “ >plog =q (also see

Section 3.4 for more examples of such �.)

�e reason we require the assumption is that, in our main result Theorem 3.1, a small 1 `
Ωp1q room between ? and !@ is needed to derive the asymptotic bounds on MMSE=p?q. We

believe studying the behavior of the MMSE for ? being p1` >p1qq-close to the thresholds !@ , i.e.,
understanding the “sharpness” of these transitions [FB`99, GMZ23], to be an interesting direction

for future work.

Remark 3.10. (Interpretation of Corollary 3.8 and the subgraph expectation threshold) For this

remark, assume a weakly dense� such that the assumption (3.1) holds for all steps C of the onion

decomposition. �en, we highlight two interesting implications of Corollary 3.8 in terms of the

different values the MMSE can take and the thresholds that are the MMSE discontinuity points.

First, notice that Corollary 3.8 tells us that for any noise level ? satisfying (3.2), the Bayes-

optimal performance is achieved by an estimator that recovers exactly the edges of the �pCq sub-

graph in �˚, up to an additive >p1q error. One can therefore interpret our result as saying that

for all noise levels ?, the maximal possible subgraphs of � that can be recovered is always a pre-

scribed element of the onion decomposition of�. As the noise level ? decreases from one to zero,

the first subgraph that can be recovered should be the densest one, i.e., �p1q, the second should be
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the densest subgraph containing �p1q, i.e., �p2q, and so on, until we can recover all of �p"q “ �.

It is arguably surprising that these critical subgraphs for recovery are so well structured for any

weakly dense �.

Moreover, Corollary 3.8 implies that the thresholds at which the MMSE “jumps” are exactly

given as functions of the onion decomposition via the formula

? “ =
´

|+p�pC`1qz+p�pCqq|

|�pC`1qz�pCq| “ =
´ 1

�p�pC`1q|�pCqq , C “ 1, . . . , ".

In particular, assuming the mild condition |�p1q|{|�| “ Ωp1q on�—a small variant of this natural

condition is referred to as begin “delocalized” in [MNS`23]—the above observation implies that

for C “ 1 the MMSE jumps from being trivial, i.e. taking the value 1´ >p1q, to its first non-trivial
value 1 ´ |�p1q|{|�| ` >p1q “ 1 ´ Ωp1q exactly at the threshold

? “ =
´

|+p�p1q|

|�p1q| “ max
�Ď�

=
´

|+p�q|
|�| ,

which is the subgraph expectation threshold for � defined by Kahn and Kalai in [KK07], thus

proving Corollary 1.3. In other words, as mentioned in the introduction, the weak recovery

threshold equals to the subgraph expectation threshold of� for any such weakly dense graph�.

In particular, our work gives a statistical meaning to the exact subgraph expectation threshold

of � from probabilistic combinatorics in Bayesian statistics, without the need to account for any

additional $plog |�|q-factor.
Remark 3.11 (A characterization of the AoN phenomenon). Recall that AoN happens for the

planted subgraph model for some � “ �= if the MMSE=p?q curve converges to a step function

from 0 to 1 as = grows to infinity. An immediate consequence of Theorem 3.1 is that the AoN

phenomenon happens for a weakly dense graph if and only if for every @, @1 P p0, 1q,

lim
=

!@

!@1
“ 1.

Interestingly, this implication can be seen as a generalization of one of themain results in [MNS`23],

which requires an assumption of � being “delocalized” (see [MNS`23, Definition 4.3]) to obtain

a similar such AoN characterization.

3.3. On the convergence of the MMSE curve. Observe that all the above results discuss the

behavior of the MMSE curve when = is finite but large. �is is slightly diverging compared to

the study of the limiting MMSE of other high dimensional statistical models, like compressed

sensing [RP19] or the planted clique problem [MNS`23], where the MMSE curve is (pointwise)

converging as = grows to infinity to a specific curve and the curve is characterized, o�en via

methods from statistical physics. �is discrepancy is fundamental in our result as we consider

a much larger family of priors compared to the above results. Furthermore, we do not assume

any joint structure on �= across different values of =; in other words, the planted subgraph �= ,

and hence our prior, may change arbitrarily with =. For example, � could be a 10 log =-clique

for even =, and a log log =-clique for odd =, leading to two convergent MMSE subsequences with

different limits. More specifically, in this case, if say ? “ 1{2, it can be easily proven via the AoN

theory from [MNS`23] that the (normalized) MMSE equals >p1q for even = and equals to 1´ >p1q
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for odd =, hence the MMSE as a curve is not converging as = grows to infinty. Yet, under the

assumption that the sequence of graphs �= is such that the pointwise limit of the MMSE does

exist, we have the following asymptotic formula as a direct corollary of Theorem 3.1.

Corollary 3.12. Let � “ �= be a weakly dense graph and ? “ ?= P p0, 1q. Let the function
� : p0, 1s Ñ r0,`8q defined by �p@q “ !@ . Consider the sequence = P p0, 1q defined by

= “ inf �´1pr0, ?sq, = P ℕ.

�en any limit point G P r0, 1s of t= : = P ℕu, corresponds in an one-to-one fashion to a limit

point of the sequenceMMSE=p?q. In particular, if the lim=MMSE=p?q exists, then the lim= = exists

and it holds,

lim
=

MMSE=p?q “ 1 ´ lim
=

= . (3.3)

�e proof is based on simple calculus and is deferred to Section 8.

3.4. A simple example. We now work through a simple example to apply our established

MMSE theory on weakly dense � “ �= that illustrates the diversity of possible MMSE curves

that one can obtain as the planted graph � “ �= is varied. We emphasize at the outset that,

while the simple example below can be solved directly by other methods, the calculation illus-

trates how our main theorem gives a general recipe that can be applied to compute the MMSE

curve of any planted graph which is weakly dense.

A union of disjoint cliques. Let < “ <= and A1 ą ¨ ¨ ¨ ą A< ě 1, be an arbitrary sequence of

integers with

1{A8`1 ´ 1{A8 ě �{ log =
for some constant � ą 0. Such sequences include the cases A8 “ p�8`>p1qq log =, 8 “ 1, 2, . . . , <

for some constants �1 ą �2 ą . . . ą �< ą 0, or A8 , 8 “ 1, . . . , = is an arbitrary decreasing

sequence of positive integers with A1 “ >p
a
log =q.

We then consider � to be the disjoint union of < cliques of sizes A1 ą ¨ ¨ ¨ ą A< ě 1, so that

� “
ď

Bď<

 AB

and : ≔ |�| “
ř
Bď<

`
AB
2

˘
.

In terms of the onion decomposition of � (Definition 3.3), we have �p0q “ H and the densest

subgraph of � can be straightforwardly checked to be �p1q “  A1 . Similarly, a simple inductive

argument implies that " “ "p�q “ < and

�pCq “
ď

BďC

 AB , C “ 1, 2, . . . , <.

Moreover, from Theorem 3.6, we know that for any 1 ą @ ě 0, if <´ 1 ě C ě 0 is maximal such

that |�pCq|{|�| ď @, it holds

!@ “ ?C ≔ =
´

|+p�pC`1qqz+p�pCqq|

|�p�pC`1qqz�p�pCqq| “ =
´ 2
AC`1´1 .
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We also set ?< ≔ !1 “ 0 and ?´1 ≔ 1. �en using Corollary 3.8 we have that for any � ą 0

and for each ´1 ď C ď < ´ 1, if p1 ` �q?C`1 ď ? ď p1 ´ �q?C , then

MMSE=p?q “ 1 ´
ř
BďC`1

`
AB
2

˘

:
` >p1q.

For example, if A8 “ p�8 ` >p1qq log =, 8 “ 1, 2, . . . , < for some constants �1 ą �2 ą . . . ą
�< ą 0 we conclude that ?C “ 4´2{�C`1 ` >p1q for all 0 ď C ď < ´ 1 and ?< “ 0, ?´1 “ 0.

Hence, we have that for any � ą 0 and for each ´1 ď C ď < ´ 1, if

p1 ` �q4´2{�C`2 ď ? ď p1 ´ �q4´2{�C`1 ,

then it holds

MMSE=p?q “ 1 ´
ř
BďC`1 �

2
Bř

Bď< �
2
B

` >p1q,

where set 4´2{�<`1 ≔ 0, 4´2{�0 ≔ 1.

If < “ 1 and �1 “ 2{ log 2, we recover the AoN phenomenon for the planted clique model

from [MNS`23] where the the clique is of size : “ p2 ` >p1qq log2 = and the critical AoN noise

level is ? “ 4´2{�1 “ 1{2.

4. Main Results II: Planting general monotone properties

We now turn to a more general model, referred to as the planted subset model in [MNS`23].

In this general se�ing, we provide a weaker characterization of the MMSE curve as = grows, but

under no assumptions on the planted structure. In particular, for the planted subgraph model

discussed previously, this more general result applies to the MMSE curve for any � “ �= , even

if not weakly dense.

To define this, let # P ℕ and fix some arbitrary family of : “ :# -setsA “ t�8u"8“1
in a finite

universeX of # elements, and some noise level ? “ ?# . Now, the “signal” is an element � from

A which is sampled from an (arbitrary but known) prior � onA. �en, the statistician observes

. “ � Y -?

where the “noise” -? is a sample from the ?-biased product measure on X, i.e., -? „ Berp?qbX ,

and aims to recover � from ..

