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�-1. Notation

Given a set X , SX is the set of all bijections from X to itself.

�0. Preliminaries

We define precisely those things that the author of these notes did not know at the time of reading. If there are
things in these notes you do not know that are not defined anywhere within the notes, too bad!

0.1. Algebra

Definition 0.1. Given a group G, Ĝ denotes the set of all group homomorphisms from G → C∗. This is a group
under point-wise operations and is called the dual group of G.

Proposition 0.1. If G1, G2 are groups and G = G1 ×G2, then Ĝ ∼= Ĝ1 × Ĝ2.

Proof. Let φ ∈ Ĝ. Define the homomorphism Φ : Ĝ→ Ĝ1 × Ĝ2 by φ 7→ (φ1, φ2), where

φ1(g1) = φ(g1, 1) and φ2(g2) = φ(2, g2).

Let us show that Φ is injective by showing that precisely one φ ∈ Ĝ maps to (1, 1). Indeed, this would imply that
φ(g1, 1) = φ(1, g2) = 1 for all g1 ∈ G2, g2 ∈ G2. As φ is a homomorphism, φ(g1, g2) = 1 as well.
For surjectivity, let (ρ1, ρ2) ∈ Ĝ1 × Ĝ2. Consider φ : G→ C∗ defined by φ(g1, g2) = ρ1(g1)ρ2(g2). It is not difficult to
show that φ ∈ Ĝ since ρ1, ρ2 are homomorphisms ■

Proposition 0.2. If G = Z/nZ, then Ĝ ∼ G.

Proof. Let φ : G → C∗ be a homomorphism. Observe that φ is determined by φ(1). Further, since nm = 0 for
any m ∈ G, φ(m)n = φ(0), so every φ(g) is an nth root of unity. As a result, there are at most n elements in
Ĝ corresponding to which of the n roots of unity 1 is mapped to – each such homomorphism φ(k) is of the form
φ(m) = ωkmn for some k. It is easily checked that all of these do in fact correspond to homomorphisms.
Further, this group is cyclic because φ(k) = (φ(1))k. ■

Theorem 0.3. For any finite abelian group G, Ĝ ∼ G.

This follows directly using the classification theorem of finite groups and the previous two propositions.

0.2. Linear Algebra

Proposition 0.4. LetW ≤ V be vector spaces and T ∈ GL(V ). Then, T isW -invariant iff T (W ) =W .

Definition 0.2. Let V be a finite dimensional inner product space and T ∈ End(V ). The adjoint of T is the unique
linear operator T ∗ such that for any v, w ∈ V ,

⟨Tv,w⟩ = ⟨v, T ∗w⟩.
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Proposition 0.5. Let V be an inner product space and T ∈ End(V ). Suppose thatW ≤ V be T -invariant. Then,W⊥

is T ∗-invariant.

Proof. Let w ∈W⊥. Then for any v ∈W , we have

0 = ⟨Tv,w⟩ = ⟨v, T ∗w⟩,

so T ∗w ∈W⊥ and the desideratum follows. ■

Definition 0.3. Let V be an inner product space and U ∈ GL(V ). U is said to be unitary if

⟨v, w⟩ = ⟨Uv,Uw⟩

for all v, w ∈ V .

In other words,
⟨v, U∗Uw⟩ = ⟨v, w⟩.

However, the identity map is its own adjoint, so U∗ = U−1.
The subset U(V ) ⊆ GL(V ) of all unitary operators forms a subgroup.

Definition 0.4. A matrix U ∈ GLn(C) is said to be unitary if U∗U = In.

The set of all unitary matrices is denoted Un(C) and is a subgroup of GLn(C).

Proposition 0.6. Let V be an inner product space and T ∈ U(V ). Suppose thatW ≤ V is T -invariant. Then,W⊥ is
also T -invariant.

Proof. Recalling Proposition 0.5, we have that W⊥ is T−1-invariant. It then follows by Proposition 0.4 that W⊥ is
T -invariant as well (T−1(W⊥) =W⊥ so T (W⊥) =W⊥). ■

Definition 0.5 (Minimal Polynomial). Let T ∈ End(V ). Theminimal polynomial of T is the unique monic polynomial
m(X) ∈ C[X] of minimal degree such thatm(T ) is the zero operator.

Definition 0.6 (Diagonalisable). Let T ∈ End(V ). T is said to be diagonalisable if there exists a basisB of V consisting
of eigenvectors of T .

For the rest of this section, we use T to denote an element of End(V ) andm(X) its minimal polynomial.
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Proposition 0.7. Let T ∈ End(V ), m(X) be its minimal polynomial, and p(X) ∈ C[X] be any polynomial such that
p(T ) = 0. Then p(λ) = 0 for any eigenvalue λ ∈ C of T . In particular, all the eigenvalues of T (in C) are roots of the
minimal polynomial.

Proof. Suppose
p(X) = a0 + a1X + · · ·+ arX

r.

If λ is an eigenvalue of T and v ( ̸= 0) a corresponding eigenvector, then T kv = λkv. So,

0 = p(T )v = (a0 + a1T + · · ·+ arT
r) v

=
(
a0 + a1λ+ a2λ

2 + · · ·+ arλ
r
)
v = p(λ)v.

As v ̸= 0, p(λ) = 0. ■

As the minimal polynomial divides the characteristic polynomial, this says that the minimal polynomial and char-
acteristic polynomial have precisely the same roots.

Theorem 0.8. Let T ∈ End(V ) and m(X) be its minimal polynomial. T is diagonalisable if and only if m(X) has
distinct roots.

Proof. First, suppose that T is diagonalisable.
Let λ1, . . . , λr be the distinct eigenvalues of T . Consider

p(X) = (X − λ1)(X − λ2) · · · (X − λr).

It is clear from the previous proposition that p(X) | m(X). If we manage to show that m(X) | p(X), then m(X) =
p(X) and we are done. To show this, it suffices to show that p(T ) = 0, and to show this it suffices to show that p(T )
annihilates some basis of V . Towards this, let B be an eigenbasis of V with respect to T (since T is diagonalisable,
this exists). Any v ∈ B is annihilated by some T − λi. Since all the (T − λi) commute, it follows that p(T ) vanishes
on B, and thus V .

Now, suppose that m(X) has distinct roots, and let it be equal to (X − λ1) · · · (X − λr) for distinct λi ∈ C. Let Eλ
denote the eigenspace of λ. We wish to show that V =

⊕r
i=1Eλi . Recall that eigenvectors corresponding to different

eigenspaces are linearly independent. As a result, it suffices to show that V =+r
i=1Eλi . For each i ∈ [r], let

gi(X) =
∏
j ̸=i

(X − λj)

and
fi(X) =

gi(X)

gi(λi)
.

Observe that

1 =

r∑
i=1

fi(X).

Indeed, they are polynomials of degree at most r − 1 that agree at the r points (λi)ri=1. As a result, for any v ∈ V ,

v =

r∑
i=1

fi(T )v.

If we manage to show that fi(T )v ∈ Eλi , we are done. This is not too difficult to see as

(T − λi)fi(T )v =
1

gi(λi)
m(T )v = 0. ■
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We now give a couple of general definitions that will come into use later in the notes.

Definition 0.7 (Center). Let R be a ring. The center of R is denoted Z(R) and defined as

Z(R) = {r ∈ R : rs = sr for all s ∈ R}.

One can show that Z(R) is a commutative subring of R.

0.3. Number Theory

Definition 0.8 (Algebraic integer). α ∈ C is said to be an algebraic integer if it is a root of a monic polynomial with
integer coefficients. That is, there exists n > 0 and integers a0, . . . , an−1 such that αn + an−1α

n−1 + · · ·+ a0 = 0.
The set of all algebraic integers is denoted A.

The monic requirement is important. For example, 1/2 is a root of 2z − 1 which is not monic, and is in fact not an
algebraic integer.

Example (Closure under negation and conjugation). If α ∈ A, and p is a monic polynomial of degree nwith
p(α) = 0, then considering the polynomial z 7→ (−1)np(−z) shows that −α ∈ A as well. Since p has real
coefficients, we also have that α ∈ A.

Proposition 0.9. A ∩Q = Z.

Proof. Let r = p/q ∈ Q be an algebraic integer with p ∈ Z, q ∈ N, and gcd(p, q) = 1. Let a0, . . . , an−1 ∈ Z with
rn + an−1r

n−1 + · · · + a0 = 0. Multiplying with qn gives pn + an−1qp
n−1 + · · · + a0q

n = 0. Note that all of these
terms but the first are divisible by q. Consequently, even the first term must be divisible by q. That is, q | pn. Since
gcd(p, q) = 1, this implies that q = 1, proving the required. ■

Example. LetA be a square integer matrix. The eigenvalues ofA are precisely the roots of det(zI−A), which
is a monic polynomial. As a result, any eigenvalue of an integer matrix is an algebraic integer.

It turns out that the above in fact characterizes all algebraic integers.

Proposition 0.10. α ∈ C is an algebraic integer iff it is an eigenvalue of a square integer matrix A.

Proof. We have already seen that the backward implication is true.
Let α ∈ A and an−1, . . . , a0 such that αn + an−1α

n−1 + · · ·+ a0. Then, αn = −an−1α
n−1 − · · · − a0 and we get

y · 1
y · y
...

y · yn−2

y · yn−1

 =


0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 1

−a0 −a1 −a2 · · · −an−1 −an−1




1
y
...

yn−2

yn−1

 ,
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completing the proof. ■

Proposition 0.11. A is a subring of C.

The proof mostly follows using the previous proposition extensively, and we omit the details.
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�1. Introduction

1.1. Basic De�nitions

1.1.1. Representations

Definition 1.1 (Representation). A representation of a group G is a homomorphism φ : G→ GL(V ) for some finite-
dimensional vector space V over C. The degree of φ is the dimension of V .

Henceforth, V (or any other symbol for a vector space) is used to denote a non-trivial vector space over C.
The map φ(g) is typically denoted φg , and φg(v) as φgv.
Note that since φ is a homomorphism, it is determined by its values on any generating set of G.
Recall that given a group G and setX , a group action of G onX is merely a function G→ SX . Representations can
thus be pictured as a special case of a group action where the image of any element is not just a bijection, it is linear.

Example. LetX be a setX and consider the linearisation CX ofX , defined as the vector space with elements
of the form

∑
x∈X cxx, where each cx ∈ C, addition defined by∑

x∈X
cxx+

∑
x∈X

dxx =
∑
x∈X

(cx + dx)x,

and scalar multiplication by
c
∑
x∈X

cxx =
∑
x∈X

(ccx)x.

It is clear that CX has basis X .
Observe that any group action of a group G on X extends to an action on CX as a representation! Indeed,
we define

g ·

∑
x∈X

cxx

 =
∑
x∈X

cx(g · x).

