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§1. Conditional Expectations and Martingales

1.1. Conditional Expectations

To motivate the general definition of conditional expectation, it is helpful to first work in a discrete setting.

Let (Ω,F , P ) be a probability space and X,Z be random variables such that each of them takes some finite set of
values {x1, . . . , xn} and {z1, . . . , zm} respectively. What would the conditional expectation be if, say, Z = zj? It is
given by

E[X | Z = zj ] =
∑

xi Pr[X = xi | Z = zj ].

Denote the above random variable by Y – if Z(ω) = zj , then Y (ω) is equal to the above quantity. Note that Y is
constant on each Z-atom, and as a result, is measurable with respect to the σ-algebra G consisting of the 2m possible
unions of Z-atoms. Suppose Y takes value yj on {Z = zj}. Then,∫

{Z=zj}
Y dP = yj Pr[Z = zj ]

=
∑
i

xi Pr[X = xi | Z = zj ] Pr[Z = zj ]

=
∑
i

Pr[X = xi, Z = zj ]

=

∫
{Z=zj}

X dP.

That is, for any G ∈ G, ∫
G

X dP =

∫
G

Z dP.

This is exactly the motivation behind the general definition.

Definition 1.1. Let (Ω,F , P ) be a probability space and X a random variable with E[|X|] < ∞. Let G be a
sub-σ-algebra of F . Then, there exists a random variable Y such that

� Y is G-measurable,

� E[|Y |] <∞, and

� for every G ∈ G,
∫
G
Y dP =

∫
G
X dP .

Moreover, if Y and Ỹ are two random variables satisfying the above, then Y = Ỹ almost surely. Such a random
variable Y is called the conditional expectation E[X | G] of X given G, and we write Y = E[X | G] almost surely.

The key insight here is that instead of viewing a random variable as something that takes values, we can view it as
a partitioning of the space into equivalence classes, and defining the new random variable based on this partition
instead. We do not care about what values Z takes, we only care about the probability that Z takes a certain value!
Since the conditional expectation is almost surely unique, we mean by “the conditional expectation” any such version
of a conditional expectation.
For a random variable Z, E[X | Z] is used to denote E[X | σ(Z)].

If F ∈ F and G is a sub-σ-algebra of F , then we define Pr[F | G] as E[1F | G].

Lemma 1.1. Let (Ω,F , P ) be a probability space and X a random variable in L1. Let G and H be sub-σ-algebras
of F .
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(i) If Y = E[X | G], then E[Y ] = E[X].

(ii) If X is G-measurable, then E[X | G] = X almost surely.

(iii) E[a1X1 + a2X2 | G] = a1E[X1 | G] + a2E[X2 | G] almost surely.

(iv) If X ≥ 0, then E[X | G] ≥ 0 almost surely.

(v) If 0 ≤ Xn ↑ X, then E[Xn | G] ↑ E[X | G] almost surely.

(vi) If Xn ≥ 0, then E[lim inf Xn | G] ≤ lim inf E[Xn | G] almost surely.

(vii) If |Xn(ω)| ≤ V (ω) for all n, E[V ] <∞, and Xn → X almost surely, then E[Xn | G]→ E[X | G] almost surely.

(viii) If c : R→ R is convex and E[|c(X)|] <∞, then E[c(X) | G] ≥ c(E[X | G]). In particular, ‖E[X | G]‖p ≤ ‖X‖p
almost surely.

(ix) If H is a sub-σ-algebra of G, then E[E[X | G] | H] = E[X | H] almost surely. We often shorten this as
E[X | G | H].

(x) If Z is G-measurable and bounded, then E[ZX | G] = ZE[X | G] almost surely. This also holds if p > 1,
p−1 + q−1 = 1, X = Lp(Ω,F , P ), and Z = Lq(Ω,G, P ).

(xi) If H is independent of σ(σ(X),G), then E[X | σ(G,H)] = E[X | G] almost surely. In particular, if X is
independent of H, then E[X | H] = E[X] almost surely.

For future purposes, we also recall four types of convergence of random variables, which the reader is hopefully
familiar with.

Definition 1.2. Let X be a random variable and (Xn) be a sequence of random variables on the probability space
(Ω,F , P ).

(a) Xn → X almost surely if Pr[{ω ∈ Ω : Xn(ω)→ X(ω)}] = 1.

(b) Xn → X in probability if Pr[|Xn −X| > ε]→ 0 for every ε > 0.

(c) Xn → X in Lp if ‖Xn −X‖p → 0.

(d) Xn → X in law or in distribution if E[f(Xn)]→ E[f(X)] for any bounded continuous function f .

We also have that (a),(c)⇒(b)⇒(d). Also, if q ≤ p and Xn → X in Lp, then Xn → X in Lq.

1.2. Discrete Time Processes

Before we get to stochastic processes, we must build a notion of “time” in a probability space. First, let us do so in
a discrete setting.

Definition 1.3. Let (Ω,F , P ) be a probability space. A (discrete time) filtration is an increasing sequence (Fn) of
σ-algebras F0 ⊆ F1 ⊆ · · · ⊆ F . The quadruple (Ω,F , (Fn), P ) is called a filtered probability space.