Remark 4.1. One may want to imagine A as the set of minimal elements of some mono-

tone property of interest (see Section 2.2 for the standard definitions on monotone properties).

�en the statistician aims to recover the planted “certificate” of this property in the presence of

Bernoulli noise. �e question of interest is: for what noise levels ? is it possible to infer the

certificate of the monotone property?

For example, the planted subgraphmodel is a special case of the planted subsetmodel. Consider

the universe X to correspond to the # “
`
=
2

˘
edges of  = , the complete graph on = vertices.

In that case, the Bernoulli noise -? equals in distribution to �p=, ?q. Now, for any subgraph

� “ �= of  = , let A to be the collection of all subsets of X (i.e., all subgraphs of  =) which are

copies of � in  = . Under this choice of X and A, the planted subset model becomes the planted
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subgraph model (it is easy to prove that the “worst” prior for planted subgraph models is the

uniform one, see Lemma A.4 for the details).

Of course, the planted subset model generalizes well beyond the planted subgraph model to

other interesting models, such as planting a connectivity certificate (i.e., a spanning tree) in

�p=, ?q or planting arbitrary monotone properties on random hypergraphs.

As in the previous section, we focus on the MMSE of the model as a function of ?, defined as

MMSE#p?,�q “ 1

:
min
�̂

��„�,.“�Y-? ,�̂

”
}1� ´ �̂p.q}22

ı
“ 1

:
��„�,.“�Y-?

“
}1� ´ �r1�|.s}22

‰
,

where the minimum is over all randomized estimators �̂ : 2X Ñ ℝ# . As the prior is arbitrary

in this model, we focus on the MMSE of estimating � under the “worst” possible prior �, which

using the strong duality of linear programs can be wri�en as

MinMaxpA , ?q ≔ max
�

MMSE#p?,�q “ 1

:
min
�̂

max
�

��,.,�̂

”
}�̂p.q ´ 1�}22

ı
. (4.1)

Remark 4.2. We note that the study of minimax rates of estimation, like MinMaxpA , ?q, where
one accounts for the worst-case prior is a topic of intense study for many decades in the literature

of theoretical statistics. Moreover, the optimizers�, �̂ in the definition of (4.1) are called the “least

favorable prior” and the “minimax estimator”, respectively.

Our main result is to identify the order of the noise level ? for which MinMaxpA , ?q achieves
a given fixed value of interest in p0, 1s. Recall that in the planted subgraph model for a weakly

dense� and under a uniform prior, Theorem 3.1 implies that MMSE=p?q “ 1´ @` >p1q for some

? “ p1 ` >p1qq!@ where the threshold !@ is a modified subgraph expectation threshold. In the

planted subset model, for any @ P r0, 1q, the desired threshold is given by a modification of the

so-called fractional expectation thresholds of the monotone property generated by A.

Definition 4.3. Fix any family of :-sets A in a finite universe X of # elements. For any @ P
r0, 1q, we define

#@ ≔ p#@q# “ min
(ĎX ,|(|ď@:

"
max
FP,(

 
ℰ

´1
F p1{2q

(*
,

where given ( Ă X, ℰFp?q ≔
ř
)ĎX Fp)q?|)z(|, and,( is the set of all “fractional covers” F

which are functions F : 2X Ñ r0, 1s satisfying the following two properties.

(a) (“Support condition”) Unless |)| ě @: and ( Ď ), it holds Fp)q “ 0.

(b) (“Fractional cover condition”) For all �8 , 8 “ 1, 2, . . . , " where ( Ď �8 we have
ÿ

)Ď�8

Fp)q ě 1.

We finally set #1 ≔ 0.

Remark 4.4. We remark that the case @ “ 0 and ( “ H corresponds exactly to the frac-

tional expectation threshold [Tal10] of the monotone property with minimal elements A, see

Definition 2.4. In particular, the value of the fractional expectation threshold has been calculated
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up to constants for a number of monotone properties, including the �-inclusion property for a

subgraph � “ �= of the complete graph  = [FKNP21, MNSZ22b].

4.1. Characterizing the Minimax curve via the #@ thresholds. We now present our general

result in this se�ing.

�eorem 4.5. Let @ P r0, 1q, and A be an arbitrary :-uniform family of subsets of r#s. �en, as

# Ñ 8,

(a) If lim# ?{#@ “ `8, then
lim inf

#
MinMaxpA , ?q ě 1 ´ @.

(b) If lim# ?{#@ “ 0, then

lim sup
#

MinMaxpA , ?q ď 1 ´ @.

�e proof is deferred to Section 7.

Remark 4.6. We remark that while we are able to efficiently compute !@ in the se�ing of weakly

dense graphs using the onion decomposition of�, we do not yet have away to efficiently compute

an optimizer for #@ for arbitrary monotone properties. It is an interesting question for future

work if a similar onion-peeling process exists for any monotone property.

Despite this, given the success of probabilistic combinatorics in computing the fractional ex-

pectation thresholds for various different properties [FKNP21], we find the calculation of #@

for specific monotone properties an interesting direction—by Theorem 4.5, this would have im-

plications for the minimax rates of such problems. We next go over such a calculation for the

well-studied case where � is a perfect matching.

4.2. A simple example. We now work through a simple example in this more general case.

Perfect matching. Let us consider the case that � is the perfect matching on = vertices (=

even). �is is a model that has received significant interest in the community (see e.g., [DWXY23,

GSXY25] and references therein). In this se�ing, the minimax rate is equal to the MMSE for the

uniform distribution over planted matchings (see Lemma A.4).

We will show via direct computation that for any @ P p0, 1q,

#@ “ p1 ` >p1qq 4
=
.

Applying Theorem 4.5, we can conclude the following.

‚ If ? “ >
`
1
=

˘
, then theMMSEwill be >p1q for any prior. We note that this is a result already

established in [DWXY23], by a direct analysis in this se�ing.

‚ If ? “ $
`
1
=

˘
, then there exists a prior (the uniform distribution) for which the MMSE

will be 1´ >p1q. We note that this was very recently independently proved by [GSXY25],

using a direct analysis.

Recall that

#@ “ min
(ĎX ,|(|ď@:

"
max
FP,(

 
ℰ

´1
F p1{2q

(*
.
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First, we observe that for any choice of S, the max is the fractional Kahn–Kalai threshold �:
for a perfect matching on : “ =´ Ep(q vertices. �is is because any ( will be disconnected from

the rest of �, so the resulting graph-cut is essentially just a normal graph. �erefore, we have

that

#@ “ min
(ĎX ,|(|ď@:

 
�=´Ep(q

(

“ min
:ěp1´@q=

�:

It remains to compute �: , the fractional Kahn Kalai threshold for a perfect matching in a size

: graph.

From [MNSZ22b], for subgraph inclusion properties, the fractional Kahn–Kalai threshold is

equal to the following:

�= “ max
�Ď�

ˆ
�r�s
 =r�s

˙1{|�|

where �r�s for a graph � refers to the number of unlabeled copies of � in �.

In the case of perfect matchings, �: can be expressed as

�: “ max
0ďAď:{2

ˆ
":{2r"As
 :r"As

˙2{A

“ max
1ďAď:{2

˜ `
:{2
A

˘
`
:
2A

˘
¨ p2A ´ 1q!!

¸2{A

,

with "C denoting the matching with C edges. We shall show that the above is maximized for

A “ :{2. Le�ing 0A be the expression inside the parentheses, we have for A ě 1,

0A “
`
:{2
A

˘
`
:
2A

˘
¨ p2A ´ 1q!!

“
`
:{2
A´1

˘
`

:
2A´2

˘
¨ p2A ´ 3q!!

¨
:{2´A
A

p:´2Aqp:´2A`1q
2Ap2A´1q

¨ p2A ´ 1q
“ 0A´1 ¨ 1

: ´ 2A ` 1
.

A simple inductive argument then implies that 0A ď
´

1
:´2A´1

¯A
. Indeed, this is trivially true for

A “ 1. For larger A, we have by induction that 0A “ 1
:´2A`1

¨ 0A´1 ď 1
:´2A`1

¨
´

1
:´2A`1

¯A´1
ď

´
1

:´2A´1

¯A
as desired. Given this,

0
1{A
A “

ˆ
1

: ´ 2A ` 1
¨ 0A´1

˙1{A

ě
´
5 pA ´ 1q1{A´1 ¨ 0A´1

¯1{A
“ 0

1{pA´1q
A´1 .

It follows that the maximum is a�ained for A “ :{2. �us,

�: “
ˆ

1

p: ´ 1q!!

˙2{:

Observe that this is minimized at : “ =. Approximating p= ´ 1q!! “
`
=
4

˘={2`>p1q
, we have that

�= “
´

p4{=q={2`>p1q
¯2{=

“ p1 ` >p1qq 4
=
.
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Hence we conclude that

#@ “ p1 ` >p1qq 4
=

for all @ P r0, 1s, as desired.

5. Onion Decomposition: Proof of Theorem 3.6

In this section, we establish some key results on the onion decomposition that will be useful

in multiple proofs throughout the paper and also prove Theorem 3.6.

We start with recalling the � notation from Section 2. Notice that our key quantity p!@q can
be defined via �; if we define for @ P r0, 1s the quantity

�@ ≔ min tmax t�p�|(q : � Ě (u : ( Ď �, |(| ď @|�|u (5.1)

then it clearly holds

!@ “ =
´ 1

�@ .