If V is a 1-dimensional vector space over C, then GL(V ) ∼= C. In such a case, to stay sane, we usually write z instead
of φ to denote a representation1, so each zg is a complex.
The trivial representation of a group G is the homomorphism z : G→ C∗ given by zg = 1 for all g ∈ G.

Example. Let n ∈ N. Recall that GL(C∗) ∼= GL(C), so any degree-one representation may be considered as a
function z : Z/nZ → C∗. However, recall from Proposition 0.2 that any representation is of the form defined
by z(m) = ωkmn for some fixed k ∈ N. It turns out that these are the “only” representations of a finite cyclic
group (where “only” is defined in an appropriate sense, as we shall see later).

Observe that the above mentioned representations are incredibly restrictive, and we are barely using the fact that
the representation is to C∗.

1one could say that in such a scenario, z is used to represent a representation.
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Example. Now, consider the degree-one representations z : G → C∗ of a non-Abelian group G. Recall the
(Abelian) commutator subgroup [G,G] ofG consisting of elements of the form xy− yx. Because C∗ is Abelian,
[G,G] ⊆ ker z. Consequently, z factors through the quotient as

G C∗

G/[G,G]

z

z̃

As a result, when studying degree-one representations, it suffices to assume that the group is non-Abelian.

Why are representations useful? Consider the problem of, given a group G and x, y ∈ G, finding x ∈ G such that
gxg−1 = y. It might then be easier to findM such thatMφxM

−1 = φy since testingmatrix similarity is awell-studied
problem. A g in the preimage ofM may then be a good candidate for the required.

1.1.2. Equivalence

Let φ : G → GL(V ) be a degree-n representation. Let B,B′ be two bases of V , and consider the two corresponding
isomorphisms T, T ′ : V → Cn mapping the basis elements of B, B′ to the standard basis vectors of Cn. We would
then like that the two representations ψ,ψ′ : G→ Cn defined by

ψg = TφgT
−1 and ψ′

g = T ′φg(T
′)−1

are the same in some sense. Towards this, we define the following.

Definition 1.2. Two representations φ : G → GL(V ) and ψ : G → GL(W ) are said to be equivalent if there exists an
isomorphism (an equivalence) T : V →W such that ψg = TφgT

−1 for all g ∈ G. If this is the case, we write φ ∼ ψ.

Note that T must be independent of g!
The above definition can be represented as saying that there exists an equivalence T : V →W such that the following
commutes for all g ∈ G.

V V

W W

φg

T T

ψg

Observe that V,W must be isomorphic, that is, φ,ψ are of the same degree.

Proposition 1.1. Let G be a group and z, z∗ : G→ C∗ be degree-one representations. Then, z ∼ z∗ iff z = z∗.

Proof. Let z ∼ z∗ and T : C∗ → C∗ be an equivalence. Then, for any g ∈ G,

z∗gv = TzgT
−1v

= zgTT
−1v (T is linear)

= zgv,

so z = z′. ■

From Theorem 0.3 and the final example in Section 1.1.1, we get the following.

Corollary 1.2. Any finite group G has exactly |G/[G,G]| inequivalent degree-one representations.
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Recall Definition 0.1.

Corollary 1.3. If G is an abelian group, its |G| degree-one representations (up to equivalence) are just the elements
of Ĝ.

1.1.3. Irreducibility

Definition 1.3 (Invariant subspace). Let φ : G → GL(V ) be a representation. A subspace W ≤ V is said to be
G-invariant with respect to φ if for all g ∈ G and w ∈W , φg(W ) =W .

Observe that ifW ≤ V is G-invariant with respect to φ, then φ|W : G→ GL(W ) defined by (φ|W )g(w) = φg(w) is a
representation. In such a case, φ|W is said to be a subrepresentation ofW .
Based on the direct sum of vector spaces, one can similarly define the direct sum of representations.

Definition 1.4 (Direct sum). Let φ(1) : G → GL(V1) and φ(2) : G → GL(V2) be representations. Then, their
(external) direct sum is the representation φ(1) ⊕ φ(2) : G→ GL(V1 ⊕ V2) defined by(

φ(1) ⊕ φ(2)
)
g
(v1, v2) = (φ(1)

g (v1), φ
(1)
g (v2))

for all g ∈ G and (v1, v2) ∈ V1 ⊕ V2.

The above is more natural to picture using matrices.
If V1 = GLm(C) and V2 = GLn(C) above, then each φ(i)

g can be expressed as a matrix. The matrix in GLm+n(C)
corresponding to their direct sum is then given by

(
φ(1) ⊕ φ(2)

)
g
=

(
φ
(1)
g

φ
(2)
g

)
,

where the empty cells are appropriately sized 0 matrices.

Recall the trivial representation of a group G. Observe then that the representation φ : G → GLn(C) given by
ρg = In for all g ∈ G is equivalent to the direct sum of n copies of the trivial representation.

Proposition 1.4. If V1, V2 ≤ V are G-invariant subspaces with respect to φ and V = V1 ⊕ V2, then φ is equivalent to
φ|V1

⊕ φ|V2
.

Proof. Consider the map T : V → V1 ⊕ V2 defined by T (v1 + v2) = (v1, v2) (V1 ⊕ V2 here is the external direct sum).
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Let ψ = φ|V1
⊕ φ|V2

. Then,

ψg(v1, v2) =

((
φ|V1

)
g
(v1),

(
φ|V2

)
g
(v2)

)
= (φg(v1), φg(v2))

= T (φg(v1) + φg(v2))

= Tφg(v1 + v2)

= TφgT
−1(v1, v2). ■

Above, let Bi be a basis of Vi for i = 1, 2. Because each Vi is G-invariant, φg(Bi) ⊆ CBi. The matrix representation
of φ ∼= φ(1) ⊕ φ(2) is then

[φg]B =


[
φ
(1)
g

]
B1 [

φ
(2)
g

]
B2

 .
Thus, it is seen that representations may be broken down into smaller representations which operate on invariant
subspaces. The following definition arises naturally.

Definition 1.5 (Irreducible representation). A non-zero representation φ : G→ GL(V ) is said to be irreducible if the
only G-invariant subspaces of V are 0 and V .

Note however that if a represenation is reducible, it need not actually have a decomposition of the form described
in Proposition 1.4. We shall see an example of this later in

Example. Let G be a finite group with generators a and b, and suppose every element can be written as aibj
for (non-negative) integers i, j. Since the inverse of any group element can be written as aibj , it is seen that
any group element can also be written as bj′ai′ for non-negative i′, j′ (let i′ = (|a| − 1)i and j′ = (|b| − 1)j).
So, assume that n := |a| ≤ |b|.
We claim that any irreducible representation φ of G is of degree at most n. Let φ : G → GL(V ) be a repre-
sentation. Let v be an eigenvector of φb and consider

W = ⟨v, φav, φa2v, . . . , φan−1v⟩.

Clearly, 0 < dimW ≤ n. If we manage to show thatW is G-invariant, we are done since φ is irreducible so
V =W (in particular, dimV ≤ n).
Let 0 ≤ k < n and consider some arbitrary g = aibj ∈ G. Let aibjak = apbq . Then,

φaibj (φakv) = φaibjakv

= φapφbqv

= φapλv (v is an eigenvector of φb and so φbq)
= λφapv ∈W.

In particular, any irreducible representation of the dihedral group Dn has degree at most two.

Proposition 1.5. Let ρ : H → GL(V ) be an irreducible representation and ψ : G → H be a surjective group
homomorphism. Then, ρ ◦ ψ is an irreducible representation of G.
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Proof. Let φ = ρ ◦ ψ. Let W be a G-invariant subspace wrt φ. We shall show that it is also H-invariant wrt ρ to
complete the proof. Indeed, for any w ∈W and h ∈ H , we have h = ψ(g) for some g ∈ G. As a result,

ρh(w) = ρψ(g)(w) = (ρ ◦ ψ)g(w) = φg(w) ∈W. ■

Proposition 1.6. Ifφ : G→ GL(V ) is a degree two representation, φ is irreducible iff there is no common eigenvector
v to all φg with g ∈ G.

Proof. If v is an eigenvector of all φg , then Cv is a G-invariant subspace, so the forward direction is done.
Now, suppose that there is no common eigenvector v to all of the φg but there is a non-trivial G-invariant subspace
W of V . Because it is a degree-two representation,W = Cv for some v ∈ V . It follows that for each g ∈ G, φgv = λgv
(for some λg ∈ C), so the desideratum follows. ■

Remark. The above result almost directly generalizes to degree three representations for finite groups as well. The
key point to note is that if the representation of a finite group is reducible, then we can write V =W ⊕W ′ for some
non-zero G-invariant subspacesW,W ′.
We shall prove this later in Proposition 1.15.

1.1.4. Decomposability

Definition 1.6 (Complete Reducibility). Let G be a group. A representation φ : G→ GL(V ) is said to be completely
reducible if V = V1 ⊕ · · · ⊕ Vn where each Vi is G-invariant and φ|Vi

is irreducible for each i.

Equivalently, by Proposition 1.4, the above is equivalent to saying that φ = φ(1) ⊕ · · ·φ(n) for some irreducible
representations φ(i).
Remark. Note that any irreducible representation is completely reducible. Indeed, the Vi need not be proper sub-
spaces of V .
In some sense, complete reducibility says that we do not run into the weird situation wherein the representation is
not irreducible yet we cannot “reduce” it to a direct sum of ‘smaller’ representations.
The main result of this section is showing that any representation of a finite group is completely reducible.
Based on the above remark, we can further define the more logical thing to consider as follows.

Definition 1.7 (Decomposability). A non-zero representation φ is said to be decomposable if V = V1 ⊕ V2 for some
non-zero G-invariant subspaces V1, V2 ≤ V . Otherwise, φ is said to be indecomposable.

First, let us show that irreducibility, complete reducibility, and decomposability are preserved under equivalence.

Lemma 1.7. Let φ : G → GL(V ) and ψ : G → GL(W ) be equivalent representations with T : V → W being a
corresponding equivalence. If V1 ≤ V is G-invariant, so isW1 = T (V1).

Proof. Let w ∈ W1 and g ∈ G. We have by definition that ψw = TφT−1w. We have that T−1w ∈ V1, so since V1 is
G-invariant φT−1w ∈ V1, so TφT−1w ∈W1 by definition ofW1. ■

Lemma 1.8. Let φ : G→ GL(V ) and ψ : G→ GL(W ) be equivalent representations. Then,
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1. If φ is reducible, so is ψ.

2. If φ is decomposable, so is ψ.

3. If φ is completely reducible, so is ψ.

Proof. Let T : V →W be a corresponding equivalence.

1. Let V1 ≤ V be a proper non-zeroG-invariant subspace. Because T is an isomorphism,W1 is also non-zero and
proper. By the previous lemma, this is also G-invariant and we are done.