Fn is essentially the “set of questions” we can ask at time n. For example, if we are flipping a coin and are at time
n, we can ask and get the answer to “Did the coin flips up to time n give more heads than tails?” but we cannot
know the answer to “Did the coin flips up to time N > n give more heads than tails?”. We can of course compute
probabilities corresponding to the latter case, but we cannot answer it with certainty.

Definition 1.4. Let (Ω,F , (Fn), P ) be a filtered probability space. A process (Xn) is called Fn-adapted if Xn is
Fn-measurable for each n, and Fn-predictable if Xn is Fn−1-measurable for each n.

We often refer to the above as just adapted or predictable proesses if it is clear from context what the filtration is.
In the adapted case, Xn represents something in the past or present, whereas in the predictable case, Xn represents
something in the past.
Similarly, we can generate a filtration given a process – this is what we shall use more often.
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Definition 1.5. Let (Ω,F , P ) be a probability space and (Xn) be a process. The filtration generated by (Xn) is
defined by FXn = σ(X0, . . . , Xn) for each n.

Note that the process Xn is FXn -adapted by construction.
Even if some sequences don’t explicitly have any relation to the (physical) notion of time, it is often useful to think
of them as an adapted stochastic process – for example, a sequence of approximations E[X | Yn] to E[X | Y ].

1.3. Martingales

Definition 1.6. A process (Xn) is said to be a Fn-martingale if it is Fn-adapted and it satisfies E[Xn | Fm] = Xm

almost surely for every m ≤ n.

We often refer to the above as just a martingale if it is clear from context what the filtration is.
Observe that the final condition is equivalent to E[Xn | Fn−1] = Xn−1.
The name ‘martingale’ comes from a betting strategy. We can think of playing a sequence of games, wherein Xn

represents our total winnings after the nth game. In general of course, there need not be any relation between the
Xi. In a fair setting however, we should make (and lose) no money on average. If we make money, then it is unfair
towards the casino, and if we lose money, then it is unfair towards us (most casinos are unfair towards us). That
is, if we have totally won Xm dollars at time m, then our expected winnings at some time point n > m should be
E[Xn | σ{X0, . . . , Xm}] = Xm as well!
Martingales turn out to be surprisingly pervasive in probability theory and are seen in several places. To begin with,
let us relate martingales a bit more to the above betting strategy, while at the same time giving some intuition as to
why martingales are important.

Lemma 1.2 (Doob Decomposition). Let (Ω,F , P ) be a probability space, (Fn) be a filtration, and (Xn) be Fn-
adapted with Xn ∈ L1 for every n. Then, we can write Xn = X0 + An + Mn almost surely, where (An) is
Fn-predictable and Mn is a Fn-martingale with M0 = 0. Further, this decomposition is unique.

This is not too difficult to prove on setting An =
∑n
k=1 E[Xk −Xk−1 | Fk−1].

Definition 1.7. Let (Mn) be a martingale and (An) be a predictable process. Then (A·M)n =
∑n
k=1Ak(Mk−Mk−1),

known as the martingale transform of M by A, is a martingale, provided that An and (A ·M)n are in L1 for all n.

Keeping in line with our gambling analogy, here, Mn would represent our total winnings at time n if we were to stake
one dollar in the game and Ak represents the number of dollars we stake at time k. The An should be predictable
because we place our bet before the game occurs.

Let us now consider a particular betting strategy, which seems to go against the intuition built thus far for a
martingale. First, choose some a < b. We play against a single friend1 of ours. Whenever our own capital sinks
below a, we bet one dollar until it exceeds b dollars. At this point, we stop betting money and wait until our capital
sinks below a again.
In each “round” from a to b, we make (b− a) dollars. This seems contradictory! It seems to imply that if we played
the game for a long time, we would repeatedly make (b− a) dollars and become rich. However, any betting strategy
should be a martingale – what are we missing?
If we face k reversals of fortune, we will make k(b− a) dollars. The only part we have not considered is when we hit
a dollars for the (k + 1)th time but have not hit b dollars for the (k + 1)th time yet. Since it must balance out, we
must make a significant loss before we reach the next b. That is, the expected loss incurred from the last time we
started staking money (when we hit a for the (k + 1)th time) should be equal to k(b− a).
The only logical conclusion in the case where the Mn is bounded is that we can only cross a and b a finite number
of times! Otherwise, we could (expect to) make infinite money by playing with the above strategy. That is, the Mn

must converge to some random variable.

1They may not be your friend at the end of the game, however.
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Lemma 1.3 (Doob’s Upcrossing Lemma). Let (Mn) be a martingale and denote by Un(a, b) the number of “up-
crossings” of a < b up to time n. Then, E[Un(a, b)] ≤ E[(a−Mn)+]/(b− a).

Proof. This is easily proved as in the previous paragraph. Set C0 = 0 and for k > 0, Ck = 1Ck−1=11Mk−1<b +
1Ck−1=01Mk−1≤a. Let Xn = (C · M)n. Then Xn ≥ (b − a)Un(a, b) − (a − Mn)+ (Why?). However, Xn is a
martingale, so E[Xn] = E[X0] = 0, proving the result. �

We now come to perhaps the most important result in martingale theory.

Theorem 1.4 (Martingale Convergence Theorem). Let (Mn) be a Fn-martingale such that supn E[|Mn|] < ∞,
supn E[(Mn)+] < ∞, or supn E[(Mn)−] < ∞. Then, there exists a F∞-measurable random variable M∞ ∈ L1,
where F∞ = σ(Fn : n ∈ N), such that Mn →M∞ almost surely.