5.1. Key lemmas. We now establish four useful combinatorial lemmas for the “density” � func-

tion, that follow from elementary graph theory arguments. We defer their proofs to Section 8.

Lemma 5.1. Let �, � be subgraphs. �en,

�p� Y �|�q ě �p�|� X �q.

Lemma 5.2. Let  |) be a graph-cut that is “balanced”, in that for all ) 1 such that ) Ď ) 1 Ď  ,

�p) 1|)q ď �p |)q. �en, for all ) 1 such that ) Ď ) 1 Ď  it also holds

�p |) 1q ě �p |)q.

�e third lemma implies that modulo any subgraph �, there exists a unique maximizer of the

density �p�|�q, � Ě �.

Lemma 5.3. Let � be a subgraph and consider the map !� which maps any subgraph � containing

� to !�p�q “ �p�|�q. If � 1 and �2 are two subgraphs containing � and at least one of them is

balanced, then !�p� 1 Y �2q ě mint!�p� 1q, !�p�3qu. In particular, if � 1, �2 are two maximizers of

!�, then �
1 Y �2 is also a maximizer of !�, so there is a unique maximal maximizer of !�.

�e fourth lemma asserts that the densities in the onion decomposition are non-increasing.

Lemma 5.4. Let � be a subgraph and � “ argmax�Ě� �p�|�q.�en for all � Ě �,

�p�|�q ď �p�|�q.

In particular, for �pCq, C “ 0, 1, . . . , " the onion decomposition of any subgraph � the sequence

�p�pC`1q|�pCqq, C “ 0, 1, . . . , " ´ 1 is non-increasing.
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5.2. Simplifying !@ : Proofs of Theorem 3.6(a) and (b). �e above lemmas allow us to con-

clude parts (a) and (b) of Theorem 3.6, restated for convenience.

�eorem 3.6. For any graph � “ �= , let �
pCq, C “ 0, 1, 2, . . . , " be its onion decomposition from

Definition 3.3. �e following holds.

(a) For any C “ 0, 1, 2, . . . , " ´ 1, given �pCq, the choice of �pC`1q is unique in step (ii) of the

procedure. �at is, the onion decomposition of a given graph � is unique.

(b) For any @ P r0, 1q, let C “ Cp@q be such that |�pCq|{|�| ď @ ă |�pC`1q|{|�|. �en

!@ “ =
´

|+p�pC`1qqz+p�pCqq|

|�pC`1qz�pCq| “ =
´ 1

�p�pC`1q|�pCqq ,

i.e., the pair p( “ �pCq, � “ �pC`1qq is a minimax optimal pair in the definition of !@ in (1.2).

(c) �e onion decomposition of �, and in particular, the function p!@q@Pr0,1s can be computed in

time which is polynomial in |�|.

Lemma 5.3 applied to � “ �pCq immediately implies (a).

Proof of (b). Fix some @ P r0, 1q and let p(˚, �˚q be a minimax pair in the definition of �@ , which

in particular also satisfies

!@ “ =´1{�p�˚|(˚q.

In particular, our goal is to show that for C such that |�pCq| ď @|�| ă |�pC`1q|, it holds that

�p�pC`1q|�pCqq “ �p�˚|(˚q.
We start with choosing C to be the step of the onion decomposition such that �pCq Ď (˚ but

�pC`1q Ę (˚. We first prove that for this choice of C,

�p�pC`1q|�pCqq “ �p�˚|(˚q (5.2)

By the definition of the onion decomposition, �pC`1q P argmax�Ě�pCq �p�|�pCqq. Combining this

with the optimality of (˚, that means we have

�
´
�pC`1q|�pCq

¯
“ max

�Ě�pCq
�p�|�pCqq ě �p�˚|(˚q.

Next, defining r� “ �pC`1q Y (˚ and r( “ �pC`1q X (˚, Lemma 5.1 implies that

�pr�|(˚q ě �p�pC`1q|r(q.

Finally, by Lemma 5.2,

�p�pC`1q|r(q ě �p�pC`1q|�pCqq.
Hence, combining the last three displayed inequalities, we have

�pr�|(˚q ě �p�˚|(˚q.

But by the optimality of �˚ given (˚, max�Ě(˚ �p�|(˚q “ �p�˚|(˚q, all the above four displayed
inequalities should be equalities, proving (5.2).

�us, for all @ P r0, 1s,
�@ P t�p�pC`1q|�pCqq : 0 ď C ď @|�|u.
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But again as by definition for all C, �
`
�pC`1q|�pCq

˘
“ max�Ě�pCq �p�|�pCqq it also holds by se�ing

( “ �pCq, C ď @|�| and the definition of �@ that

�@ ď mint�p�pC`1q|�pCqq : 0 ď C ď @|�|u.

Hence,

�@ “ mint�p�pC`1q|�pCqq : 0 ď C ď @|�|u.

But by Lemma 5.4 we have that �p�pC`1q|�pCqq is a non-increasing function of C. �erefore the last

displayed equation gives �@ “ �p�pC`1q|�pCqq for the maximum possible C ď @|�|, from which (b)

follows. �

5.3. Computability of !@ : Proof of Theorem 3.6(c). We further have the following lemma,

which shows that this procedure can be implemented in polynomial-time.

Proof. We first show that there is an efficient algorithm to find the densest subgraph in a graph-

cut. Specifically, given a graph-cut �|(, we show how to find a � Ď �|( a�aining the value

5 p�|(q “ max�Ď�|( �p�q.
�e algorithm and its analysis are based on Charikar’s Linear Programming (LP) approach to

find a densest subgraph in a graph [Cha00]. We consider the following LP:

maximize
ÿ

8 9P�z(

G8 9

subject to G8 9 ď H8 @8 P +p�qz+p(q
G8 9 ď H8 @9 P +p�qz+p(q

ÿ

8P+p�qz+p(q

H8 ď 1

G8 9 , H8 ě 0 @8 9 P �|(.

Let E˚ be the optimal value of this LP. To see that E˚ ě 5 p�|(q, note that for every � Ď �|(,
le�ing H8 “ 1

Ep�q
1t8 P +p�qu and G8 9 “ 1

Ep�q
1t8 9 P �u, we get

ř
8 9P�|( G8 9 “ �p�q. Moreover,ř

8P+p�qz+p(q H8 “ 1, and the other two constraints are trivially satisfied.

Next, given a solution to the LP with value E˚, we show how to extract a choice of � such

that �p�q ě E˚. Let tG 8 9u8 9 Y tH 8u8 be such a solution. Note that we can assume without loss of

generality that G 8 9 “ mintH 8 , H 9u when 8 , 9 P +p�qz+p(q, G 8 9 “ H 8 when 9 P +p(q, and G 8 9 “ H 9
when 8 P +p(q. For each A P ℝě0, consider the subgraph �pAq “ t8 9 : G 8 9 ě Au Ď �z( and

denote by +pAq ≔ t8 : H 8 ě Au. Note that for each A, by our assumption, for any edge of the

subgraph �pAq, 8 9 P �pAq it can be easily checked to hold t8 , 9uz+p(q Ď +pAq, and therefore

+p�pAqqz+p(q Ď +pAq. (5.3)
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Now, we claim that there exists A such that �p+pAq, �pAqq ě E˚. Indeed, since
ş8
0 |�pAq|3A “ř

8 9P�|( G 8 9 and
ş8
0 |+pAq|3A “

ř
8P+p�qz+p(qq H 8 ď 1, we get

E˚ ď
ş8
0 |�pAq|3A
ş8
0 |+pAq|3A

ď sup
A

|�pAq|
|+pAq|

ď sup
A

|�pAqz(|
|+p�pAqqz+p(q| .

But then note that we can efficiently enumerate all combinatorially distinct�pAq to find a � “ �pAq
such that

�p�q “ �p�pAqq “ |�pAqz(|
|+p�pAqqz+p(q| ě E˚,

as desired. Given the above, we can efficiently construct sequences H “ r�0,r�1, . . . ,r�ℓ and r�pCq “
YBďC

r� B so that, for each C ď ℓ ´ 1, r�C`1 is a maximizer of � ÞÑ �p�|r�pC´1qq among � Ě r�pC´1q.

To efficiently construct the onion decomposition, we need yet to show something slightly

stronger: we need to efficiently construct the sequence H “ �0, �1, . . . , �< such that, for �pCq “
YBďC �

B , we have that �C`1 is the maximal � maximizing the function � ÞÑ �p�|r�pC´1qq among

� Ě r�pC´1q (the uniqueness of the maximal � follows by Theorem 3.6).

We do this in a greedy fashion as follows. Let B1 ě 1 be maximal such that

�pr�1|r�p0qq “ ¨ ¨ ¨ “ �pr� B1 |r�pB1´1qq,

and let �1 “ YBďB1
r� B .�en let B2 be maximal such that

�pr� B1`1|r�pB1qq “ ¨ ¨ ¨ “ �pr� B2 |r�pB2´1qq,

and let �2 “ YB1ăBďB2
r� B , and so on. Notice that using Lemma 5.4 we have for all C ,

�pr� BC`1|r�pBCqq ă �pr� BC |r�pBC´1qq. (5.4)

Now, it is straightforward to check that for all C �C maximizes � ÞÑ �p�|�pC´1qq.Hence, it remains

to show that �C is in fact a maximal such maximize for all. Suppose that this is not the case for

some C. �en by Lemma 5.3, there exists � 1 Ę �C so that � 1 Y �C is the maximal maximizer of

� ÞÑ �p�|�pC´1qq. In particular, it holds

�p� 1 Y �C |�pC´1qq “ �p�C |�pC´1qq “ �pr� BC |r� BC´1q

which implies for �2 ≔ � 1z�C that

�p�2|r� BC q “ �pr� BC |r� BC´1q.