2. If V = V1⊕V2 for non-zero V1, V2, thenW = T (V1)⊕T (V2) since T is an isomorphism. If V1, V2 areG-invariant,
so are T (V1) and T (V2) by the previous lemma so we are done.

3. Again, if V = V1⊕· · ·⊕Vn, thenW =W1⊕· · ·⊕Wn whereWi = T (Vi) and each Vi orWi isG-invariant (with
respect to the appropriate representation).
Wemust check that if φ|Vi

is irreducible, so is ψ|Wi
. However, this is direct as the following diagram commutes

for all g ∈ G.

Vi Vi

Wi Wi

(
φ|Vi

)
g

T |Vi
T |Vi(

ψ|Wi

)
g

It is easily seen that T |Vi
is an isomorphism from Vi toWi. ■

Proposition 1.9 (Irreducible representations of finite cyclic groups). Let G be a finite cyclic group. Then all irre-
ducible representations of G are of degree one.

Proof. We may assume that G = Z/nZ by Lemma 1.8. Let φ : G→ GLm(C) be a representation withm ≥ 2.
Note that φn

1
= In. Recall Definition 0.5. It follows that the minimal polynomial of φ1 is a factor of Xn − 1, and in

particular, has distinct roots. It follows from Theorem 0.8 that φ1 is diagonalisable.
Let D be a diagonal matrix and T ∈ GLm(C) such that Tφ1T

−1 = D. Then TφkT−1 = Dk for any 1 ≤ k ≤ n.
Therefore, consider the equivalent representation ψ : G → GLm(C) defined by ψg = TφgT

−1. ψg is diagonal for all
g ∈ G. Clearly, ψ is decomposable intom non-zero proper representations, contradicting irreducibility. ■

1.2. Maschke's Theorem and Complete Reducibility

The aim of this section is to show that any representation of a finite group is completely reducible in Maschke’s
Theorem.
To begin, we shall show that a representation of a finite group is decomposable iff it is reducible in Theorem 1.14.
We first prove this for a specific type of representation in Lemma 1.10.

Definition 1.8 (Unitary). Let V be an inner product space. A representation φ : G → GL(V ) is said to be unitary if
φg is unitary for every g ∈ G.
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That is, φ is a map from G to U(V ). Observe that unitarity depends on the inner product we place on the latent
space! The usefulness arises when one observes certain properties of unitary representations (independent of the
inner product), as we shall shortly see in Lemma 1.13.
IdentifyingGL1(C)with C∗, one sees that U1(C) ends up becoming S1. Therefore, a degree-one unitary representa-
tion is a homomorphism φ : G→ S1.
Recall that any degree-one representation of a finite group maps into S1. Indeed, we have that φ|G|

g = 1. Therefore,
any such representation is unitary.

Example. φ : R → S1 defined by t 7→ exp(2πιt) is a degree-one unitary representation of (R,+).

Recall that decomposability implies reducibility, but the converse need not hold for a general representation.

Lemma 1.10. Let φ : G→ GL(V ) be a unitary representation. Then, φ is decomposable iff it is not irreducible.

Proof. Suppose that φ is not irreducible. We shall show that it is decomposable. Let W ≤ V be a non-zero proper
G-invariant subspace. We are done if we show thatW⊤ isG-invariant as well. Let g ∈ G. We know that φg is unitary
andW is φg-invariant. Recalling Proposition 0.6,W⊥ is φg-invariant. Since g was arbitrary,W⊥ is G-invariant with
respect to φ, completing the proof. ■

As usual, we denote by ⟨·, ·⟩ the standard inner product on Cn.
Over the next three lemmas, we define a new inner product and show that any representation is equivalent to a
unitary representation using this inner product.

Lemma 1.11. LetG be a finite group and ρ : G→ GLn(C) a representation. Consider the product (·, ·) onCn defined
by

(v, w) =
∑
g∈G

⟨ρgv, ρgw⟩.

(·, ·) is an inner product.

Note that the sum is well-defined because G is finite.

Proof. Let c1, c2 ∈ C and v1, v2, v, w ∈ C. Then,

(c1v1 + c2v2, w) =
∑
g∈G

⟨ρg(c1v1 + c2v2), ρgw⟩

=
∑
g∈G

⟨c1ρgv1 + c2ρgv2, ρgw⟩

=
∑
g∈G

c1⟨ρgv1, ρgw⟩+ c2⟨ρgv2, w⟩

= c1(v1, w) + c2(v2, w).

Next,

(w, v) =
∑
g∈G

⟨ρgw, ρgv⟩

=
∑
g∈G

⟨ρgv, ρgw⟩

=
∑
g∈G

⟨ρgv, ρgw⟩ = (v, w).
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Finally,
(v, v) =

∑
g∈G

(ρgv, ρgv) ≥ 0.

with equality iff ρgv = 0 for every g ∈ G. In particular, v = ρ1v = 0. ■

Lemma 1.12. With the same notation as in the previous lemma, ρ is unitary with respect to the inner product (·, ·).
Proof. Let v, w and g ∈ G. We would like to show that (ρgv, ρgw) = (v, w). Indeed,

(ρgv, ρgw) =
∑
g′∈G

⟨ρg′ρgv, ρg′ρgw⟩

=
∑
g′∈G

⟨ρg′gv, ρg′gw⟩

=
∑
g′∈G

⟨ρg′v, ρg′w⟩ (g′ 7→ g′g is a bijection)

= (v, w). ■

Lemma 1.13. Every representation of a finite group G is equivalent to a unitary representation.

Proof. Letφ : G→ GL(V ) be a representation and n = dimV . Fix an isomorphism T : V → Cn and set ρg = TφgT
−1

for each g ∈ G. Clearly, ρ is a representation G→ GLn(C) that is equivalent to φ.
By Lemma 1.12, ρ is a unitary representation with respect to the inner product defined in Lemma 1.11 and we are
done. ■

Theorem 1.14. Let φ : G → GL(V ) be a non-zero representation of a finite group. Then, φ is reducible iff it is
decomposable.

Proof. The desideratum follows directly from lemmas 1.8, 1.10 and 1.13. ■

The above further shows that if φ : G → GL(V ) is a representation of a finite group G and V1 is a non-zero proper
G-invariant subspace, then we can decompose V = V1 ⊕ V2, where V2 is the subspace orthogonal to V1 (for an
appropriate inner product structure) and is also G-invariant (and non-zero and proper).

Proposition 1.15. Let φ : G → GL(V ) be a degree 3 representation of a finite group. φ is reducible iff there is a
common vector v to all the φg for g ∈ G.

The proof of the above is exactly as described in the remark after Proposition 1.6. Reducibility implies decompos-
ability, so we get a one-dimensional invariant subspace.
Now, let us give an example of an infinite group that is reducible but not decomposable.

Example. Let φ : Z → GL2(C) be the representation defined by

φn =

[
1 n

1

]
.

φ is reducible because Ce1 is a Z-invariant subspace. However, there is no other eigenvector to all the φn, so
there is no other Z-invariant subspace. As a result, φ is not decomposable.
It is worth noting that Lemma 1.10 is true even for an infinite group, and Lemma 1.11 is where it breaks.
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Further, the above cannot be strengthened to degree 4 representations since we need not have a 1-dimensional in-
variant subspace.

Example. Let ψ : D4 → GL4(C) be defined by

ψr =


ι

−ι
ι

−ι

 and ψs =


1

1
1

1

 .
It may be checked that ψr and ψs have no common eigenvector.

Now, we arrive at the main result of this section.

Theorem 1.16 (Maschke’s Theorem). Every representation of a finite group is completely reducible.

Proof. We prove this by induction on the degree of the representation φ : G→ GL(V ).
If dimV = 1, then φ is irreducible (so completely reducible) and we are done.
Let n ≥ 1 and suppose that the statement is true for representations of degree ≤ n. Let dimV = n + 1. If φ is
irreducible, we are done. Otherwise, by Theorem 1.14, V = U ⊕W for non-zero G-invariant subspaces U,W . We
may then apply the inductive hypothesis on U,W to write

U = U1 ⊕ · · · ⊕ Un andW =W1 ⊕ · · · ⊕Wm

for non-zero G-invariant subspaces Ui and Wi such that φ|Ui
and φ|Wj

are irreducible for 1 ≤ i ≤ n, 1 ≤ j ≤ m.
Consequently,

V = U1 ⊕ · · · ⊕ Un ⊕W1 ⊕ · · · ⊕Wm

and we are done. ■
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�2. Character Theory and Orthogonality Relations

2.1. Morphisms

Definition 2.1 (Morphism). Let φ : G→ GL(V ) and ρ : G→ GL(W ) be representations. A morphism from φ to ρ is
a linear map T : V →W such that the following diagram commutes for all g ∈ G.

V V

W W

φg

T T

ρg

The set of all morphisms from φ to ρ is denoted HomG(φ, ρ).

By definition, HomG(φ, ρ) ⊆ Hom(V,W ).

Recall that any representation is just a special group action of G on the vector space of interest. Based off this,
writing gv instead of φgv, the definition of a morphism can be alternatively written as saying that Tgv = gTv for all
g ∈ G, v ∈ V .2.
Also observe that if T ∈ HomG(φ, ρ) is an isomorphism, then φ ∼ ρ.
Remark. T ∈ Hom(V, V ) is inHomG(φ,φ) iff it commutes with every φg . In particular, the identity map is an element
of HomG(φ,φ).

Proposition 2.1. Let φ : G → GL(V ) and ρ : G → GL(W ) be representations, and T ∈ HomG(φ, ρ). kerT and imT
are G-invariant subspaces of V andW with respect to φ and ρ respectively.

Proof. Let v ∈ kerT . Then, for g ∈ G,
T (φgv) = ρgTv = 0,

so φgv ∈ kerT . Similarly, for w ∈ imT , letting v ∈ V such that Tv = w,

ρgw = ρgTv = T (φgv) ∈ imT. ■

We had mentioned earlier that HomG(φ, ρ) ⊆ Hom(V,W ). In fact, the following stronger statement is true.

Proposition 2.2. Let G be a group and φ : G → GL(V ), ρ : G → GL(W ) be representations. Then HomG(φ, ρ) is a
subspace of Hom(V,W ).

Proof. Clearly, 0 ∈ HomG(φ, ρ). If S, T ∈ HomG(φ, ρ) and α ∈ C, then for any g ∈ G and v ∈ V ,

(S + αT )φgv = Sφgv + αTφgv

= ρgSv + αρgTv

= ρgSv + ρg(αT )v = ρg(S + αT )v,

so S + αT ∈ HomG(φ, ρ). ■

2the first g is a φg and the second is a ρg
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Another expected result is that the homomorphism subspaces of equivalent representations are isomorphic.