Proof. It is not too difficult to show that the three conditions (involving expectation) are equivalent.
Let ω ∈ Ω. First of all, we claim that that Mn(ω) cannot have distinct lim sup and lim inf (so it converges) – if we
choose some rational a, b such that lim inf Mn(ω) < a < b < lim supMn(ω), then there would be infinitely many
upcrossings. However,

Pr[∃a, b ∈ Q such that Mn crosses a, b i.o.] ≤
∑
a,b∈Q

Pr[Mn crosses a, b i.o.] =
∑
a,b∈Q

Pr[U∞(a, b) =∞] = 0,

where the last step follows from using the Monotone Convergence Theorem on E[Un(a, b)] ≤ (|a|+supn E[|Mn|])/(b−
a) <∞, so E[U∞(a, b)] <∞.
Therefore, Mn converges to some M∞ almost surely. Using Fatou’s Lemma, E[M∞] ≤ lim inf E[|Mn|] <∞, so M∞
is both almost surely finite and in L1. �

Similar to martingales, we define the following.

Definition 1.8. A Fn-adapted process (Xn) is said to be a supermartingale if it satisfies E[Xn | Fm] ≤ Xm almost
surely for every m ≤ n and a submartingale if it satisfies E[Xn | Fm] ≥ Xm almost surely for every m ≤ n.

For example, the winnings in casinos usually form a supermartingale – they thrive on the fact that you are expected
to lose money.
The analogue of Lemma 1.2 for supermartingales is the following.

Lemma 1.5. Let (Ω,F , P ) be a probability space, (Fn) be a filtration, and (Xn) be Fn-adapted with Xn ∈ L1 for
every n. Then, we can write Xn = X0 +An +Mn almost surely, where (An) is a non-increasing predictable process
and Mn is a martingale with M0 = 0. Further, this decomposition is unique.

Lemma 1.6. Let Mn be an almost surely non-negative supermartingale and k > 0. Then

Pr

[
sup
n
Mn ≥ k

]
≤ E[M0]

k
.

1.4. Stopping Times

Definition 1.9. A stopping time is a random time τ : Ω → {0, 1, . . . ,∞} such that {ω ∈ Ω : τ(ω) ≤ n} ∈ Fn for
each n.

Continuing with the gambling analogy, this essentially represents the time we leave the table. For example, quitting
while we’re ahead and letting τ = inf{k : Xk ≥ 20} is a stopping time. The definition of a stopping time just says
that our decision to leave is based solely on whatever events have transpired thus far. As another example, one
might decide to leave when we are done with our final upcrossing (as defined before Lemma 1.3). However, it is
impossible to determine whether or not this is the case since we cannot look into the future to see if there are no
more upcrossings.
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Definition 1.10. Let (Xn) be a stochastic process and τ < ∞ be a stopping time. Then Xτ denotes the random
variable Xτ(ω)(ω), that is, the process Xn evaluated at τ . In general, the stochastic process X ′n(ω) = Xmin{n,τ(ω)}(ω)
is called the stopped process. That is, X ′n = Xn for n < τ and X ′n = Xτ for n ≥ τ .

As mentioned, this represents our winnings if we stop playing the game at τ .

Lemma 1.7 (Optional Stopping Theorem). Let Mn be a martingale and τ <∞ be a stopping time. Then E[Mτ ] =
E[M0] if any of the following holds

(a) τ < K almost surely for some K ∈ N.

(b) |Mn| <∞ almost surely for all n.

(c) |Mn −Mn−1| <∞ almost surely for all n and E[τ ] <∞.

If any of these conditions hold for a supermartingale, then E[Mτ ] ≤ E[M0].

Let us now look at the gambling idea we gave earlier of “quitting while we are ahead”. Suppose ξ1, ξ2, . . . are iid and
each take ±1 with probability 1/2 each. Let Mn = M0 +

∑k
i=1 ξi. It is easy to see that (Mn) forms a martingale. In

the gambling context, this just means that at each time step, we gain or lose a dollar with probability 1/2.

� First of all, note that Mn does not converge (Why?). To solidify the notion of quitting while ahead, consider
the stopping time τ = inf{n : Mn ≥ 2M0}. We wait until this happens, and then stop playing.
The first question we ask is: is τ < ∞? Perhaps unintuitively, the answer is yes. Indeed, Mmin{n,τ} ≤ 2M0

almost surely for all n. Therefore, we may apply the martingale convergence theorem to get that Mmin{n,τ}
converges. Further, since Mn only takes integer values and changes by 1 at each step, it is not too difficult to
show that convergence can only occur if it “gets stuck” at M0, that is, τ <∞ almost surely. This seems to be
a contradiction – a way to earn free money!

� Next, note that while Mmin{n,τ} → 2M0 almost surely, it does not converge in L1. Indeed, the latter would
imply that the expectations converge as well, but this is clearly not the case since E[Mmin{n,τ}] does not
converge to E[Mτ ]. Intuitively, a process does not converge in L1 only when the “outliers” of the process grow
very rapidly. In the current context, this would mean that while we eventually double our capital, we incur
massive losses in the middle in order to keep the game fair.