We can therefore guarantee that

�pr� BC`1|r�pBCqq ě �p�2|r� BC q “ �pr� BC |r�pBC´1qq,

a contradiction with (5.4). �
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6. The MMSE for weakly dense �: Proof of Theorem 3.1

In this section, we give an overview of the main technical steps involved in the proof of our

main result, Theorem 3.1. Our first step is a “positive” result, showing that if ? is smaller than

a threshold r!@ , then the noise is small enough so that the limiting MMSE is at least 1 ´ @. �e

second step is a “negative” result, proving that if ? is larger than !@ then the noise is high enough

so that the limiting MMSE is at most 1 ´ @. Our final step shows that these two thresholds, r!@
and !@ , are in fact equal.

6.1. Two lemmas: the importance of the order of the min and max operators. Our first

lemma, proved in Section 6.4, shows that for ? below a modified version of the !@ threshold

defined in (1.2) (where importantly themin andmax operators have been exchanged) it is possible

to achieve MMSE at most 1 ´ @.

Lemma 6.1 (Possibility of Recovery). Suppose � “ �= is a weakly dense �. Given @ P r0, 1q,
define the threshold

r!@ “ pr!@q= “ max

"
min

"
=

´
|+p�qz+p(q|

|�z(| : ( Ď � , |(| ď @|�|
*
: � Ď �

*
.

�en for any ? “ ?= with lim sup= ?{r!@ ă 1, it holds

lim sup
=

MMSE=p?q ď 1 ´ @.

�e lemma is proven by showing that for ? below this new r!@ threshold, with high probability
there does not exist an isomorphic copy �1 of the planted graph �˚ in the observed graph � “
�˚Y�0, �0 „ �p=, ?qwhich overlaps with�˚ in fewer than p@´>p1qq|�| edges. We then prove

via the Nishimori identity that the MMSE is equal to one minus the expected overlap between a

random isomorphic copy of � and �˚, from which we can directly upper bound the MMSE by

1 ´ @ ` >p1q.�e proof is deferred to Section 6.4.

�e intuition behind the variational formula in Lemma 6.1 for r!@ is as follows. In order to avoid
having a copy�1 of � in � with overlap ď @|�| with the planted�˚, we need to understand for

which noise levels ? we can rule out such structures. Let us denote by ( this potential intersection

set of edges between a copy�1 of�, and�˚. Once we fix such an (, a bound on the largest value

of ? such that no copy of � appears in the observed graph � overlapping with �˚ exactly on (

can be obtained by a standard first moment method (i.e, a vanilla union bound). �en optimizing

the bound to account for the worst-case (, leads to a bound on ? to have MMSE at most 1 ´ @.

However, in many cases this bound will not be tight. To improve it, using the intuition from

the tightness of the expectation thresholds from [KK07], one can fix a subgraph � Ď � and

instead upper bound for any ? the probability that a copy �1 of � in � overlaps �˚ on ( by

the probability that a copy of � in � overlaps with �˚ in at most ď @|�| edges (simply because

� Ď �). �en, the same standard first moment method argument as above can be performed with

� in place of � to obtain a new upper bound on the probability that a copy �1 of � in � overlaps

�˚ on (, which depends on � and (. Now, notice that by optimizing in a worst-case sense over (

(to guarantee an MMSE at most 1 ´ @), and then optimizing over all subgraphs � (now, in favor
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of the statistician so choosing the “best-case” �), we arrive exactly at the max-min formula for r!@
giving Lemma 6.1.

We next describe our second lemma, proved in Section 6.5, which shows that above the !@
threshold, the MMSE must be worse than 1 ´ @.

Lemma 6.2 (Impossibility of recovery). Suppose � “ �= is a weakly dense �. Given @ P r0, 1q,
recall the threshold !@ from (1.2). �en for any ? “ ?= with lim inf= ?{!@ ą 1, it holds

lim inf
=

MMSE=p?q ě 1 ´ @.

�e proof shows that when ? crosses !@ , the posterior distribution of�
˚, which is the uniform

distribution over the copies of � in the observed graph, is concentrated on copies with overlap

less than @|�| with �˚. Our proof follows from an appropriate leverage of the planting trick

[ACO08] similar to its application in the recent Bayesian proof of the spread lemma [MNSZ22b].

�e proof is deferred to Section 6.5.

Here, the intuition for !@ is as follows. Given ( Ď � with |(| ď @|�|, one can define a

statistically easier version of the estimation task of interest, in which the statistician is also given

as side information the ( part of the planted graph �˚. An application of the data processing

inequality implies that the inability to recover a given fraction of�˚ in this easier problem implies

the same inability in the original statistical problem (Such techniques are o�en called “genie”

lower bound arguments, e.g, [RG13]).

To prove theMMSE lower bound it suffices to determine the noise levels ? for which theMMSE

is at least 1 ´ @ when the statistician is given ( as side information, and then optimizing over (

to find the minimum such noise level. For this reason, we start by fixing any ( with |(| ď @|�|
and assume that the ( part of � is given to the statistician. �en a simple posterior calculation

implies that MMSE is at least 1 ´ |(|{|�| ě 1 ´ @, if a typical copy �1 (of �) in � “ �˚ Y �0

that contains ( does not overlap an Ωp1q-fraction of edges in �˚z(. Equivalently, this is true if
most copies �1 containing ( are such that �1z( is (almost) fully included in �0.

For this reason, it makes sense to study the threshold of ? at which many (near-complete)

copies of �z( start appearing in �0 „ �p=, ?q. �e intuition from the literature on Kahn–Kalai

thresholds suggests that this threshold is given by the subgraph expectation threshold of �z(,
which is precisely the maximizing problem in the definition of !@ . While the tightness of this

threshold is still at a conjectural phase and expected to hold only up to a logarithmic error, we

prove that the approximate version of it (recall we want �z( to only approximately appear in

�) that holds exactly above the subgraph expectation threshold. Optimizing over all subgraphs

( to determine the best such bound results in !@ , the minimum possible subgraph expectation

threshold of �z( among all (.

6.2. Exchanging the max and min operators. To conclude Theorem 3.1, we must relate the

thresholds in the two lemmas above. It is somewhat dissatisfying that the natural probabilistic

way to argue about Lemma 6.1 and Lemma 6.2 leads to almost the same threshold for ?, but with

the max and the min operators being exchanged in the two results. While there are plenty of

“minimax results” in the literature for exchanging the min and the max operators (e.g., in the

literature of game theory and of optimization), no such result appears applicable in our discrete
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vertex-symmetric se�ing. Yet, a careful combinatorial argument allows us to indeed exchange

the operators. �is minimax result is the content of the next lemma, proved in Section 6.6, and is

proved by employing the onion decomposition of �.

Lemma 6.3 (Minimax result). For any =, @ “ @= P r0, 1q, and � “ �= , r!@ “ !@ .

We remark that the duality lemma above is an exact, non-asymptotic equality: it holds for all

graphs � “ �= and for all =. In order to prove it, our main tool is a structural result for the max-

min and min-max optimal pairs p(, �q in !@ . Observe that the pair p(, �q can take exponentially

many values. Yet, by considering the onion decomposition p�pCqq of � (Definition 3.3), it turns

out that, as explained in Section 5, the minimax optimization defining !@ has a simple optimizing

pair: it is exactly of the form p( “ �pCq, � “ �pC`1qq, where C is maximal such that |�pCq| ď @|�|.
For instance, for @ close to 1, the optimal pair is to choose ( “ �p1q, the densest subgraph of �

and � “ �p2q the “second” densest subgraph in the onion decomposition. �e knowledge of the

optimizers greatly simplifies !@ and is key to establishing Lemma 6.3.

6.3. Putting it all together. Notice that the above lemmas immediately imply Theorem 3.1.

Proof of Theorem 3.1. Parts (a) and (b) follow immediately from Lemmas 6.1 to 6.3.

�e last part follows from the fact that MMSE=p?q is a non-increasing polynomial function

? (see Lemma A.2) together with a simple analysis argument to construct the desired sequence.

Indeed, for any � ą 0, and for large enough =, parts (a), (b) imply

MMSEpp1 ´ �q!@q ď 1 ´ @ ` �

and

MMSEpp1 ` �q!@q ě 1 ´ @ ´ �.

�at means that for any � ą 0 there exists =0 “ =0p�q large enough such that for all = ě =0
there exists ? “ ?= P rp1 ´ �q!@ , p1 ` �q!@s for which

1 ´ @ ´ � ď MMSEp?q ď 1 ´ @ ` �.

Iterating this argument for � “ 1{<, < “ 1, 2, . . . leads to (potentially distinct) sequences of

noise levels ?p<q “ ?
p<q
= such that for all <, there exists a (without loss of generality strictly

increasing) �p<q P ℕ such that for all = ě �p<q, ?p<q
= P rp1 ´ 1{<q!@ , p1 ` 1{<q!@s and

1 ´ @ ´ 1{< ď MMSEp?p<q
= q ď 1 ´ @ ` 1{<.