Proposition 2.3. Let G be a group and φi : G → GL(Vi), ρi : G → GL(Wi) be representations for i = 1, 2. If
φ(1) ∼ φ(2) and ρ(1) ∼ ρ(2), then dimHomG(φ

(1), ρ(1)) = dimHomG(φ
(2), ρ(2)).

Proof. Let P : V1 → V2 and R : W1 → W2 be corresponding equivalences. Consider Φ : HomG(φ
(1), ρ(1)) →

HomG(φ
(2), ρ(2)) defined by Φ(S) = R ◦ S ◦ P−1. We claim that Φ is an isomorphism between the subspaces. Let us

first show that this does indeed map into HomG(φ
(2), ρ(2)). We have that for any g ∈ G and v ∈ V1,

Φ(S)(φ(2))gv = RSP−1(φ(2))gv

= RS(φ(1))gP
−1v (P−1 is an equivalence)

= R(ρ(1))gSP
−1v (S ∈ HomG(φ

(1), ρ(1)))

= (ρ(2))gRSP
−1v (R is an equivalence)

= (ρ(2))gΦ(S)v.

It is clear that Φ is linear, and further that Φ is a bijection as an inverse is easily constructed similarly. ■

Lemma 2.4 (Schur’s Lemma). LetG be a group, φ : G→ GL(V ) and ρ : G→ GL(W ) be irreducible representations
of G, and T ∈ HomG(φ, ρ). Then, either T is an equivalence or T = 0.

Proof. Suppose that T ̸= 0. It suffices to show that T is a bijection. If kerT ̸= 0, then we have a nonzero proper
subspace kerT that is G-invariant (with respect to φ), contradicting irreducibility (of φ). Therefore, T is injective.
Similarly, imT ̸= 0 and if imT ̸= W , we have a nonzero proper subspace imT that is G-invariant (with respect to
ρ), contradicting irreducibility (of ρ). Therefore, T is surjective. ■

Corollary 2.5. Let G be a group, φ : G → GL(V ) and ρ : G → GL(W ) be irreducible representations of G, and
T ∈ HomG(φ, ρ).

(a) If φ ̸∼ ρ, then HomG(φ, ρ) = 0.

(b) If φ = ρ, T = λI for some λ ∈ C. That is, HomG(φ,φ) is one-dimensional with basis {I}.

Proof. (a) is immediate from Schur’s Lemma.
For (b), let λ be an eigenvalue of T (which exists since C is algebraically closed). Recall that I ∈ HomG(φ,φ). It
follows from Proposition 2.2 that T − λI ∈ HomG(φ,φ). By the definition of an eigenvalue, T − λI is not invertible.
Therefore, T − λI = 0, proving the required. ■

Next, let us show that a direct sum of representations corresponds to a direct sum of their Homs as well.

Proposition 2.6. Let φ : G→ GL(V ) and ρi : G→ GL(Wi) be representations for i = 1, 2. It is true that

HomG(φ, ρ
(1) ⊕ ρ(2)) ∼= HomG(φ, ρ

(1))⊕HomG(φ, ρ
(2)).

In particular,
dimHomG(φ, ρ

(1) ⊕ ρ(2)) = dimHomG(φ, ρ
(1)) + dimHomG(φ, ρ

(2)).
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Proof. Let T ∈ HomG(φ, ρ
(1) ⊕ ρ(2)) ⊆ Hom(V,W1 ⊕W2). Letting πi denote the projection maps, πi ◦ T : V → Wi is

linear for i = 1, 2. Further, (πi ◦ T ) ∈ HomG(φ, ρ
(i)) because

(πi ◦ T )φgv = πi(ρ
(1) ⊕ ρ(2))gTv = (ρ(i))gTv.

On the other hand, given morphisms Ti ∈ HomG(V,Wi) for i = 1, 2, T : V → W defined by T (v) = (T1(v), T2(v)) is
also a morphism. As a result, the correspondence (T1, T2) 7→ T is bijective and C-linear, so is an isomorphism. ■

Corollary 2.7. Let φ(1), . . . , φ(s) be pairwise inequivalent irreducible representations of G. Set

φ = φ(1) ⊕ · · · ⊕ φ(1)︸ ︷︷ ︸
m1

⊕ · · · ⊕ φ(s) ⊕ · · · ⊕ φ(s)︸ ︷︷ ︸
ms

.

Then,
dimHomG(φ

(r), φ) = mr

for 1 ≤ r ≤ s.

Proof. We have

dimHomG(φ
(r), φ) =

s∑
i=1

mi dimHomG(φ
(r), φ(i)) (by Proposition 2.6)

= mr (by Corollary 2.5). ■

The above says that if we know that a representation is completely reducible andwe know the (pairwise inequivalent
and irreducible) representations that occur in a decomposition, then the number of times each representation occurs
is fixed as well.

Corollary 2.8. Let φ(1), . . . , φ(s) and ψ(1), . . . , ψ(r) be pairwise3 inequivalent irreducible representations of G. Let φ
be a representation of G such that

φ ∼=
s⊕
i=1

(φ(i))mi ∼=
r⊕
j=1

(ψ(j))nj

wheremi, nj > 0. Then, r = s and there is a permutation σ of [r] such that φ(i) ∼ ψ(σi) andmi = nσ(i).

Proof. It suffices to show that each φi is equivalent to some ψj . Indeed, pairwise inequivalence then implies that
r = s, and the previous corollary shows that mi = nj . Suppose instead that φ(1) is not equivalent to any ψj . Then,
denoting by (ψ(j))nj the direct sum of nj ψ(j)s,

m1 = Hom(φ(1), φ)

= Hom(φ(1),

s⊕
j=1

(ψ(j))nj )

=

s∑
j=1

nj Hom(φ1, ψ(j)) = 0,

leading to a contradiction and completing the proof. ■

3the two lists are separately pairwise inequivalent.



Representation Theory of Finite Groups 19 / 40 Amit Rajaraman

Compare this toMaschke’s Theorem. There we had that any representation of a finite group is completely reducible.
Here, we have shown that the decomposition of any completely reducible representation is “unique”!

Recall Proposition 1.9.

Theorem 2.9 (Irreducible representations of finite abelian groups). Let G be an abelian group. Any irreducible
representation of G has degree 1.

Proof. Let φ : G→ GL(V ) be an irreducible representation.
For any h ∈ G, for all g ∈ G φhφg = φgφh, so φh ∈ HomG(φ,φ). Corollary 2.5(b) then shows that φh = λhI for
some λh ∈ C (this uses that φ is irreducible). Fix any v ∈ V . Then, φhv = λhIv = λhv ∈ Cv, so Cv is a G-invariant
subspace. By irreducibility, V = Cv and is thus one-dimensional. ■

Further recall that we had characterized the degree one representations of an abelian group in Corollary 1.3.

Corollary 2.10. Let G be a finite abelian group and φ : G → GLn(C) a representation. Then, there exists invertible
T such that T−1φgT is diagonal for all g ∈ G.

Note that T is independent of g.

Proof. Since G is finite and abelian, we can write using Theorems 1.16 and 2.9 that

φ = φ(1) ⊕ · · · ⊕ φ(n)

where each φ(i) is degree 1. If T is an isomorphism giving the above equivalence, then

T−1φgT = diag(φ(1)
g , . . . , φ(n)

g ).

■

Corollary 2.11. Let A ∈ GLn(C) be of finite order. Then A is diagonalisable.

Proof. Consider the representation φ : Z/nZ → GLn(C) defined by k 7→ Ak. Corollary 2.10 implies that φ1 = A is
diagonalisable (in fact, I, A, . . . , An−1 are simultaneously diagonalisable). ■

2.2. The Orthogonality Relations

For the remainder of this report, assume that any group G is finite unless otherwise mentioned.

Definition 2.2. Let G be a group. Define the group algebra L(G) := CG. L(G) is a vector space over C in the natural
sense. It is also an inner product space when equipped with the inner product

⟨f1, f2⟩ =
1

|G|
∑
g∈G

f1(g)f2(g).

In particular, the norm of f ∈ L(G) is∥f∥ =
√
⟨f, f⟩.

Note that the sum involved in ⟨f1, f2⟩ makes sense because G is finite. Given a representation φ : G → GLn(C), we
get n2 elements φij : G→ C corresponding to the n2 entries of the matrix. We shall study φij when φ is irreducible
and unitary.
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Proposition 2.12. Let φ : G→ GL(V ) and ρ : G→ GL(W ) be representations. Define for any linear transformation
T : V →W

T ♯ =
1

|G|
∑
g∈G

ρg−1Tφg ∈ HomG(φ, ρ).

Then,

(a) T ♯ ∈ HomG(φ, ρ),

(b) if T ∈ HomG(φ, ρ), then T ♯ = T , and

(c) the map P : HomC(V,W ) → HomG(φ, ρ) defined by T 7→ T ♯ is a surjective linear map.

Proof.
1. For any h ∈ H ,

T ♯φh =
1

|G|
∑
g∈G

ρg−1Tφgφh

=
1

|G|
∑
g∈G

ρg−1Tφgh

=
1

|G|
∑
g′∈G

ρhg′−1Tφg′ (g 7→ gh defines a bijection G→ G)

= ρh
1

|G|
∑
g′∈G

ρg′−1Tφg′ = ρhT
♯.

2. If T ∈ HomG(φ, ρ), then

T ♯ =
1

|G|
∑
g∈G

ρg−1Tφg

=
1

|G|
∑
g∈G

ρg−1ρgT

=
1

|G|
∑
g∈G

T = T.

3. (b) shows that P is surjective. For linearity, we have that for any T1, T2 ∈ HomC(V,W ) and c ∈ C,

P (cT1 + T2) =
1

|G|
∑
g∈G

ρg−1(cT1 + T2)φg

= c
1

|G|
∑
g∈G

ρg−1T1φg +
1

|G|
∑
g∈G

ρg−1T2φg

= cP (T1) + P (T2). ■

Proposition 2.13. Let φ : G → GL(V ) and ρ : G → GL(W ) be irreducible representations and let T : V → W be a
linear map. Then,

(a) if φ ̸∼ ρ, T ♯ = 0 and

(b) if φ = ρ, T ♯ = TrT
degφI .
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Proof.

(a) This is straightforward on an application of Schur’s Lemma since T ♯ ∈ HomG(φ, ρ).

(b) Again, by Schur’s Lemma, we have that T ♯ = λI for some λI ∈ C. Now, note that

TrT ♯ = Tr(λI) = λ degφ.

We also have

TrT ♯ = Tr

 1

|G|
∑
g∈G

φg−1Tφg


=

1

|G|
∑
g∈G

Tr
(
φg−1Tφg

)
=

1

|G|
∑
g∈G

Tr
(
φg−1φgT

)
(Tr(ABC) = Tr(ACB))

= TrT,

so the required follows.