� To quantify this, suppose that there is also some maximum debt amount (−R) we can incur, so the stopping
time is now κ = inf{n : Mn ≥ 2M0 or Mn ≤ −R}. Since |Mmax{n,κ}| ≤ max{R, 2M0}, we can use Lemma 1.7
to get that E[Mκ] = E[M0]. However, Mκ takes either −R or 2M0, so we can actually calculate the probability
that each occurs.
The conclusion is that in a fair game, no money can be made on average unless we allow ourselves to play for
an arbitrarily long amount of time and go arbitrarily far into debt.

1.5. Towards Continuous Time

In the continuous setting, we usually work with stochastic processes in either a time period [0, T ] or [0,∞). In
either case, a stochastic process on the probability space (Ω,F , P ) is a family of (measurable) random variables (Xt)
indexed by time t.

Definition 1.11. Let Xt and Yt be two stochastic processes. Then Xt and Yt are said to be indistinguishable if
Pr[Xt = Yt for all t] = 1 and modifications of each other if Pr[Xt = Yt] = 1 for all t.

First of all, it should be mentioned that we are being slightly messy here. The event “Xt = Yt for all t” is equal to⋂
t{ω : Xt(ω) = Yt(ω)}, which need not even be an element of the σ-algebra! We shall assume, however, that the

σ-algebra is sufficiently rich and this set is an element.
Some texts define indistinguishability slightly different and instead say that this set must contain a subset of measure
1. That is, there exists some set A such that Pr[A] = 1 and for every ω ∈ A and t, Xt(ω) = Yt(ω).
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Second, it should be noted that indistinguishability of two stochastic processes implies that they are modifications
of each other (Why?). Further, the converse holds in the discrete setting (countably many time points) since

Pr

[⋂
n

{ω : Xn(ω) = Yn(ω)}

]
≥ 1−

∑
n

Pr [{ω : Xn(ω) 6= Yn(ω)}] .

The fact that the converse does not hold in general by shown by considering the probability space with Ω = [0,∞)
and B(Ω), the time period as [0,∞) and the processes as

Xt(ω) =

{
1, t = ω,

0, otherwise,
Yt(ω) = 0

for all t ≥ 0 and ω ∈ Ω.

In the continuous setting, a filtration is given by a family of σ-algebras (Ft) indexed by time such that Fs ⊆ Ft for
all s ≤ t.

Definition 1.12. Let Xt be a stochastic process on some filtered probability space (Ω,F ,Ft, P ), and time set
T ⊆ [0,∞) (of the form [0, T ] or [0,∞)). Then Xt is said to be

� adapted if Xt is Ft-measurable for all t,

� measurable if the random variable X· : T× Ω→ R is B(T)×F-measurable, and

� progressively measurable if X· : [0, t] ∩ T× Ω→ R is B([0, t] ∩ T)×F-measurable for all t.

The first definition is familiar to the reader, and the second and third essentially say that

Yt =

∫ t

0

Xs ds

is well-defined and F-measurable (for measurable) or Ft-measurable (for progressively measurable). In particular,
progressive measurability ensures that Yt is adapted.
There exists a result that says that every adapted measurable process has a modification that is progressively mea-
surable, but we shall not require it.

Life is made much easier if we restrict ourselves to continuous paths, that is, the function t 7→ Xt(ω) is continuous
for every ω. Indeed, if they are continuous, then it suffices to compare them at a countable dense subset, say the
rationals.

Lemma 1.8. Let Xt and Yt be stochastic processes with continuous paths. If Xt and Yt are modifications, then
they are indistinguishable. If Xt is adapted and measurable, then it is progressively measurable.

Proof. The first result is direct on considering a countably dense subset (say the rational time points) and using the
second remark after Definition 1.11.
Construct a sequence of approximate processes Xk : [0, t] × Ω → R such that Xk

t (ω) = Xt(ω) for all ω ∈ Ω
and t = 0, 2−k, . . . , 2−kb2ktc such that the sample paths are piecewise linear. Then for s ∈ [0, t] and ω ∈ Ω,
Xk
s (ω)→ Xs(ω) as k →∞. Each Xk is B([0, t])× F-measurable. Since the limit of a sequence of measurable maps

is measurable, the result follows. �

Theorem 1.9 (Martingale Convergence Theorem). Let Mt be a martingale and suppose that each Mt has continuous
sample paths. If supt E[|Mt|] < ∞, supt E[(Mt)

+] < ∞, or supt E[(Mt)
−] < ∞, then there exists a F∞-measurable

random variable M∞ ∈ L1 such that Mt →M∞ almost surely.

1.6. The Wiener Process

Brownian motion, which is the main focus of this section, can be thought of as the limit of a random walk such that
the time step and the mean square displacement both go to 0. We wish to show that this is in fact well-defined.
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1.6.1. Introduction and Definitions

Let ξn be iid random variables each with 0 mean and unit variance and define

xt(N) =

bNtc∑
n=1

ξn√
N
. (1.1)

The Wiener process is just some suitable limit of this sequence. The mere existence of a stochastic process which is
the limit of the above, as we have remarked already, is not obvious and we shall construct this process explicitly.
The basic tool which comes to mind to do this is the central limit theorem. Unfortunately, that does not work here
because we have an uncountable collection of random variables (since there is a random variable for each t ∈ [0, T ]).
We can fix the limiting distribution at some finite number of time steps xt1(N), . . . , xtn(N) however. That is,

Lemma 1.10. For any finite set of times t1 < · · · < tn (n <∞), the n-dimensional random variable (xt1(N), . . . , xtn(N))
converges in law as N →∞ to an n-dimensional random variable (xt1 , . . . , xtn) such that xt1 , xt2−xt1 , . . . , xtn−xtn−1

are each independent Gaussian random variables with 0 mean and variance t1, t2 − t1, . . . , tn − tn−1.