Now, “diagonalizing” this argument, consider the sequence defined as follows: for each = P
r�p<q, �p< ` 1qq, let

? “ ?= ≔ ?
p<q
=

(for = ă �p1q, set ?= “ 0). �en notice that clearly for this sequence it holds lim= ?={!@ “ 1

and also lim=MMSE=p?=q “ 1 ´ @ as desired. �
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6.4. Proof of Lemma 6.1: Recovery for ? ď p1 ´ �qr!@ . In this section, we prove Lemma 6.1.

In particular, we assume that for some � ą 0 and = large enough it holds ? ď p1 ´ �q!@ .

Proof. Fix � ą 0 to be a constant and set : ≔ |�|. It suffices to show that the MMSE=p?q is at
most

1 ´ @ ` � ` >p1q.
Since � is arbitrary, we may eventually take � to 0 to obtain the desired statement.

Observe that by Bayes’ rule, the posterior of the model is simply the uniform distribution over

all copies of � in the observed graph. Using the Nishimori identity (Lemma A.1), we have

1 ´ MMSE=p?q “ 1

:
� M„�p=,?q
�˚„uniform copy of � in  =

“
��1„copies of � in M Y �˚ |�1 X �˚|

‰
.

We bound this as follows,

1 ´ MMSE=p?q ě p@ ´ �q ´ 1

:
� M„�p=,?q
�˚„uniform copy of � in  =

“
��1„copies of � in M Y �˚ |�1 X �˚| ¨ 1|�1X�˚|ďp@´�q:

‰

ě p@ ´ �q ´ � M„�p=,?q
�˚„uniform copy of � in  =

“
��1„copies of � in M Y �˚1|�1X�˚|ďp@´�q:

‰

ě p@ ´ �q ´ ℙM,�˚

“
D a copy �1 of � in � such that |�˚ X �1| ď p@ ´ �q:

‰

It suffices to show that

ℙM,�˚

“
D a copy �1 of � in � such that |�˚ X �1| ď p@ ´ �q:

‰
“ >p1q.

For starters, let �˚ be an optimal choice of � in the definition of r!@ . �en, using the notation –
to denote the graph isomorphism relation, we have

ℙ
“
D �1 Ď � Y �˚ such that �1 – � and |�˚ X �1| ď p@ ´ �q:

‰

ď ℙ
“
D � 1 Ď � Y �˚ such that � 1 – �˚ and |�˚ X � 1| ď p@ ´ �q:

‰

�is can be bounded further by Markov’s inequality and the definition of the �p=, ?q noise to

give,

ℙ
“
D � 1 Ď � Y �˚ such that � 1 – �˚ and |�˚ X � 1| ď p@ ´ �q:

‰

ď
ÿ

ℓďp@´�q:

�r
ˇ̌
� 1 Ď � Y �˚ such that � 1 – �˚ and |�˚ X � 1| “ ℓ

ˇ̌
s

ď
ÿ

ℓďp@´�q:

ℙ�1 ,�1„ =

“
|� 1 X �1| “ ℓ

‰
¨ "�?

!´ℓ ,

where "� is the number of copies of � in  = , and ! “ |�| ě @: (by Theorem 3.6(b)) and by

ℙ�1 ,�1„ = we refer to the joint measure of � 1, and copy of �˚ in  = and �1 an independent copy

of � in  = .

By employing [MNS`23, Lemma 4.4],

ℙ�1 ,�1„ =

“
|� 1 X �1| “ ℓ

‰
ď Ep�q$pEp�qq ¨ =´Eℓ p�q,
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where Eℓ p�q is the minimal number of vertices in a subgraph of � with ℓ edges. �erefore,

MMSE=p?q ´ p1 ´ @ ` �q ď Ep�q$pEp�qq
ÿ

ℓďp@´�q:

¨=´Eℓ p�q ¨ "�?
!´ℓ

Now observing that "� “ p=qEp�q{|Autp�q| ď =Ep�q, we get that

MMSE=p?q ´ p1 ´ @ ` �q ď
ÿ

ℓďp@´�q:

Ep�q$pEp�qq ¨ =Ep�q´Eℓ p�q ¨ ?!´ℓ .

By the definitions of r!@ and �˚, we have that for all ℓ ď p@ ´ �q:,

r!@ ď =´
Ep�q´Eℓ p�q

!´ℓ .

�us, for large enough =, since ? ď p1 ´ �qr!@ , we also have

MMSE=p?q ´ p1 ´ @ ` �q ď Ep�q$pEp�qq
ÿ

ℓďp@´�q:

p1 ´ �q!´ℓ ď Ep�q$pEp�qq:p1 ´ �q�: “ >p1q,

as desired.

�

6.5. Proof of Lemma 6.2: Impossibility of recovery for ? ě p1 ` �q!@ . In this section, we

prove Lemma 6.2. �e proof of this lemma will essentially be a formalization of the intuition

mentioned above.

By definition of !@ , there exists some ( Ď � with |(| ď @:, for which we have

? ě p1 ` �q ¨ max

"
=

´
|+p)qz+p(q|

|)z(| : ) Ď �

*
.

Let � ą 0 be a fixed but arbitrary small constant, which we will eventually shrink it to 0. In

particular, it must hold

? ě p1 ` �q ¨ max

"
=

´
|+p)qz+p(q|

|)z(| : ) Ď �, |)z(| ě �:.

*
.

Our goal will be to show that, for all ? satisfying the inequality above, it will be impossible to

recover be�er than a �-fraction of the set of edges (2 .�is will imply by standard Bayesian tools

that

MMSE=p?q ě 1 ´ @ ´ $p�q ´ >p1q,
and thus Lemma 6.2, since � can be taken arbitrarily small.

More concretely, our technique will be to show that even if the statistician is given the (˚-part

of the planted graph�˚ as side information, it will be impossible for the statistician to recover an

Ωp1q fraction of the rest of �˚z(˚; in particular, with side information the statistician must miss

at least a 1 ´ @ ´ >p1q fraction of �˚, and then via a data processing argument, we can conclude

the same for the original se�ing without side information.

To define this alternate problem, consider the following inference problem defined on slightly

modified graphs where the edges of a particular subgraph of� is removed from the observations.
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Definition 6.4 (Planted (2-graph). Let � “ �= be a graph and �˚ be a uniformly random

draw from the isomorphism class of � in  = . Let also ( be a subgraph of � and (˚ an arbitrary

copy of ( in �˚. �e planted (2-graph problem is the task to infer �˚z(˚ given a draw from

� “ p�˚z(˚q Y �0, where �0 is the product Bernoulli measure with parameter ? only on the

edges of  =z(˚. Moreover, we define the MMSE of the problem,

MMSE=,(p?q “ 1

|�| ´ |(|�r}1�˚z(˚ ´ �r1�˚z(˚}22|�s.

Notice that in the planted (2 graph problem, the observed � is only supported on the edges of

 =z(˚.

We start with the following reduction from the original problem to the planted graph-cut prob-

lem for (, at an MMSE loss of a multiplicative factor 1 ´ @.

Lemma 6.5 (Reduction). Let ( Ď � with |(| ď @|�|. Recall MMSE=p?q is the MMSE of the

original planted problem andMMSE=,(p?q is the MMSE in the planted (2-graph-cut problem. �en

it holds

MMSE=,(p?qp1 ´ @q ď MMSE=p?q.

Proof. Given a copy r� of �, let us denote by (p r�q the part of r� corresponding to a copy of

( (resolving ties arbitrarily). Notice that for any fixed copy (0 of ( in  = , by the law of total

variance we have

MMSE=p?q “ 1

|�|�Varp�
˚|�q ě 1

|�|�Varp�
˚|�, (rp�q “ (0q

But now consider the statistical model where the prior is uniform over all copies �1 of � so that

(p�1q “ (0, and the noise is as usual an independent instance of �p=, ?q.�e posterior ℙ1
(0

in

this model is uniform among all copies �1 of � in the observed graph with (p�1q “ (0, and

therefore the unnormalized MMSE in this model satisfies

MMSE1
(0 ,=

p?q “ �Varp�˚|�, (rp�q “ (0q.
In particular,

1

|�| MMSE1
(0 ,=

p?q ď MMSE=p?q.

Moreover clearly the posterior in the planted (20-graph model is the marginal of ℙ1
(0

on  =z(0.
�erefore by two applications of the Nishimori identity Lemma A.1 (identifying graphs on =

vertices with vectors in t0, 1up=2qq,
MMSE1

(0 ,=
p?q “ |�|´�E,E1„i.i.d.ℙ(0

xE, E1y “ |�|´p|(|`�E,E1„i.i.d.ℙ(
xE, E1yq “ p|�|´|(|qMMSE(0 ,=p?q

�e second equality follows because the bits about the edges of (0 are always equal to one under

ℙ1
(0
.�e result follows since for any copy (0 of (, clearly MMSE(0 ,=p?q “ MMSE(,=p?q, and of

course |�| ´ |(| ě p1 ´ @q|�|.
�

Given Lemma 6.5, to complete the proof of impossibility of recovery, we require the following

impossibility result for the planted graph-cut problem.
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Lemma 6.6. Let @ P r0, 1q, � “ �= a weakly dense graph and ( “ (= Ď �, |(| ď @|�|. Consider
the planted (2-graph problem for the planted graph �. �en, assume that for some constants �, � ą
0, we have for large enough =,

? ě p1 ` �qmax

"
=

´
|+p)qz+p(q|

|)z(| : ) Ď �, |)z(| ě �|�|.
*
.

�en

MMSE(,=p?q ě 1 ´ �{p1 ´ @q ´ >p1q.