■

Suppose that V = Cn andW = Cm. P is then a linear form fromGL(V,W ) =Mm×n(C) to itself. A natural question
to ask is: how do we represent P as a matrix with respect to the standard basis vectors Eij? (Recall that Eij is the
m× nmatrix with 1 in the (i, j)th entry and 0 elsewhere)
It is a straightforward computational task to check that if A = (aij) ∈ Mr×m(C), Eki ∈ Mm×n(C), and B = (bij) ∈
Mn×s(C), then

(AEkiB)lj = alkbij . (2.1)

Lemma 2.14. Let φ : G → Un(C) and ρ : G → Um(C) be unitary representations of G. Let A = Eki ∈ Mm×n(C).
Then,

A♯lj = ⟨φij , ρkl⟩.

Proof. Let g ∈ G. Because ρg is unitary, ρg−1 = ρ∗g . As a result, (ρg−1)lk = (ρg)kl. Consequently,

(A♯)lj =
1

|G|
∑
g∈G

(ρg−1Aφg)lj

=
1

|G|
∑
g∈G

(ρg−1)lk(φg)ij

=
1

|G|
∑
g∈G

(ρg)kl(φg)ij

= ⟨φij , ρkl⟩. ■

Theorem 2.15 (Schur’s Orthogonality Relations). Letφ : G→ Un(C) and ρ : G→ Um(C) be inequivalent irreducible
unitary representations of a group G. Then,

(a) ⟨φij , ρkl⟩ = 0.
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(b) ⟨φij , φkl⟩ =

{
1/n, (i, j) = (k, l),

0, otherwise.

In particular, the set {φij : 1 ≤ i, j ≤ n} ∪ {ρkl : 1 ≤ k, l ≤ m} is a linearly independent set.

Proof.

(a) Let A = Eki ∈ Mm×n(C). By Proposition 2.13, A♯ = 0 because φ ̸∼ ρ, so in particular, using Lemma 2.14,
⟨φij , ρkl⟩ = (A♯)lj = 0.

(b) Let A = Eki ∈ Mn×n(C). By Proposition 2.13, A♯ = TrA
n I . TrA is 1 if k = i and 0 otherwise. We also have

⟨φij , ρkl⟩ =
(

TrA
n I

)
lj
, which is zero if l ̸= j. That is, the quantity of interest is equal to 1/n if k = i and l = j

and 0 otherwise. ■

Corollary 2.16. Let φ be an irreducible unitary representation of G of degree n. The set {
√
nφij : 1 ≤ i, j ≤ n} of

functions forms an orthonormal set.

Proposition 2.17. Let G be a (finite) group. The following are true.

(a) There are finitely many equivalence classes of irreducible representations of G.

(b) Let φ(1), . . . , φ(s) be a transversal of unitary representatives of irreducible representations of G. Set di =
degφ(i). Then, the set of functions

{
√
dkφ

(k)
ij : 1 ≤ k ≤ s, 1 ≤ i, j ≤ dk}

is orthonormal.

Proof.

(a) By Lemma 1.13, any equivalence class of representations (any class of irreducible representations in particu-
lar) contains a unitary representation. As dimL(G) = |G|, no linearly independent set of vectors in L(G) can
contain more than |G| elements. Because orthonormal sets are linearly independent, Corollary 2.16 and theo-
rem 2.15(a) show that there can only be finitely many classes of irreducible representations.

(b) This again directly follows from Corollary 2.16 and theorem 2.15(a).

■

In particular, using the same notation as the above proposition, we have that

s ≤ d21 + d22 + · · ·+ d2s ≤ |G|. (2.2)

Indeed, the lower bound is obvious as each di ≥ 1. For the upper bound, each representation of degree dk corre-
sponds to d2k many orthonormal functions, so the overall set of representations corresponds to

∑
d2i orthonormal

functions, which can be at most dimL(G) = |G|. This also says that the degree of any irreducible representation is
at most

√
|G|.

In fact, we shall see later that it is exactly |G|.
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2.3. Characters and Class Functions

Recall the remark after Corollary 2.8, which said that the decomposition given by Maschke’s Theorem is unique. In
this section, we shall prove a stronger version of the same (explicitly finding the number of irreducible representa-
tions), arriving at some interesting results along the way.
Given an endomorphism of a finite dimensional vector space, we can talk about its trace, which is just the trace of any
matrix representation after fixing an ordered basis. It is not too difficult to see that this trace is basis-invariant. We
extensively use this fact in this section, namely that Tr(ABC) = Tr(ACB) so if C = A−1 then Tr(ABA−1) = Tr(B).

Definition 2.3 (Character). Let φ : G → GL(V ) be a representation. The character χφ : G → C of φ is defined by
χφ(g) = Trφg . The character of an irreducible representation is called an irreducible character.

As mentioned, the character does not depend on the basis we choose, so we may assume that we are talking about
matrix representations. If φ : G→ GLn(C) is a representation given by φg = ((φg)ij), χφ(g) =

∑n
i=1(φg)ii.

Occasionally, we cut out the explicit writing of the representation and directly refer to characters of a group. The
degree of this character is just the degree of the corresponding representation.
Remark. If z : G→ C∗ ↪→ C is a degree 1 representation, then χz = z. Henceforth, we treat degree 1 representations
and their characters as the same.

Proposition 2.18. If φ : G→ GL(V ) is a representation, χφ(1) = degφ = dimV .

Proof. Indeed, φ1 = IdV so χφ(1) = Trφ1 = Tr IdV = dimV = degφ. ■

Proposition 2.19. If φ and ρ are equivalent representations, χφ = χρ.

Proof. We may assume that φ, ρ : G→ GLn(C). If T ∈ GLn(C) is an invertible matrix such that φg = TρgT
−1 for all

g ∈ G, then
χφ(g) = Trφg = Tr(TρgT

−1) = Tr ρg = χρ(g). ■

Corollary 2.20. Let G be a group of order n and χ a character of degreem of G. Then, χ(g) is a sum ofm nth roots
of unity for each g ∈ G.

Proof. Because characters are invariant under equivalence, let us assume that the representation is of the form φ :
G → GLm(C). Fix g ∈ G. Then, φng = I so φg is diagonalisable by Corollary 2.11. So, we may assume that φg is
diagonal. It has eigenvalues (λi)mi=1, where each λi is an nth root of unity. The desideratum follows. ■

A proof similar to Proposition 2.19 also shows the following.

Proposition 2.21. Let χ be a character of G. Then, χ is constant on conjugacy classes of G.

Proof. Let g, h ∈ G and φ be a representation corresponding to χ. Then,

χ(g) = Trφg

= Tr(φh−1φgφh)

= Trφh−1gh = χ(h−1gh). ■

Functions such as these have a name of their own.

Definition 2.4 (Class function). A function f : G→ C is said to be a class function if f(g) = f(h−1gh) for all g, h ∈ G.
The set of all class functions is denoted Z(L(G)).



Representation Theory of Finite Groups 24 / 40 Amit Rajaraman

Given a conjugacy class C ⊆ G and a class function f , we denote by f(C) the constant value taken by f on C.
Proposition 2.22. Z(L(G)) is a subspace of L(G).
We omit the proof of the above as it is very straightforward.

Definition 2.5. Given a group G, the set of conjugacy classes of G is denoted Cl(G). For C ∈ Cl(G), we define
δC : G→ C by

δC(g) =

{
1, g ∈ C,

0, otherwise.

That is, δC is the indicator function of C.

Proposition 2.23. The set B = {δC : C ∈ Cl(G)} is a basis of Z(L(G)). In particular, dimZ(L(G)) = |Cl(G)|.

Proof. It is clear that δC ∈ Cl(G) for each C ∈ Cl(G).
To show that B spans Z(L(G)), note that for any f ∈ Z(L(G)),

f =
∑

C∈Cl(G)

f(C)δC .

This is easily checked by computing both sides at an arbitrary g ∈ G.
To show linear independence on the other hand, we have for C,C ′ ∈ Cl(G)

⟨δC , δC′⟩ =
∑
g∈G

δC(g)δC′(g) =

{
0, C ̸= C ′,
|C|
|G| , C = C ′

and any set of orthogonal nonzero vectors is linearly independent.
The desideratum follows. ■

Theorem 2.24. Let φ, ρ be irreducible representations of G. Then

⟨χφ, χρ⟩ =

{
1, φ ∼ ρ,

0, φ ̸∼ ρ.

Thus, the set of irreducible characters of G forms an orthonormal set of class functions.

Proof. By Lemma 1.13 and proposition 2.19, we may assume that φ : G→ Un(C) and ρ : G→ Um(C). We have

⟨χφ, χρ⟩ =
1

|G|
∑
g∈G

χφ(g)χρ(g)

=
1

|G|
∑
g∈G

 ∑
1≤i≤n

φii(g)

 ∑
1≤j≤m

ρjj(g)


=

∑
1≤i≤n
1≤j≤m

1

|G|
∑
g∈G

φii(g)ρjj(g)

=
∑

1≤i≤n
1≤j≤m

⟨φii, ρjj⟩.
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Recall Schur’s Orthogonality Relations. If φ ̸∼ ρ, then it immediately follows that the above quantity of interest
is 0. If φ ∼ ρ on the other hand, we may assume that φ = ρ by Proposition 2.19. We then again have by Schur’s
orthogonality relations that the summand is nonzero only when i = j, and in this case it is just equal to 1/n. The
overall sum is then n · 1/n = 1, completing the proof. ■

Corollary 2.25. Given two inequivalent irreducible representations φ, ρ of G, χφ ̸= χρ.

Proof. We have ⟨χφ, χρ⟩ = 0, but if χφ = χρ we also have ⟨χφ, χφ⟩ = 1. ■

Corollary 2.26. Two irreducible representations are equivalent if and only if they have the same character.

In Corollary 2.29, we shall see that the above holds in more generality.

Consequently, there are at most |Cl(G)| equivalence classes of irreducible representations.

Definition 2.6. If V is a vector, φ is a representation, andm ∈ N, then

mV = V ⊕ · · · ⊕ V︸ ︷︷ ︸
m

andmφ = φ⊕ · · · ⊕ φ︸ ︷︷ ︸
m

.

0V is the zero vector space and 0φ is the degree zero representation.

Now, we would like to show the uniqueness of decomposition, just as we did in Corollary 2.8. Indeed, this is easier
now since we have a finite number of irreducible representations. Suppose we are given a transerversal φ(1), . . . , φ(s)

of irreducible representations, and let
φ ∼ m1φ

(1) ⊕m2 · · · ⊕msφ
(s).

Lemma 2.27. Let φ = ρ⊕ ψ. Then χφ = χρ + χψ .