The above is easily proved since the increments xtk(N)− xtk−1
(N) are independent for any N .

Before getting to the definition of a Wiener process, we state the following, which justifies why we can think of the
Wiener process to be continuous.

Lemma 1.11. Suppose we have constructed some stochastic process xt whose finite dimensional distributions as
those of Lemma 1.10. Then, xt has a modification x̃t such that t 7→ x̃t is continuous.

The proof of the above is quite similar to the proof we give later of the existence of a Wiener process.

Definition 1.13. A stochastic process Wt is called a Wiener process if

� the finite dimensional distributions of Wt are those of Lemma 1.10 and

� the sample paths of Wt are continuous.

An Rn-valued process Wt = (W 1
t , . . . ,W

n
t ) is called an n-dimensional Wiener process if W 1

t , . . . ,W
n
t are independent

Wiener processes.

1.6.2. Existence and Uniqueness

To show that a Wiener process is well-defined, we must establish existence and some sort of uniqueness. We first
show uniqueness.

Lemma 1.12. If Wt and W ′t are Wiener processes, then the C([0,∞))-valued random variables W·,W
′
· : Ω →

C([0,∞)) have the same law.2

The reader might be wondering exactly what σ-algebra C we are taking on C([0,∞)). We have two options:

� For each t, consider the evaluation map πt : C([0,∞))→ R, πt(x) = xt. Then set C = σ{πt : t ∈ [0,∞)}.

� Take the natural topology on C([0,∞)) as the topology of uniform convergence on compact intervals. Then,
take C as the Borel σ-algebra with respect to this topology.

It turns out that these two σ-algebras are the same, so our intention is unambiguous.

2Two random variables having the same law means that they induce the same probability measure on the measurable space.
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Proof. First, we must show that W· and W ′· are in fact measurable (and thus random variables). Since Wt is
measurable for every t (it is a stochastic process), W−1t (A) ∈ F for any A ∈ B(R). Note that Wt = πt ◦W·.
Now, by our earlier remark, C = σ{π−1t (A) : A ∈ B(R), t ∈ [0,∞)}, so

W−1· (C) = σ{W−1t (A) : A ∈ B(R), t ∈ [0,∞)} ⊆ F .

Therefore, W· is a [0,∞)-valued random variable (and so is W ′· ).

Next, we must show that the two random variables have the same law, that is, they induce the same probability
measure on (C([0,∞)), C). To do this, we use Dynkin’s π-system lemma. Consider the π-system

Ccyl = {πt1(A1) ∩ · · · ∩ πtn(An) : t1, . . . , tn ∈ [0,∞) and A1, . . . , An ∈ B(R)}.

Now, by definition, the finite-dimensional distributions of W· and W ′· are equal, so the laws coincide on Ccyl. The
required follows on using Dynkin’s π-system lemma. �

Next, how do we show existence? First of all, note that it would suffice to construct a Wiener process on [0, 1] alone.
We can then iterate to get it on the succeeding intervals. That is,

Lemma 1.13. Let {Wt : t ∈ [0, 1]} be a stochastic process on (Ω,F , P ) that satisfies Definition 1.13. Then there
exists a stochastic process {W ′t : t ∈ [0,∞)} on a probability space (Ω′,F ′, P ′) that satisfies Definition 1.13 for all t.

The proof follows by setting Ω′ = Ω × Ω × · · · , F ′ = F × F × · · · , and P ′ = P × P × · · · with each Ω carrying iid

{Wn
t : t ∈ [0, 1]}, then checking that W ′t =

∑btc
k=1W

k
1 +W

btc+1
t−btc satisfies the required.

So, to show existence on [0, 1], the basic idea is to define a sequence Wn
t of random walks with continuous sample

paths, such that
∑
n supt∈[0,1] |Wn

t −Wn+1
t | <∞ almost surely. This would imply that they almost surely uniformly

converge to some stochastic process Wt and further, this Wt has continuous sample paths.
If this is the case, the structure of the finite dimensional distributions is then easy to see.

So how do we construct these random walks?
The random walk Wn

t consists of 2n points with the adjacent ones connected by straight lines. To go from Wn
t to

Wn+1
t , we insert 2n more points between the old points. That is, we keep adding detail to make the curve finer and

finer. The question is: how do we add these points to make the limiting curve have the required characteristics?
By our construction, the points of Wn

k2−n are already as in Lemma 1.10. In particular, Wn
(k+1)2−n − Wn

k2−n is
independent of Wk2−n for any k. Now, given Wn

t , let

Y0 = Wn+1
k2−n = Wn

k2−n and Y1 = Wn+1
(k+1)2−n = Wn

(k+1)2−n .

We wish to choose a X = Wn+1
(2k+1)2−(n+1) such that Y1 −X and X − Y0 are Gaussian with mean 0 and variance 2−n,

and Y1 −X, X − Y0, and Y0 are independent. It is not too difficult to check that (Y0 + Y1)/2 + 2−(n+1)/2ξ does the
job, where ξ is standard normal and independent of Y0 and Y1.