Proof. Let : ≔ |�| ´ |(|. Let also r� “ p�˚z(q Y �0 be a sample from the planted (2-graph

distribution as defined in Definition 6.4. In particular, let �˚ the planted copy of � and (˚ the

(arbitrarily chosen) copy of ( in �˚.

First notice that it suffices to show that

ℙ

„ |p�1z(˚q X p�˚z(˚q|
:

ě �{p1 ´ @q


“ >#p1q, (6.1)

where �1 is a uniformly random isomorphic copy of � containing (˚ that is present in the graph
r� Y (˚. Indeed, a simple application of Baye’s rule implies that the posterior of the planted (2-

graph problem for � is uniform on all �1z(˚ where �1 is a copy of � in r� Y (˚ containing (˚.

Given that (6.1) and Nishimori’s identity (Lemma A.1) imply the result.

In the calculation below, we always condition on (˚. For convenience, we introduce some new

notation. We denote by p(˚q2-graph, any graph on edges only in  =z(˚. We define �1 to be an

independent sample from the product Bernoullip?q measure on  =z(˚ (that is �1 has no planted

copy �˚z(˚) and �1
≔ �{p1 ´ @q. We also denote for an p(˚q2-graph �,

(a) by /p�q the number of isomorphic copies �1 of � containing (˚ in � Y (˚,

(b) by /ℓ p�˚, �q the number of copies �1 of � containing (˚ in � Y (˚ with

|p�1z(˚q X p�˚z(˚q| “ ℓ ,

and

(c) by /2pℓ , �q is the number of pairs of copies �1, �2 of � containing (˚ in � Y (˚ with

|p�1z(˚q X p�2z(˚q| “ ℓ .
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For any � ą 0 We have that by direct calculations (similar to the proof of [MNS`23, Lemma

3.11] where the universe are all edges minus the edges in ()

ℙ

„ |p�1z(˚q X p�˚z(˚q|
:

ě �1


“ �

«
1

/p r�q

ÿ

ℓě:�1

/ℓ p�1, r�q
ff

ď ℙr/p r�q ď ��/p�1qs ` 1

��/p�1q�
ÿ

ℓě:�1

/ℓ p�˚, r�q

ď � ` 1

��/p�1q�
ÿ

ℓě:�1

/ℓ p�˚, r�q

ď � ` 1

�p�/p�1qq2�
ÿ

ℓě:�1

/2pℓ , �1q

“ � ` 1

�

ÿ

ℓě:�1

P�1p|p�1z(˚q X p�˚z(˚q| “ ℓq
?ℓ

where in the two last inequalities we used a Bayesian inference idea called the “planting trick”

[ACO08], as executed in [MNS`23, Lemmas 3.9, 3.10], which allows us to pass from the planted

observation graph �̃ to the “null” graph �1. Moreover, in the last equality under P�1 , �1 is

a uniform copy random isomorphic copy of � in  = containing (˚ and �˚ is without loss of

generality any fixed arbitrary copy of � in  = containing (˚. Hence it suffices to show that

ÿ

ℓě:�1

P�1p|p�1z(˚q X p�˚z(˚q| “ ℓq
?ℓ

“ >#p1q.

Now we employ an idea [MNS`23, Lemma 4.4] to show this, by adjusting it to our (2-graph

se�ing. Fix some ℓ ě �1:. Notice that for a copy �1 to satisfy |p�1z(˚q X p�˚z(˚q| “ ℓ it must

hold |+p�1 X �˚qz+p(˚q| ě Eℓ ,(˚p�q where Eℓ ,(˚p�q is the minimum value of |+p)qz+p(˚q|
among all subsets ) of p�˚z(˚q with |)| “ ℓ edges. But to choose the random copy �1 of �

containing (˚, |+p�1 X �˚qz+p(˚q| is simply an Hypergeometric distribution with parameters

pEp�q ´ Ep(˚q, Ep�q ´ Ep(˚q, = ´ Ep(˚qq. Hence,

P�1p|p�1z(˚q X p�˚z(˚q|q ď
ˆ

= ´ Ep(˚q
Ep�q ´ Ep(˚q

˙´1 Ep�q´Ep(˚qÿ

F“Eℓ ,(˚ p�q

ˆ
Ep�q ´ Ep(˚q

F

˙ˆ
= ´ Ep�q

Ep�q ´ Ep(˚q ´ F

˙

ď Ep�q$pEp�qq
Ep�q´Ep(˚qÿ

F“Eℓ ,(˚ p�q

p= ´ Ep�qqEp�q´Ep(˚q´F

p= ´ Ep(˚qqEp�q´Ep(˚q

ď Ep�q$pEp�qq
p= ´ Ep�qqEp�q´Ep(˚q´Eℓ ,(˚p�q

p= ´ Ep(˚qqEp�q´Ep(˚q

ď Ep�q$pEp�qqp= ´ Ep�qq´Eℓ ,(˚p�q

ď Ep�q$pEp�qq=´Eℓ ,(˚p�q.

Notice let )1 Ď �˚z(˚ be such that |)1| “ ℓ and |+p)qz+p(˚q| “ Eℓ ,(˚p�q. Hence for ) “
)1 Y (˚ it must hold |)z(˚| “ ℓ and |+p)qz+p(˚q| “ Eℓ ,(˚p�q. Now by assumption on ? since
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ℓ ě �1: “ �p|�| ´ |(|q{p1´ @q ě �|�| it must hold that ?|)z(˚|=|+p)qz+p(˚q| ě p1` �q|)z(˚| and

therefore

?ℓ=Eℓ ,(˚p�q ě p1 ` �qℓ .
Combining the last two displayed equations we have for all ℓ P r�1:, :s,

P�1p|p�1z(˚q X p�˚z(˚q|q
?ℓ

ď Ep�q$pEp�qqp1 ` �q´ℓ ,

hence

ÿ

ℓě:�1

P�1p|p�1z(˚q X p�˚z(˚q|q
?ℓ

ď
ÿ

ℓě:�

Ep�q$pEp�qq

p1 ` �qℓ

“ Ep�q$pEp�qqp1 ` �q´�1: “ >p1q
where we have used that ℓ ě :�1 “ �1p|�| ´ |(|q{p1 ´ @q ě �|�| “ $pEp�q log Ep�qq where
the last inequality is by the weakly dense assumption on �. �is concludes the proof. �

6.6. Proof of Lemma 6.3: A minimax result. In this section, we proof Lemma 6.3, which is

the last missing part of proving Theorem 3.1. To do so we establish the following stronger claim.

�eorem 6.7. For @ P p0, 1q, define
�@ “ min tmax t�p�|(q : � Ě (u : ( Ď �p�q, |(| ď @:u

and

r�@ “ max tmin t�p�|(q : ( Ď � , |(| ď @:u : � Ď �p�qu .
�en,

(a) �@ “ r�@ . Equivalently, !@ “ r!@ .
(b) �ere exists an optimizer p(˚, �˚q in the definition of �@ (and r�@) such that |�˚| ě @:.

Clearly, Theorem 6.7(a) immediately yields Lemma 6.3.

Proof of Theorem 6.7. It is not difficult to see that Theorem 3.6(b), in conjunctionwith Theorem 6.7(a),

immediately yields Theorem 6.7(b). It remains to prove (a).

Let us first show the easier direction, that r�@ ď �@ . Let p(˚, �˚q be an optimizer in the definition

of r�@ , and ( Ď � be arbitrary. Our goal is to show that there exists � 1 Ě ( such that �p� 1|(q ě
�p�˚|(˚q. Set � 1 “ �˚ Y ( and ) “ �˚ X (. �en, by Lemma 5.1,

�p� 1|(q ě �p�˚|)q ě �p�˚|(˚q,
where the second inequality is because �p�˚|(˚q “ min(Ď� �p�˚|(q, so r�@ ď �@ .

Next, suppose that p�pCq, �pC`1qq is an optimizer in the definition of �@ , using Theorem 3.6(b).

We shall show that

r�@ ě min
(Ď�pC`1q

�p�pC`1q|(q ě �p�pC`1q|�pCqq “ �@ .

�e first inequality follows from the definition of r�@ and that |�pC`1q| ą @|�|, so it remains to

show the middle inequality. Let ( Ď �pC`1q be arbitrary, and for each 1 ď 8 ď C ` 1, set (8 “
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( X �p8q. First off, note that
`
�p�pA`1q|�pAqq

˘
Aě0

is a non-increasing sequence in A by Lemma 5.4.

By Lemma 5.2, for all 0 ď 8 ď C, �p�p8`1q|(8`1 Y �p8qq ě �p�p8`1q|�p8qq. As a result, for all 8 ď C ,

�p�p8`1q|(8`1 Y �p8qq ě �p�pC`1q|�pCqq “ �@ .

But by leveraging the increasing structure of the �p8q, 0 ď 8 ď C ` 1, it holds

�p�pC`1q|(q “ |�pC`1qz(|
|+p�pC`1qq| ´ |+p(q|

“
řC
8“0 |p�p8`1qz�p8qq X p�pC`1qz(q|

řC
8“0 |+p�p8`1qq| ´ |+p�p8q Y (8`1q|

“
řC
8“0 |p�p8`1qz�p8qq X p�p8`1qz(q|

řC
8“0 |+p�p8`1qq| ´ |+p�p8q Y (8`1q|

ě
řC
8“0 |�p8`1q| ´ |�p8q Y (8`1|

řC
8“1 |+p�p8`1qq| ´ |+p�p8q Y (8`1q|

ě min
0ď8ďC

�p�p8`1q|(8`1 Y �p8qq ě �@ ,

as desired. �

7. The Minimax rate for any monotone property: Proof of Theorem 4.5

We now prove Theorem 4.5. We do this by first establishing the positive result (part (b)), and

then the negative result (part (a)).