Proof. We may suppose that ρ : G → GLn(C) and ψ : G → GLm(C). The block matrix form of φ : G → GLn+m(C)
can then be written as

φg =

[
ρg

ψg

]
,

and the required immediately follows. ■

As an immediate consequence of the above lemma and Theorem 2.24, we get the following.

Theorem 2.28. Suppose we are given a transerversal φ(1), . . . , φ(s) of irreducible representations, and let φ be a
representation such that

φ ∼ m1φ
(1) ⊕m2 · · · ⊕msφ

(s).

Then,mi = ⟨χφ, χφ(i) .

That is, as we saw earlier, the decomposition of φ into irreducible representations is “unique”.

Corollary 2.29. φ is determined up to equivalence by its character.



Representation Theory of Finite Groups 26 / 40 Amit Rajaraman

The above follows quite directly from the fact that the decomposition is unique.

Corollary 2.30.

1. ∥χ∥2 ∈ N, and∥χ∥ = 1 iff χ is irreducible.

2. ⟨χ1, χ2⟩ ∈ N0. Note that the characters themslves need not necessarily be real-valued.

To see this, note that if
ρ1 ∼ m1φ

(1) ⊕ · · · ⊕msφ
(s)

and
ρ2 ∼ n1φ

(1) ⊕ · · · ⊕ nsφ
(s),

then ⟨χρ1 , χρ2⟩ =
∑
imini.

Corollary 2.31. Let z : G → C∗ be a degree one representation and ρ : G → GLn(C) be a representation. Consider
φ : G→ GLn(C) defined by φg = zgρg . Then,

(a) φ is a representation,

(b) χφ = zχρ and
∥∥χφ∥∥ =

∥∥χρ∥∥,
(c) φ is irreducible iff ρ is, and

(d) if there exists g0 ∈ G such that zg0 ̸= 1 and χφ(g0) ̸= 0, then ρ ̸∼ φ.

Proof.

(a) This is direct as zg1ρg2 = ρg2zg1 .

(b) We have χφ(g) = Tr(φg) = Tr(zgρg) = zg Tr(ρg), so χφ = (zχρ)(g).
Because G is finite, we have z|G|

g = 1, and so |zg| = 1. Consequently,
∥∥χφ(g)∥∥ =

∥∥zgχρ(g)∥∥ =
∥∥χρ(g)∥∥. As a

result,
∥∥χφ∥∥ =

∥∥χρ∥∥ as well.

(c) Since φ (resp. ρ) is irreducible iff
∥∥χφ∥∥ (resp.∥∥χρ∥∥) is 1, we are done.

(d) This follows from Corollary 2.29 since in this case, χφ(g0) ̸= χρ(g0).

■

Definition 2.7. LetG be a finite group and φ(1), . . . , φ(s) be a transversal of irreducible unitary representations ofG.
If ρ ∼ m1φ

(1)⊕· · ·⊕msφ
(s), thenmi is said to be themultiplicity of φ(i) in ρ. Ifmi > 0, φ(i) is said to be an irreducible

constituent of ρ.

Using the notation of the above definition, deg ρ =
∑
mi degφ

(i).
Lettingmi = ⟨χρ, χφ(i)⟩, we have

ρ ∼ m1φ
(1) ⊕ · · · ⊕msφ

(s).
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2.4. The Regular Representation

Recall linearisation.

Definition 2.8 (Regular representation). LetG be a finite group. The regular representation ofG is the homomorphism
L : G→ GL(CG) defined by

Lg

∑
h∈G

chh

 =
∑
h∈G

chgh =
∑
x∈G

cg−1xx

for g ∈ G.

The above representation can be understood very simply on noting that given a standard basis vector h ∈ G of CG,
Lgh is just gh, that is, it permutes the basis vectors. It acts on arbitrary elements by extending this map linearly to
CG. This may be used to check that the regular representation is indeed a representation.
Clearly, degL = |G|. As a result, by Equation (2.2), L is not irreducible.

Proposition 2.32. The regular representation is a unitary representation of G.

Proof. Fix g ∈ G. We have 〈
Lg
∑
h∈G

chh, Lg
∑
h∈G

dhh

〉
=

〈∑
h∈G

cg−1hh,
∑
h∈G

dg−1hh

〉
=
∑
h∈G

cg−1hdg−1h

=
∑
h∈G

chdh =

〈∑
h∈G

chh,
∑
h∈G

dhh

〉
.

■

Proposition 2.33. The character of the regular representation L is given by

χL(g) =

{
|G|, g = 1,

0, otherwise.

Proof. By Proposition 2.18, χL(1) = |G|. Let g ̸= 1 and fix an ordering (g1, . . . , gn) of |G|. We claim that all the
diagonal entries of the matrix representation [Lg] of Lg with respect to this basis are 0. Indeed, for any gi, ggi ̸= gi,
so the ith entry of the ith column is 0. It follows that χL(g) = Tr[LG] = 0. ■

The above can be used in conjunction with Corollary 2.30 to give an alternate proof that L is not irreducible.
For the remainder of this subsection, fix a finite group G, φ(1), . . . , φ(s) as a transversal of irreducible unitary repre-
sentations of G, di = degφ(i), and let χi = χφ(i) .

We shall now show that the second inequality is in fact an equality in Equation (2.2).
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Theorem 2.34. Let L denote the regular representation of G. Then,

L ∼ d1φ
(1) ⊕ · · · ⊕ dsφ

(s).

In particular,
|G| =

∑
d2i .

Proof. It suffices to show that ⟨χL, χi⟩ = di. Indeed, this is immediate as

⟨χL, χi⟩ =
1

|G|
∑
g∈G

χL(g)χi(g) =
1

|G|
χL(1)χi(1) = di.

■

Using Proposition 2.17, we get the following.

Corollary 2.35. The set B = {
√
dkφ

(k)
ij : 1 ≤ k ≤ s, 1 ≤ i, j ≤ dk} is an orthonormal basis of L(G).

Proposition 2.36. The set B = {χ1, . . . , χs} is an orthonormal basis of Z(L(G)).

Proof. Assume that φ(i) : G→ Udi(C).
Recall by Theorem 2.24 that B is an orthonormal set. We are done if we show that it is a basis. Let f ∈ Z(L(G)) ≤
L(G). By Corollary 2.35, we have constants c(k)ij ∈ C such that

f =
∑

c
(k)
ij φ

(k)
ij .
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Let x ∈ G. We have

f(x) =
1

|G|
∑
g∈G

f(g−1xg) (f ∈ Z(L(G)))

=
1

|G|
∑
g∈G

∑
i,j,k

c
(k)
ij φ

(k)
ij (g−1xg)

=
∑
i,j,k

c
(k)
ij

1

|G|
∑
g∈G

φ
(k)
ij (g−1xg)

=
∑
i,j,k

c
(k)
ij

 1

|G|
∑
g∈G

φ(k)(g−1)φ(k)(x)φ(k)(g)


ij

=
∑
i,j,k

c
(k)
ij

[(
φ(k)(x)

)♯]
ij

(recall Proposition 2.12)

=
∑
i,j,k

c
(k)
ij

Trφ(k)(x)

dk
Iij (recall Proposition 2.13)

=
∑
i,k

c
(k)
ii

dk
χk(x)

=
∑
k

∑
i

c
(k)
ii

dk

χk(x),

so B is a basis and we are done. ■

Now use Proposition 2.23 to get the following.

Corollary 2.37. There are precisely |Cl(G)| equivalence classes of irreducible representations of a group G.

Recall that |Cl(G)| = |G| iff G is abelian.

Corollary 2.38. G has |G| equivalence classes of irreducible representations iff G is abelian.

In the above scenario, we have |G| = d21 + · · ·+ d2|G|, so we get the following.

Corollary 2.39. G is abelian iff all its irreducible representations have degree one.

Definition 2.9. Let G be a finite group with irreducible characters χ1, . . . , χs and conjugacy classes C1, . . . , Cs. The
character table of G is the s× smatrix X with Xij = χi(Cj).

The above table is square because of Corollary 2.37.
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Proposition 2.40. Let C,C ′ be conjugacy classes of G and g ∈ C, h ∈ C ′. Then,

s∑
i=1

χi(g)χi(h) =

{
|G|/|C|, C = C ′,

0, otherwise.

Consequently, the columns of the character table are orthogonal, and it is invertible.

Proof. Recall Proposition 2.36 and also that δC′ ∈ Z(L(G)). So,

δC′ =

s∑
i=1

⟨δC′ , χi⟩χi.

So,

δC′(g) =

s∑
i=1

1

|G|
∑
x∈G

δC′(x)χi(x)χi(g)

=
1

|G|

s∑
i=1

∑
x∈C′

χi(x)χi(g)

=
|C ′|
|G|

s∑
i=1

χi(h)χi(g) (χi is a class function)

s∑
i=1

χi(h)χi(g) =
|G|
|C ′|

δC′(g).

The desideratum follows. ■

2.5. Representations of abelian groups

We conclude this section by completing our discussion of representations of abelian groups. For this subsection, let
G be an abelian group.
By Proposition 1.9 and corollary 2.38, we know that the |G| degree one representations of G are precisely the irre-
ducible representations of G.
Recall from Proposition 0.2 that we know all of these representations when G = Z/nZ. By the structure theorem of
finite abelian groups, we get a complete description of the irreducible representations of G for any abelian group in
general using the following lemma.

Lemma 2.41. Let G1, G2 be finite abelian groups. with m = |G1| and n = |G2|. Suppose that ρ1, . . . , ρm and
φ1, . . . , φn are all the irreducible representations of G1 and G2 respectively. The functions αij : G1 × G2 → C for
1 ≤ i ≤ m and 1 ≤ j ≤ n defined by

αij(g1, g2) = ρi(g1)φj(g2)

form a complete set of irreducible representations of G.

Proof. Note that αij(g, 1) = ρi(g) and αij(1, g) = φj(g). This gives that all the αij are distinct as αij and αkl are
identical iff ρi and ρk are identical and φj and φl are identical.
Further, because each αij is degree-one, it suffices to show that each αij is a homomorphism. This is immediate as



Representation Theory of Finite Groups 31 / 40 Amit Rajaraman

by commutativity,

αij((g1, g2)(g
′
1, g

′
2)) = αij(g1g

′
1, g2g

′
2)

= φi(g1g
′
1)ρj(g2g

′
2)

= φi(g1)φi(g
′
1)ρj(g2)ρj(g

′
2)

= φi(g1)ρj(g2)φi(g
′
1)ρj(g

′
2) = αij(g1, g2)αij(g

′
1, g

′
2). ■

Further observe that because degree-one representations are the same as their characters, the above can be used
quite easily to get the character table of the product.

2.6. The Dimension Theorem

Recall the previous sectionwherewe showed that a given groupG has only finitelymany irreducible representations.
In this section, we shall show that the degree of any irreducible representation divides the order of the group.
Also recall algebraic integers (Definition 0.8).