Now, let us make the recursion less explicit. These tent-like interpolations we have performed are known as Schauder
functions.
For n = 0, 1, . . . and k = 1, 3, . . . , 2n − 1, define the Haar wavelet Hn,k(t) as

H0,1(t) = 1 and Hn,k(t) =


2(n−1)/2, (k − 1)2−n < t ≤ k2−n,

−2(n+1)/2, k2−n < t ≤ (k + 1)2−n,

0, otherwise.

The Schauder functions are then defined as

Sn,k(t) =

∫ t

0

Hn,k(s) ds.



Stochastic Calculus 10 / 20 Amit Rajaraman

The Nth random walk is then defined as

WN
t =

N∑
n=0

∑
k=1,3,...,2n−1

ξn,kSn,k(t),

where the ξn,k are iid standard normal.
Now, we must show that these converge uniformly to prove the required. We have

Pr

[
sup
t∈[0,1]

|Wn
t −Wn−1

t | > εn

]
= Pr

[
sup

k=1,3,...,2n−1

|ξn,k| > 2(n+1)/2εn

]
≤

∑
k=1,3,...,2n−1

Pr
[
|ξn,k| > 2(n+1)/2εn

]
=

∑
k=1,3,...,2n−1

Pr
[
|ξ0,1| > 2(n+1)/2εn

]
=

∑
k=1,3,...,2n−1

2 Pr
[
eξ0,1 > exp

(
2(n+1)/2εn

)]
≤

∑
k=1,3,...,2n−1

2 exp(−2(n+1)/2εn)E[eξ0,1 ]

= exp
(
n log 2 + 1/2− 2(n+1)/2εn

)
.

Setting εn = n−2,
∞∑
n=1

Pr

[
sup
t∈[0,1]

|Wn
t −Wn−1

t | > n−2

]
<∞.

Using the Borel-Cantelli lemma, we infer that

sup
t∈[0,1]

|Wn
t −Wn−1

t | ≤ n−2

almost surely for sufficiently large n. Therefore,

∞∑
n=1

sup
t∈[0,1]

|Wn
t −Wn+1

t | <∞

almost surely. Setting the sample paths of a null set to 0 is an indistinguishable change, so the Wn
t converge uniformly

to Wt, which is continuous. Finally, we must check that Wt has the correct finite-dimensional distributions. This is
equivalent to showing that for any t > s > r, Wt −Ws and Wr are independent.
To do this, a result states that it suffices to show that

E[eiαWr+iβ(Wt−Ws)] = eα
2r/2−β2(t−s)/2.

Showing this however, is direct by considering a sequence of dyadic rationals – numbers of the form k2−n that
converge to s and t, then using dominated convergence and the continuity of Wt.

1.6.3. Some Properties

Definition 1.14. Let Ft be a filtration. A Wiener process Wt is said to be a Ft-Wiener process if Wt is Ft-adapted
and Wt −Ws is independent of Fs for any t > s.
Given a Wiener process Ft, we also define its natural filtration FWt = σ{Ws : s ≤ t}.

It is not too difficult to show that a Ft-Wiener process is a Ft-martingale.

Definition 1.15. A Ft-adapted process Xt is called a Ft-Markov process if E[f(Xt) | Fs] = E[f(Xt) | Xs] for all
t ≥ s and all bounded measurable functions f .
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Lemma 1.14. A Ft-Wiener process is a Ft-Markov process.

Intuitively, the sample paths of the Wiener process should be very irregular due to the randomness. This is stated
better as:

Lemma 1.15. With unit probability, the sample paths of a Wiener process are non-differentiable at any rational
time t.

Proof. Suppose that Wt is differentiable at some t. Then for sufficiently small h, (Wt+h−Wt)/h < M for some finite
M . This implies that supn≥1 n|Wt+n−1 −Wt| <∞. Now,

Pr[sup
n≥1

n|Wt+n−1 −Wt| <∞] ≤ Pr

 ⋃
M≥1

⋂
n≥1

{n|Wt+n−1 −Wt| < M}


≤ lim
M→∞

inf
n≥1

Pr[n|Wt+n−1 −Wt| < M ].

However, Wt+n−1 −Wt is Gaussian with mean 0 and variance n−1. As a result,

inf
n≥1

Pr[n|Wt+n−1 −Wt| < M ] = inf
n≥1

Pr[|ξ| < Mn−1/2] = 0,

where ξ is standard normal. Therefore, Wt is almost surely not differentiable at t. Since the set of rational numbers
is countable, the result follows. �

For any real-valued function f , define the total variation of f on the interval [a, b] by

TV(f, a, b) = sup
k≥0

sup
(ti)∈P (k,a,b)

k∑
i=0

|f(ti+1)− f(ti)|,

where P (k, a, b) is the set of partitions t0 = a < t1 < · · · < tk+1 = b of [a, b].
This is essentially the “distance” travelled to go from a to b along the curve.

Lemma 1.16. With unit probability, TV(W·, a, b) =∞ for any a < b.

The main goal of this is to give meaning to the stochastic integral, of the form
∫ t
0
fs dWs. However, the above

makes this highly problematic. Indeed, it may be shown that if a function g is of infinite total variation, there is a
continuous function f such that the usual Stieltjes integral of f with respect to g does not exist.
How do we fix this then? The idea in fact arises by considering the total squared variation instead. Note that

lim
n→∞

∑
ti∈πn

(Wti+1−Wti
)2 = b− a

almost surely for some sequence of partitions πn.