7.1. �epositive result: Proof of Theorem 4.5(b). �e proof follows by an appropriate appli-

cation of a “fractional” first moment method. While this method has been used in the probabilistic

combinatorics literature, we are not aware of any such application in the high dimensional sta-

tistics literature.

Proof. We establish the following property. For any � ą 0, we have that with high probability

for any �8 P A with �8 Ď . it must hold |�8 X �| ě p@ ´ �q:.
Notice that this property is sufficient to conclude the result. Indeed, Baye’s rule implies that

for an arbitrary prior � on A the posterior is assign mass to each �8 P A given by the formula

�̂p�8q9�p�8q1p�8 Ď .q. In particular, the suggested property implies that with high probabil-

ity the posterior outputs with high probability an �8 with |�8 X �| ě p@ ´ �q:. �erefore by

Nishimori’s identity (Lemma A.1),

MMSE#p?,�q ď 1 ´ p@ ´ �q ` >p1q.
Since � ą 0 is arbitrary we conclude the desired result.

Now to prove the desired property, first observe that since . “ � Y X? ,

ℙ�,. rD �8 P A such that �8 Ď ., |� X �8| ď p@ ´ �q:s
“��

ÿ

(Ď�,|(|ďp@´�q:

ℙ. rD �8 P A such that �8 Ď ., � X �8 “ (s

“��

ÿ

(Ď�,|(|ďp@´�q:

ℙX?

“
D �8 P A such that �8z( Ď X? , �8 Ď (

‰
. (7.1)
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Now for any ( we can choose F( P ,( with
ř
) F(p)qp#@q|)z(| ď 1{2. Notice that since by

definition of F( we have min�8PA ,(Ď�8

ř
)Ď�8

F(p)q ě 1, it also holds

1
“
D �8 P A such that �8z( Ď X?

‰
ď
ÿ

)

F(p)q1p)z( Ď X?q

and therefore

��

ÿ

(Ď�,|(|ďp@´�q:

ℙX?

“
D �8 P A such that �8z( Ď X?

‰
ď ��

ÿ

(Ď�,|(|ďp@´�q:

ÿ

)

F(p)q?|)z(|.

Combining with (7.1) gives,

ℙ�,. rD �8 P A such that �8 Ď ., |� X �8| ď @:s ď ��

ÿ

(Ď�,|(|ďp@´�q:

ÿ

)

F(p)q?|)z(|.

SinceF is only supported on) containing (, for all) in the inside summation we have |)z(| “
|)| ´ |(| ě �:, and therefore using also the ? ă #@ and the definition of F(,

ℙ�,. rD �8 P A such that �8 Ď ., |� X �8| ď @:s ď 2@:p?{#@q�:
ÿ

)

F(p)q#|)z(|
@ ď 2@:p?{#@q�: .

Since ? “ >p#@q we conclude the result. �

7.2. �e negative result: Proof of Theorem 4.5(a). We now prove the negative result of the

theorem. �e proof follows by an interesting use of a duality trick of Talagrand between fractional

covers and spread measures.

Proof. By definition, there exists an ( Ď X , |(| ď @: such that

max
FP,(

ÿ

)ĎX

Fp)q#|)z(|
@ ď 1{2.

Using the strong duality of linear programs, we conclude that there exists some function �1 from

the set Ap(q ≔ t�8 P A : ( Ď �8u to r0, 1s such that

(a)
ÿ

�8PAp(q

�1p�8q “ 1{2.

(b) For all ) such that ( Ď ) and |)| ě @:,
ÿ

�8PAp(q,)Ď�8

�1p�8q ď p#@q|)z(|.

Hence, se�ing �p�8q “ 2�1p�8q for all �8 P Ap(q we conclude the existence of a measure on

Ap(q such that for all ) such that ( Ď ) and |)| ě @: it holds

�-„�p) Ď -q ď 2p#@q|)z(|. (7.2)

Remark 7.1. In the language of probabilistic combinatorics, if (7.2) was true for all ), the mea-

sure would be called #@-spread. Yet, in our se�ing we only know that the “spread” condition

holds for a subset of )’s. Interesting, it is this spread-type of condition that will allow us to use

� as a “non-favorable enough” prior to conclude our tight minimax rate lower bound.
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We use the “spread” � as our prior and prove that lim inf#Ñ8 MMSE#p?,�q ě 1 ´ @ which

concludes the proof. By the Nishimori identity (Lemma A.1), it suffices to prove that for any

1 ´ @ ą � ą 0 it holds ℙp|�1 X�| ě p@ ` �q:q “ >p1q where � „ � and �1 is sampled from the

posterior of � given . “ � Y -? .

For any � P Ap(q, . P 2X and C P r@ ` �, 1s, let

/.p�, Cq ≔
ÿ

�8PAp(q

�p�8q1t�8 Ď ., |� X �8| ě C:u. (7.3)

Also denote for simplicity /. ≔ /.p�, 0q. A quick application of Baye’s rule gives that the

posterior distribution is ℙp�|.q “ �p�q1t� Ď .u{/. , � P Ap(q, and therefore we have the

identity

ℙp|�1 X �| ě p@ ` �q:q “ ��,./.p�, @ ` �q{/. .

Now we claim that if we establish ?|(|´:��,./.p�, @ ` �q “ >p1q, then we can conclude

��,./.p�, @ ` �q{/. “ >p1q.
�is implication follows by a careful “change of measure” argument. To see this denote by

ℚ? the product law of . “ -?z(, and by ℙ? the “planted” law of . “ p�z(q Y p-?z(q for

independent � „ �, -? „ ℚ? . Also recall that � is always supported on sets containing (.

Combining these, it holds for all . Ď X that

ℙ?p.z(|�q “ ?|.|´:1p� Ď .q “ ?|(|´:1p� Ď .qℚ?p.z(q,

and therefore the likelihood ratio between ℙ? and ℚ? take the following form for all . Ď X,

ℙ?p.z(q
ℚ?p.z(q “ /.?

|(|´: .

In particular, for all � ą 0,

ℙ?p/. ď �?:´|(|q “ �ℚ? r
ℙ?p.z(q
ℚ?p.z(q1p/.?|(|´: ď �qs “ �ℚ? r/.?|(|´:1p/.?|(|´: ď �qs ď �.

Hence, for any � ą 0, since almost surely /.p�, @ ` �q{/. ď 1, we have

��,./.p�, @ ` �q{/. ď 1

�
?|(|´:��,./.p�, @ ` �q ` �.

From the last inequality by optimizing over � ą 0 we conclude

��,./.p�, @ ` �q{/. ď 2

b
?|(|´:��,./.p�, @ ` �q,

from which the claimed implication follows.
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Now by linearity of expectation and (7.3) (for the first equality), (7.2) (for the second inequality)

and direct counting arguments,

?|(|´:��,./.p�, @ ` �q “
ÿ

ℓěp@`�q:

�b2p|� X �1| “ ℓq?|(|´ℓ

ď
ÿ

ℓěp@`�q:

��

ÿ

)Ď�,|)|“ℓ

�p) Ď �1q?|(|´ℓ

ď 2
ÿ

ℓěp@`�q:

ˆ
: ´ |(|
ℓ ´ |(|

˙
p#@{?qℓ´|(|

ď 2
ÿ

ℓěp@`�q:

p:4{pℓ ´ |(|qℓ´|(|p#@{?qℓ´|(|

ď 2
ÿ

ℓěp@`�q:

p4{�qℓ´|(|p#@{?qℓ´|(|

“ $
´

pp#@4q{p�?qq�:
¯
.

Since ? “ $p#@q the last quantity is >p1q and the proof is complete. �

8. Omitted proofs

8.1. Proof of Corollary 3.8.

Proof of Corollary 3.8. Consider a C “ 0, 1, . . . , " ´ 1 for which (3.1) holds and any ? satisfying

(3.2). Now by Theorem 3.6 for any sufficiently small � “ �= ą 0 if @1 “ |�pCq|{|�| ` �, @2 “
|�pCq|{|�| ´ � it holds

!@1 “ =
´

|+p�pC`1qqz+p�pCqq|

|�pC`1qz�pCq|

and

!@2 “ =
´

|+p�pCqqz+p�pC´1qq|

|�pCqz�pC´1q| .

Hence ? must satisfy

p1 ` �q!@1 ď ? ď p1 ´ �q!@2 .
By Theorem 3.1 it therefore holds

1 ´ |�pCq|{|�| ´ � ď lim inf
=

MMSE=p?q ď lim sup
=

MMSE=p?q ď 1 ´ |�pCq|{|�| ´ �.

As � “ �= ą 0 can be made arbitrarily small, and in particular >p1q, the first part follows.
�e second part follows by a similar argument noticing that for any sufficiently small �= “

�= ą 0, it holds

=
´

|+p�p"qz+p�p"´1qq|

|�p"qz�p"´1q| “ !1´�.

�
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8.2. Proof of Corollary 3.12. We begin with a proof of Corollary 3.12, which inverts � to cal-

culate the MMSE for a specified value of ?.