Proposition 2.42. Let χ be a character of G. Then, χ(g) is an algebraic integer for all g ∈ G.

Proof. Recall that any root of unity is an algebraic integer. The required then follows onusingCorollary 2.20 andpropo-
sition 0.11. ■

For the remainder of this section, let G be a finite group with conjugacy classes {Ci}si=1 with C1 = {1}. For i ∈ [s],
let hi = |Ci|. Let φ : G→ GL(V ) denote a degree d representation and χi = χφ(Ci). Finally, let Ti =

∑
x∈Ci

φx.

Lemma 2.43. If φ is irreducible, Ti = hi

d χi · I .

Proof. First, for any g ∈ G,

φgTiφg−1 = φg

∑
x∈Ci

φx

φg−1 =
∑
x∈Ci

φgxg−1 =
∑
y∈Ci

φy = Ti,

so Ti ∈ Hom(φ,φ). By Corollary 2.5, Ti = λI for some λ ∈ C. Now,

λ =
1

d
TrTi =

1

d

∑
x∈Ci

Trφx =
1

d

∑
x∈Ci

χi =
hi
d
χi,

completing the proof. ■

Lemma 2.44. Ti ◦ Tj =
∑s
k=1 aijkTk for some {aijk}1≤i,j,k≤s ⊆ Z.

Note that φ is not assumed to be irreducible in this lemma.

Proof. First,

Ti ◦ Tj =

∑
x∈Ci

φx

 ◦

∑
y∈Cj

φy

 =
∑
x∈Ci
y∈Cj

φxy =
∑
g∈G

aijgφg,
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where aijg = |{(x, y) ∈ Ci × Cj : xy = g}|. Let Xijg be this set. Suppose that g1, g2 ∈ Ck, and let g2 = kg1k
−1.

Observe then that the functionXijg1 → Xijg2 defined by (x, y) 7→ (kxk−1, kyk−1) is a bijection. Indeed, it has inverse
(x, y) 7→ (k−1xk, k−1yk). So, aijg1 = aijg2 . Letting the value of aijg for g ∈ Ck be aijk, we get

Ti ◦ Tj =
∑
g∈G

aijgφg =

s∑
k=1

∑
g∈Ck

aijkφg =

s∑
k=1

aijkTk.

■

Combining the two lemmas, we get the following.

Corollary 2.45. For some {aijk}1≤i,j,k≤s ⊆ Z,(
hi
d
χi

)(
hj
d
χj

)
=

s∑
k=1

aijk
hk
d
χk.

Lemma 2.46. If φ is irreducible, hiχi/di is an algebraic integer for every i.

Proof. Using the previous corollary, it is not too difficult to come upwith an appropriate integermatrix in the context
of Proposition 0.10. ■

Theorem 2.47 (Dimension Theorem). Let φ be an irreducible degree d representation of G. Then, d divides |G|.

Proof. By Theorem 2.24, ⟨χφ, χφ⟩ = 1. So,

|G|
d

=
|G|
d

· 1

|G|
∑
g∈G

χφ(g)χφ(g) =
∑
g∈G

χφ(g)

d
χφ(g) =

s∑
i=1

∑
g∈Ci

χφ(g)

d
χφ(g) =

s∑
i=1

(
hiχi
d

)
χi.

Note that hiχi/d is an algebraic integer by Lemma 2.46, and χi is an algebraic integer by Proposition 2.42 (recall that
A is closed under conjugation). By Proposition 0.11, |G|/d is an algebraic integer too. However, this is rational, so
the desideratum follows from Proposition 0.9. ■

Corollary 2.48. Let p, q be primes with p ≤ q and q ̸≡ 1 (mod p). Then, any group G of order pq is abelian. In
particular, so are groups of order p2.

Proof. Let d1, . . . , ds be the degrees of the irreducible representations of G. We shall show that di = 1 for all i, then
use Corollary 2.39. Let us assume without loss of generality that d1 = 1. We have

pq = 1 + d22 + · · ·+ d2s.

By the Dimension Theorem, di ∈ {1, p, q, pq} for all i. In fact, because p ≤ q, di ∈ {1, p}. Let m be the number of
representations of degree 1 and n that of degree p. We have pq = m + np2. So, p | m. Let m = pm′. We have
q = m′ + np. By Corollary 1.2,m | pq, som′ | q. As a result,m′ ∈ {1, q}. However,m′ cannot be 1 because that with
the previous equation would contradict the fact that q ̸≡ 1 (mod p). Therefore,m′ = q andm = pq, completing the
proof. ■
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Recall that the above is a basic fact from group theory which is typically proved using the Sylow theorems.

Porism 2.49. Let G be a group of order pq for primes p < q. Then, all irreducible representations of G have degree
either 1 or p. Moreover, G has an irreducible representation of degree p iff it is non-abelian.

Noting thatm = |G/[G,G]| and p | m in the proof of the previous corollary, we get the following.

Porism 2.50. Let G be a group of order pq for primes p < q. Then, |[G,G]| ∈ {1, q}. Moreover, |[G,G]| = q iff G is
non-abelian.

As before, this can be proved using elementary group theory as well. We leave the details of this as an exercise to
the reader.
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�3. Fourier Analysis on Finite Groups

3.1. Basic de�nitions

3.1.1. Introduction

Definition 3.1. Let n ∈ N. A function f : Z → C is said to be periodic with period n iff f(x+ n) = f(x) for all x ∈ Z.

Note that the period of a given function is not unique.
It is not difficult to check that the set of functions periodic with period n is in bijection with L(Z/nZ), the set of
complex-valued functions on Z/nZ. Also recall that L(Z/nZ) has orthonormal basis {χk : 0 ≤ k < n}, where
χk(m) = ωnkm , so for f ∈ L(Z/nZ),

f = ⟨f, χ0⟩χ0 + · · ·+ ⟨f, χn−1⟩χn−1.

Definition 3.2 (Fourier transform on Z/nZ). Let f : Z/nZ → C. The Fourier transform F(f) = f̂ : Z/nZ → C of f is
defined by

f̂(m) =

n∑
k=0

f(k)e−2πιmk/n =

n∑
k=0

f(k)ω−mk
n .

By the definition of the inner product,
f̂(m) = n⟨f, χm⟩. (3.1)

Note that F : L(Z/nZ) → L(Z/nZ) is linear.

Proposition 3.1. The Fourier transform is invertible. More precisely,

f =
1

n

n−1∑
k=1

f̂(k)χk.

This is immediate since Equation (3.1) gives that ⟨f, χk⟩ = f̂(k)/n.

3.1.2. The convolution product

Definition 3.3 (Convolution). Let G be a group and a, b ∈ L(G). Then, the convolution a ∗ b ∈ L(G) of a with b is
defined by

(a ∗ b)(x) =
∑
y∈G

a(xy−1)b(y).

This is well-defined because G is finite.

Changing y to xz−1 above, we get
(a ∗ b)(x) =

∑
z∈G

b(xz−1)a(xzx−1).

As a result, if a is a class function, (a ∗ b) = (b ∗ a). In particular, if G is abelian, (a ∗ b) = (b ∗ a) for all a, b ∈ L(G). In
fact, the converse holds as well, as we shall see shortly.
Similar to how we defined δC earlier, we define the following.
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Definition 3.4. Let G be a group. For g ∈ G, define δg : G→ C by

δg(x) =

{
1, g = x,

0, otherwise.

We omit the proofs of the next three lemmas, as they are very easy to check.
Proposition 3.2. Let G be a group and g, h ∈ G. Then, δg ∗ δh = δgh.
If G is not abelian, then the above shows that ∗ is not commutative. Indeed, for g, h ∈ G such that gh ̸= hg,
δg ∗ δh ̸= δh ∗ δg .
Proposition 3.3. Let a ∈ L(G) and g, h ∈ G. Then, (a ∗ δh)(g) = a(gh−1) and (δh ∗ a)(g) = a(h−1g).

Proposition 3.4. For all a, b, c ∈ L(G),

1. a ∗ δ1 = δ1 ∗ a,

2. a ∗ (b ∗ c) = (a ∗ b) ∗ c, and

3. a ∗ (b+ c) = (a ∗ b) + (a ∗ c).

That is, (L(G),+, ∗) is a ring with multiplicative identity δ1.

L(G) is a commutative ring iff G is commutative. This also justifies why we earlier called L(G) the group algebra.
Also note that the map i : G→ L(G) defined by g 7→ δg is a group homomorphism into the group (L(G))× of units.
Recall Definition 0.7.

Proposition 3.5. a : G→ C is a class function iff a is in the center of L(G).

This explains why we denoted the set of class functions as Z(L(G)) earlier!

Proof. We already saw earlier that if a is a class function, it commutes with all of L(G).
On the other hand, let a be in the center of L(G) and let g, h ∈ G. Then, by Proposition 3.3,

a(gh) = (a ∗ δh−1)(g) = (δh−1 ∗ a)(g) = a(hg).

Setting g as xy−1 and h as y then shows that a is a class function, completing the proof. ■

3.2. Fourier analysis on abelian groups

Recall the dual group of a group from Definition 0.1. In the case whereG is finite and abelian, the elements of Ĝ are
precisely the irreducible characters of G. Earlier, we had defined the Fourier transform for only groups of the form
Z/nZ. Now, we shall extend it more generally to abelian groups, as a function F : L(G) → L(Ĝ). Also recall from
Theorem 0.3 that G ∼= Ĝ.

Definition 3.5 (Fourier transform on abelian groups). Let G be a finite abelian group and f ∈ L(G) a function. The
Fourier transform F(f) = f̂ ∈ L(Ĝ) is defined by

f̂(χ) = |G|⟨f, χ⟩ =
∑
g∈G

f(g)χ(g).

The complex numbers |G|⟨f, χ⟩ are called the Fourier coefficients of f .
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For the case where G = Z/nZ, an example of an isomorphism G → Ĝ is given by k 7→ χk, where χk is defined by
χk(m) = ωmkn . It is then easy to see that this Fourier transform does correspond with that we gave earlier.

Since any irreducible character χ ∈ L(G), it makes sense to talk about the Fourier transform of a character (this takes
irreducible characters as input). Using Theorem 2.24, we then have for any irreducible character θ ∈ L(G),

χ̂(θ) = |G|⟨χ, θ⟩ =

{
|G|, θ = χ,

0, otherwise.

That is, χ̂ = |G|δχ.

Again, as before, the Fourier transform is invertible.

Lemma 3.6 (Fourier inversion). Let G be an abelian group. F : L(G) → L(Ĝ) is injective. In particular, if f ∈ L(G),

f =
1

|G|
∑
χ∈Ĝ

f̂(χ)χ.