Finally, it is interesting to know that the xt(N) described in Equation (1.1) do in fact converge in law to a Wiener
process.
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§2. The Itô Integral and Stochastic Differential Equations

2.1. The Itô Integral: Motivations and Definitions

Motivations

For a moment, let us look at a more physical notion – that of white noise. Given a discrete time signal (an), we
model the received signal by xn = an + ξn, where the ξn are iid Gaussian random variables with zero mean. This is
discrete time white noise, often known as Additive White Gaussian Noise (AWGN).
How would this extend to continuous time? If we associate a standard normal ξt for each t ∈ R≥0 such that
E[ξsξt] = 0 for s 6= t, then if we let Ξε = 1

ε

∫ ε
0
ξs ds, then it is seen that E[Ξε] = Var[Ξε] = 0. This doesn’t make any

sense, because it would mean that observing the received signal for an arbitrarily small time from 0 would allow us
to completely determine what the transmitted signal at time 0 was. This isn’t “noise” then, so how do we fix it?
In AWGN, the corrupting noise in any unit time interval is a zero mean Gaussian (with say, unit variance), so
maybe we would want that the average white noise in unit time Ξ1 is standard normal. We also want that ξt and
ξs are independent for t 6= s. This just means that

∫
ξs ds = Wt! However, we have seen that Wt is almost surely

non-differentiable, so ξt is not really a function. That is, a mathematical model for white noise does not exist, at
least within this current theory.3

However, fortunately, it turns out that most of the things we want to do work out if we just stick to working with
the Wiener process instead of the white noise itself.
Indeed, in the signal analogy, if (at) was transmitted, then the received signal would be xt = at + ξt. This is not
meaningful, but integrating on either side, we get

Xt =

∫ t

0

(as + ξs) ds =

∫ t

0

as ds+Wt.

Instead of attempting to estimate at from xt, we could instead try to solve this problem with Xt, fixing our problem.

2.1.1. An Elementary Definition

Henceforth, in this section, fix a filtered probability space (Ω,F , {Ft}t∈[0,∞),P) and a Ft-Wiener process Wt. The
stochastic integrals are defined with respect to Wt.
Let us now get to a more mathematical formulation of the above handwavy argument. Similar to how we define a
general measure-theoretic integral, we begin by defining the Itô integral for a suitable class of “simple” functions.
Finally, we aim to define it for the set of stochastic processes that are Ft adapted. We take the relevant limits in L2.

Let Xn
t be a Fti -adaptable random variable in L2 that is constant for ti ≤ t < ti+1, where ti for i = 0, . . . , N + 1 is

a finite set of non-random jump times, with the convention that t0 = 0 and tN+1 = T . For this simple integrand,
we define the stochastic integral

I(Xn) =

∫ T

0

Xn
t dWt =

N∑
i=0

Xn
ti(Wti+1 −Wti).

We aim to extend this definition to a more general class of function. To do so, define the following Itô Isometry :

E

(∫ T

0

Xn
t dWt

)2
 =

N∑
i=0

E[(Xn
ti)

2](ti+1 − ti) = E

[∫ T

0

(Xn
t )2 dt

]
(2.1)

Observe that the adaptability is required for the independence of Xn
ti and Wti+1

− Wti and the L2 condition is
required for E[(Xn

ti)
2] to be defined.

I(Xn
· ) is a random variable in L2. It is easier to analyze the above equation if we just think of Xn as a measurable

3Certain theories of generalized stochastic processes do lead to a mathematical model for white noise, but we shall not study these.
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map from [0, T ] × Ω → R for now. Let µT be the Lebesgue measure on [0, T ]. Denote by ‖·‖2,µ the L2-norm with
respect to the measure µ. Then, (2.1) just says

‖I(Xn)‖2,P = ‖Xn‖2,µT×P . (2.2)

This is precisely why the equation is an isometry – the map I : L2(P)→ L2(µT × P) preserves L2-distance (at least
when applied to adapted integrands)!

Lemma 2.1. Let X· ∈ L2(µT × P) and suppose there exists a sequence of Ft-adapted simple processes Xn
· ∈

L2(µT × P) such that

‖Xn
· −X·‖

2
2,µT×P = E

[∫ T

0

(Xn
t −Xt)

2 dt

]
n→∞−−−−→ 0. (2.3)

Then I(X·) can be defined as the limit in L2(P) of the simple integrands I(Xn
· ) and further, this definition does not

depend on the choice of simple approximations of Xn
· .

Proof. As m,n→∞,

‖Xm
· −Xn

· ‖2,µT×P ≤ ‖X
m
· −X·‖2,µT×P + ‖X· −Xn

· ‖2,µT×P → 0.

By (2.2), ‖I(Xm)− I(Xn)‖2,P → 0 as m,n→∞ as well. That is, I(Xn
· ) is a Cauchy sequence in L2(P). Let I(X·)

be the limit of this sequence.
Now, let Y n· be another Ft-adapted simple process that satisfies (2.3) and let I(Xn

· ) converge to I(Y·) in L2(P).
Then,

‖I(Y·)− I(X·)‖2,P ≤ ‖I(Y·)− I(Y n· )‖2,P + ‖I(Y n· )− I(Xn
· )‖2,P + ‖I(Xn

· )− I(X·)‖2,P .