Corollary 3.12. Let � “ �= be a weakly dense graph and ? “ ?= P p0, 1q. Let the function
� : p0, 1s Ñ r0,`8q defined by �p@q “ !@ . Consider the sequence = P p0, 1q defined by

= “ inf �´1pr0, ?sq, = P ℕ.

�en any limit point G P r0, 1s of t= : = P ℕu, corresponds in an one-to-one fashion to a limit

point of the sequenceMMSE=p?q. In particular, if the lim=MMSE=p?q exists, then the lim= = exists

and it holds,

lim
=

MMSE=p?q “ 1 ´ lim
=

= . (3.3)

Proof. Consider H P r0, 1s to be the limit point of the subsequence of := , = P ℕ. Observe that �

is a non-increasing right-continuous function. Hence for any sufficiently small constant � ą 0,

for all large =, �p=q ď ? ď �pp1 ´ �q=q. Now, if H R t0, 1u, then we can conclude by the fact

that � is decreasing that for all � ą 0 it holds

lim sup
=

?:={p�pH ´ �qq:= ď 1 ď lim inf
=

?:={p�pH ` �qq:= .

Using Theorem 3.1 (which trivially generalizes over subsequences) this allows us to conclude

1 ´ H ´ � ď lim inf
=

MMSE:=p?q ď lim sup
=

MMSE:=p?q ď 1 ´ H ` �.

Since � ą 0 is arbitrary, (3.3) follows for H P p0, 1q. If H “ 0, then we know for each � ą 0, it

must hold lim inf= ?:={p�p�qq:= ě 1.�erefore from Theorem 3.1,

1 ´ � ď lim inf
=

MMSE:=p?q.

Since � ą 0 is arbitrary, (3.3) follows. �e case H “ 1 follows similarly to the case H “ 0.

�

8.3. Proofs of lemmas for the � function. In this section, we prove some properties of the �

function, restated for convenience.

Lemma 5.1. Let �, � be subgraphs. �en,

�p� Y �|�q ě �p�|� X �q.

Proof. We have

�p� Y �|�q “ |p� Y �qz�|
Ep� Y �q ´ Ep�q

“ |�zp� X �q|
Ep�q ´ |+p�q X+p�q| ,

so the lemma is a consequence of the simple inequality

|+p�q X+p�q| ě |+p� X �q| “ Ep� X �q. �
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Lemma 5.2. Let  |) be a graph-cut that is “balanced”, in that for all ) 1 such that ) Ď ) 1 Ď  ,

�p) 1|)q ď �p |)q. �en, for all ) 1 such that ) Ď ) 1 Ď  it also holds

�p |) 1q ě �p |)q.

Proof. For any ) 1 such that ) Ď ) 1 Ď  we have

�p |) 1q “ | z) 1|
Ep q ´ Ep) 1q “ p| | ´ |)|q ´ p|) 1| ´ |)|q

pEp q ´+p)qq ´ pEp) 1q ´ Ep)qq ě | z)|
Ep q ´ Ep)q “ �p |)q,

where the final inequality is equivalently with �p) 1|)q ď �p |)q. �

Lemma 5.3. Let � be a subgraph and consider the map !� which maps any subgraph � containing

� to !�p�q “ �p�|�q. If � 1 and �2 are two subgraphs containing � and at least one of them is

balanced, then !�p� 1 Y �2q ě mint!�p� 1q, !�p�3qu. In particular, if � 1, �2 are two maximizers of

!�, then �
1 Y �2 is also a maximizer of !�, so there is a unique maximal maximizer of !�.

Proof. Let &1 “ � 1z�, &2 “ �2z�.�en we have

�p� 1 Y �2|�q “ |&1| ` |&2| ´ |& X &2|
|+p&1q| ` |+p&2q| ´ |+p&1q X+p&2q| (8.1)

ě |&1| ` |&2| ´ |& X &2|
Ep&1q ` Ep&2q ´ Ep&1 X &2q . (8.2)

By the balancedness of one of � 1, �2,

�p� 1 X �2|�q “ |&1 X &2|
Ep&1 X &2q ď max

" |&1|
Ep&1q ,

|&2|
Ep&2q

*
.

Combining the two last displayed equations with (8.1) we conclude

�p� 1 Y �2|�q ě min

" |&1|
Ep&1q ,

|&2|
Ep&2q

*
“ mint�p� 1|�q, �p�2|�qu,

as desired. �

Lemma 5.4. Let � be a subgraph and � “ argmax�Ě� �p�|�q.�en for all � Ě �,

�p�|�q ď �p�|�q.
In particular, for �pCq, C “ 0, 1, . . . , " the onion decomposition of any subgraph � the sequence

�p�pC`1q|�pCqq, C “ 0, 1, . . . , " ´ 1 is non-increasing.

Proof. For all � Ě �, we have

�p�|�q “ |�| ´ |�|
|+p�q| ´ |+p�q| ě �p�|�q “ |�| ´ |�|

|+p�q| ´ |+p�q|
and therefore

|�| ´ |�|
|+p�q| ´ |+p�q| ě |�| ´ |�| ` p|�| ´ |�|q

p|+p�q| ´ |+p�q|q ` p|+p�q| ´ |+p�q|q ,

which rearranging gives

�p�|�q “ |�| ´ |�|
|+p�q| ´ |+p�q| ď �p�|�q “ |�| ´ |�|

|+p�q| ´ |+p�q|
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Now, consider �pCq, C “ 0, 1, . . . , " the onion decomposition of a graph �. �en for any

C “ 0, 1, . . . , "´1, applying the established inequality for� ≔ �pC´1q, which gives by definition

� ≔ �pCq, and � ≔ �pC`1q Ě �pCq, implies

�p�pC`1q|�pCqq ď �p�pCq|�pC´1qq. �
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Appendix A. Auxiliary Lemmas

In this section we prove some standard results that are needed for the main body of this work.

We start with the Nishimori identity we use o�en in this work.

Lemma A.1 (Nishimori’s identity). Suppose a Bayesian inference se�ing where the parameter � is

sampled from some prior � supported on (#´1 , i.e., � „ �, and we have observations . „ %�. Let

also �1p.q be the posterior distribution of � given .. �en,

MMSEp�q :“ �r}� ´ �r�|.s}22s “ 1 ´ ��„�,.„%� ,�1„�1p.qrx�, �1ys.
In particular, for the planted subgraph model for a graph � it holds

MMSE=p?q “ 1 ´ 1

|�|�r|�˚ X �1|s,

where �1 is a uniform random copy of � in the observed graph �.

Proof. See [NZ23, Lemma 2] for the proof of the identity. �e application for the normalized

MMSE of the planted subgraph model follows immediately from the fact that the posterior in the

planted subgraph model is the uniform measure on the copies of � in the observed graph �. �

�e following is a standard lemma on the MMSE curve.

Lemma A.2. For any graph � “ �= and for any =, ? “ ?= P p0, 1q, under the planted subgraph
model corresponding to � the functionMMSE=p?q is a non-decreasing polynomial function of ?.

Proof. By the Nishimori identity,

MMSE=p?q “ 1 ´ 1

|�|�r|�1 X �˚|s,

where �˚ is the planted copy of � in � and �1 is a uniform random copy of � in the observed

�. Expanding a direct argument gives,

MMSE=p?q “ 1 ´ "�

|�|
ÿ

ℓ

ℓℙp|�” X �˚| “ ℓq?|�|´ℓ , (A.1)

where now "� is the total number of copies of � in  = , and �
˚, �2 are now independent

samples from the uniform distribution over all copies of� in  = . Notice that clearly (A.1) implies

that MMSE=p?q is a polynomial function in ?.

�e fact that MMSE=p?q is non-decreasing in ? follows by a simple application of the data

processing inequality, see e.g. [MNS`23, Lemma 3.2]. �

We now present a simple identity on the first moment threshold of �.

Lemma A.3. Suppose � is a weakly dense graph. �en it’s first moment threshold ?1Mp�q satisfies
?1Mp�q “ p1 ` >p1qq=´Ep�q{|�|.

We refer the reader to [MNS`23, Lemma 4.2] for the proof.

Finally, we show that, in the context of monotone properties given by graph inclusions, the

minimax prior is given by the uniform distribution.
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Lemma A.4. Let A Ď t0, 1up=2q be a subgraph inclusion property, that is, there exists a graph

� Ď
`r=s

2

˘
such that� P A if and only if� contains an isomorphic copy of�.7 �en, the maximizer

�˚ of � ÞÑ MMSE#p?,�q in (4.1) is given by the uniform distribution over all copies of � in

 = “
`r=s

2

˘
.

Proof. Let � P (= be any permutation of the vertices r=s and, for a prior �, define the action of �

on � as follows:

��p�1q “ �p�1
�q,

where �1
� is the copy of � obtained by relabeling the vertices of �1 according to �. It’s clear by

symmetry that, for all � and �, we have

MMSE#p?,�q “ MMSE#p?,��q.
Now suppose we choose � according to the uniform distribution in (= . Since we have a Markov

chain

� Ñ �� Ñ -? Y �1, �1 „ �� ,

by the data processing inequality, for any �, we have

MMSE#p?,�q “ �� MMSE#p?,��q ď MMSE#p?,����q.
Finally, since (= acts transitively on all copies of � in  = , we have that ���� is the uniform

distribution for all �, and hence �˚ is uniform. �

7Isomorphic here is in the sense of graph isomorphism, i.e., relabeling of the vertices.
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