Proof. We have

f =
∑
χ∈Ĝ

⟨f, χ⟩χ =
1

|G|
∑
χ∈Ĝ

|G|⟨f, χ⟩χ =
1

|G|
∑
χ∈Ĝ

f̂(χ)χ. ■

Proposition 3.7. F : L(G) → L(Ĝ) is an isomorphism of vector spaces.

Proof. For f1, f2 ∈ L(G), α ∈ C, and χ ∈ Ĝ,

F(αf1 + f2)(χ) = |G|⟨αf1 + f2, χ⟩ = |G|α⟨f1, χ⟩+ |G|⟨f2, χ⟩ = αF(f1)(χ) + F(f2)(χ).

Since F is injective, linear, and dimL(G) = dimL(Ĝ) = |G|, F is an isomorphism. ■

We would also like F to be an isomorphism of rings. However, the convolution product on L(Ĝ) does not work
out for this, and we must use the point-wise product · instead. Clearly, this makes L(Ĝ) a commutative ring with
identity as the constant map g 7→ 1. L(G) is also commutative in this case, but with identity δ1.

Theorem 3.8. Let G be an abelian group and a, b ∈ L(G). The Fourier transform satisfies

â ∗ b = â · b̂.

As a result, F : L(G) → L(Ĝ) is an isomorphism between the rings (L(G),+, ∗) and (L(Ĝ),+, ·).
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Proof. Let χ ∈ Ĝ. Then,

â ∗ b(χ) =
∑
x∈G

(a ∗ b)(x)χ(x)

=
∑
x∈G

∑
y∈G

a(xy−1)b(y)

χ(x)

=
∑
y∈G

b(y)
∑
x∈G

a(xy−1)χ(x)

=
∑
y∈G

b(y)
∑
z∈G

a(z)χ(zy)

=
∑
y∈G

b(y)χ(y)
∑
z∈G

a(z)χ(z) = â(χ) · b̂(χ). ■

For the remainder of this subsection, we discuss an application of Fourier analysis in graph theory.
Recall the definition of a(n undirected) graph and its adjacency matrix.

Definition 3.6 (Cayley Graph). Let G be a finite group written in some fixed order. A subset S ⊆ G is said to be
symmetric if

1. 1 ̸∈ S and

2. s ∈ S =⇒ s−1 ∈ S.

If S is a symmetric subset ofG, the Cayley graph ofGwith respect to S is the graph with vertex setG and edge {g, h}
iff gh−1 ∈ S.

Note that the above definition makes sense because gh−1 ∈ S iff hg−1 ∈ S.
Whenever G = Z/nZ, we assume this “fixed order” to be {0, . . . , n− 1}.

Definition 3.7. ACayley graph ofZ/nZ (with respect to any symmetric set) is called a circulant graph (on n vertices).

Definition 3.8. AmatrixA = (aij) is said to be circulant if there exists a function f : Z/nZ → C such that aij = f(j−i).

Equivalently, a circulant matrix is of the form
a0 a1 · · · an−2 an−1

an−1 a0 · · · an−3 an−2

...
...

. . .
...

...
a2 a3 · · · a0 a1
a1 a2 · · · an−1 a0

 .

It is not too difficult to verify that for any symmetric subset S of G = Z/nZ, the circulant matrix corresponding to
f = δS is the adjacency matrix of the Cayley graph of Gwith respect to S.

Lemma 3.9. Let G be an abelian group and a ∈ L(G). Define A : L(G) → L(G) by A(b) = a ∗ b. Then, A is linear
and χ an eigenvector of Awith eigenvalue â(χ) for all χ ∈ Ĝ. Consequently, A is diagonalisable.

Proof. Linearity is easily checked and we omit the proof.
Let χ ∈ Ĝ be arbitrary. Then,

â ∗ χ = â · χ̂ = |G|â · δχ = |G|â(χ)δχ.
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By Lemma 3.6,
A(χ) = a ∗ χ = â(χ)χ,

and χ is an eigenvector of Awith eigenvalue â(χ).
BecauseG is abelian,Z(L(G)) = L(G) and Ĝ, a basis ofZ(L(G)), is constituted of precisely the irreducible characters
of G. As a result, Ĝ is an eigenbasis of Z(L(G)) and A is diagonalisable. ■

Theorem 3.10. Let G = {g1, . . . , gn} be an ordered abelian group, S ⊆ G a symmetric set, χ1, . . . , χn the irreducible
characters of G, and A the adjacency matrix of the Cayley graph of Gwith respect to S. Then,

(a) The eigenvalues of A are
λi =

∑
s∈S

χi(s)

for 1 ≤ i ≤ n.

(b) A corresponding orthonormal basis of eigenvectors is given by

vi =
1√
|G|

[
χi(g1) · · · χi(gn)

]⊤
.

Note that given the above, the λi must be symmetric as A is symmetric.

Proof. Define F : L(G) → L(G) by F (b) = δS ∗ b =
∑
x∈S b(x). We shall analyze the eigenvalues and eigenvectors of

F , and finally show that A is the matrix representation of F with respect to another ordered basis.
By Lemma 3.9, F has eigenvectors χi with corresponding eigenvalue

δ̂S(χi) = |G|⟨δS , χi⟩ =
∑
x∈S

χi(x) =
∑
x∈S

χi(x
−1) =

∑
y∈S

χi(y) = λi.

Consider B = (δg1 , . . . , δgn) of L(G), and let [F ]B denote the matrix of F with respect to this ordered basis. The
coordinate vector of χi with respect toB is precisely

√
|G|vi, and the above argument shows that it is an eigenvector

with eigenvalue λi. The orthonormality of the (vi) follows from Theorem 2.24.
It suffices to show that A = [F ]B . Let 1 ≤ i, j ≤ n. ([F ]B)ij is the coefficient of δgi in F (gj), which is

([F ]B)ij = F (δgj )(gi) = (δS ∗ δgj )(gi) = δS(gig
−1
j )

by Proposition 3.3. This is precisely Aij , completing the proof. ■

Corollary 3.11. Let A be a n × n circulant matrix, which is the adjacency matrix of the Cayley graph of G = Z/nZ
with respect to some symmetric S ⊆ G. Then, the eigenvalues of A are

λk =
∑
m∈S

ωkmn

for k = 0, . . . , n− 1 with a corresponding orthonormal eigenbasis given by

vk =
1√
n

[
1 ωkn ω2k

n · · · ω
(n−1)k
n

]
.
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3.3. Fourier analysis on non-abelian groups

The issue in non-abelian groups is that Z(L(G)) ̸= L(G), and a pointwise product of functions remains commuta-
tive. As a result, we cannot have a Fourier transform converting convolution to a pointwise product while staying
an isomorphism. To remedy this, we shall look at matrix multiplication instead of pointwise multiplication.

Before going to this, let us look at abelian groups in a different light. Recall that Cn is a ring with product given by

(w1, . . . , wn) · (z1, . . . , zn) = (w1z1, . . . , wnzn).

Proposition 3.12. Let G be a finite abelian group with irreducible characters χ1, . . . , χn. Define T : L(G) → Cn by

Tf = (f̂(χ1), . . . , f̂(χn)).

Then, T is an isomorphism of rings.

Proof. Similar to the proof of Proposition 3.7, T is an isomorphism of vector spaces, so we only need to show that for
f, g ∈ L(G), T (f ∗ g) = Tf · Tg. This however, follows directly from the fact that f̂ ∗ g(χi) = f̂(χi) · ĝ(χi). ■

Theorem 3.13. Let G be a finite abelian group of order n. Then, L(G) ∼= Cn as rings.

The above says that
Cn ∼=M1(C)× · · · ×M1(C)︸ ︷︷ ︸

n copies

.

In general, we replace the 1s with the degrees of the irreducible representations (recall that all irreducible represen-
tations of abelian groups are degree one).

For the rest of this subsection, letG be a finite group of order n, and φ(1), . . . , φ(s) a transversal of irreducible unitary
representations of G. Set dk = degφ(k).
Let D = {(i, j, k) : 1 ≤ k ≤ s, 1 ≤ i, j ≤ dk}. Finally, let B = {

√
dkφ

(k)
ij : (i, j, k) ∈ D}. Recall from Proposition 2.17

that B is an orthonormal basis of L(G).

Definition 3.9 (Fourier transform). DefineF : L(G) →Md1(C)×· · ·Mds(C) byF(f) = (f̂(φ(1)), . . . , f̂(φ(s))), where

f̂(φ(k)) =
∑
g∈G

f(g)φ
(k)
g .

F(f) is said to be the Fourier transform of f .

That is, f̂(φ(k)) is just a matrix with (
f̂(φ(k))

)
ij
= f̂(φ

(k)
ij ). (3.2)

Note that dimL(G) = |G|, and dim(Md1(C) × · · · ×Mds(C)) = d21 + · · · + d2s = |G|. We shall show that F is an
isomorphism.
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Lemma 3.14. Let f ∈ L(G). Then,
f =

1

n

∑
(i,j,k)∈D

dkf̂(φ
(k))ijφ

(k)
ij .

In particular, F is injective.

Proof. Because B is an orthonormal basis, it suffices to show that

⟨f,
√
dkφ

(k)
ij ⟩ = 1

n

√
dkf̂(φ

(k))ij ,

which is just Equation (3.2). ■

Lemma 3.15. F is an isomorphism of vector spaces.

Proof. As usual, checking linearity is easy. F is injective by Lemma 3.14. We also saw earlier that the dimensions of
L(G) andMd1(C)× · · · ×Mds(C) are equal, so we are done. ■

Md1(C)× · · · ×Mds(C) is a ring as well, with the coordinate-wise product.

Theorem 3.16 (Wedderburn’s Theorem). The Fourier transform is an isomorphism of rings.

Proof. Let a, b ∈ L(G). All we need to show is that â, b = â · b̂. Since the latter product is coordinate-wise, this
is equivalent to showing that â ∗ b(φ(k)) = â(φ(k)) · b̂(φ(k)) for all 1 ≤ k ≤ s (the product on the right is matrix
multiplication). The proof is very similar to that of Theorem 3.8:

â ∗ b(φ(k)) =
∑
g∈G

(a ∗ b)(g)φ(k)(g)

=
∑
g,h∈G

a(gh−1)b(h)φ(k)(g)

=
∑
h∈G

b(h)
∑
g∈G

a(gh−1)φ(k)(g) (a, b commute because they take values in C)

=
∑
h∈G

b(h)
∑
g∈G

a(g)φ(k)(gh)

=
∑
h∈G

b(h)
∑
g∈G

a(g)φ(k)(g) · φ(k)(h)

=

∑
g∈G

a(g)φ(k)(g)

 ·

∑
h∈G

b(h)φ(k)(h)

 = â(φ(k)) · b̂(φ(k)). ■
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