The first and last terms converge to 0 by definition and the above argument, and the second argument can be shown
to do the same using (2.2).
Therefore, I(Y·) = I(X·) almost surely, proving the claim. �

Now, the question is: what functions X· ∈ L2(µT × P) can be approximated as a sequence of Ft-adapted simple
processes (as in (2.3))?
It turns out that this is the case for any Ft-adapted process.

Lemma 2.2. Let X· ∈ L2(µT × P) be Ft-adapted. Then, there is a sequence of Ft-adapted simple processes
Xn
· ∈ L2(µT × P)

In the case where X· is bounded and has continuous sample paths, the simple functions defined by Xn
t = Xk2−n ,

where k2−nT ≤ t < (k+1)2−nT gets the job done – this is not too difficult to show using the Dominated Convergence
Theorem.
While it is not very complicated, we omit the rest of the proof of the above.

Definition 2.1 (Elementary Itô Integral). Let Xt be any Ft-adapted process in L2(µT × P). Then the Itô integral
I(X·), defined as the limit in L2(P) of simple integrals I(Xn

· ) exists and is unique (is independent of the choice of
the Xn

· ).

For example, show that
∫ T
0
Wt dWt = W 2

T − T .

2.1.2. Towards More Generality

Now, we aim to extend the Itô integral even further. Indeed, while the set of Ft-adapted processes in L2(µT × P)
may seem very open, it is still quite restrictive. Further, we would like to extend this to processes on [0,∞).
To do so, we first define the Itô integral as a stochastic process on [0, T ] with continuous sample paths, then extend it
to a process on [0,∞) using a neat trick called localization. We then extend the integral to a wider class of integrands.
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Let Xn
t be a Ft-adapted simple process in L2(µT × P) with jump times (ti)

N+1
i=0 . For any t ≤ T , define the simple

integral

It(X
n
· ) =

∫ t

0

Xn
s dWs =

∫ T

0

1s≤tX
n
s dWs =

N∑
i=0

Xn
ti(Wmin{ti+1,t} −Wmin{ti,t}.

First of all, It(X
n
· ) is a Ft-martingale. This is not too difficult to show, show that for any i and r < t,

E[Xn
ti(Wmin{ti+1,t} −Wti,t) | Fr] = Xn

ti(Wmin{ti+1,r} −Wti,r).

Indeed, this makes sense since the discrete time Iti(X
n
· ) is a martingale transform, and the Wiener process is a

martingale.

Lemma 2.3. Let Xt be a Ft-adapted process in L2(µT × P). Then the Itô integral It(X·), t ∈ [0, T ], can be chosen
to have continuous sample paths.

Now, how do extend the Itô integral to [0,∞) as a stochastic process? A straightforward idea is to require that the
integrand is in L2(µ× P) and Ft-adapted, where µ is the Lebesgue measure on [0,∞).
However, localization, which is not a very deep idea, stipulates that we don’t need this. To define it on [0,∞), it
suffices to define it on every [0, T ], that is, X· ∈

⋂
T<∞ L2(µT × P). The integrand does not need to be square

integrable, it just needs to be locally square integrable, that is, square integrable when restricted to any [0, T ].
However, we do need to ensure that this definition is consistent. That is, we need to check that It(X·) does not
depend on which T > t we choose.

This is easily shown however, by taking two times s < T and observing that a sequence (Xn
t ) we choose for T would

also work for s because L2(µT × P) ⊆ L2(µs × P).

2.1.3. Extending the Itô Integral

Before we get to an actual extension, let us work with stopping times for a bit.

Lemma 2.4. Let Xt be a Ft-adapted process in
⋂
T<∞ L2(µT ×P) and τ a Ft-stopping time. Then Imin{t,τ}(X·) =

It(X·1·<τ ).

This is not too difficult to show using our standard technique of proving the claim for simple processes, then extend-
ing it.

The condition we are working with right now is that

E

[∫ T

0

X2
t dt

]
<∞

for all T <∞. Suppose instead that we are in a situation wherein

E

[∫ τn

0

X2
t dt

]
<∞

for some sequence τn ↑ ∞ of Ft-stopping times. Then (τn) is said to be a localizing sequence for Xt.
While Xt itself need not be in L2(µT × P) for any T , we do have that Xt1t<τn is in

⋂
T<∞ L2(µT × P).

In view of the above lemma then, it makes sense to define It(X·) as It(X·1·<τn) for some n sufficiently large so that
t ≤ τn.
As before, there are two issues we must deal with:

� Does it matter which (sufficiently large) n we take?

� Does it matter which localizing sequence we choose?
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The first issue is easily taken care of since for m > n, It(X·1·<τn) = It(X·1·<τm). Indeed, since t < τn ≤ τm, we
have that 1·<τm1·<τn = 1·<τn . Then since It(X·1t<τn) = Imin{t,τn}(X·1t<τm), the proof is straightforward.

For the second issue, let (τn) and (τ ′n) be two localizing sequences. Then letting σn = min{τn, τ ′n} and applying
the above method, we get that the integral corresponding to this stopping time is equal to each of the integrals
corresponding to τn and τ ′n, so it does not matter which sequence we choose.

Now, this still isn’t very handy. However, there is a very natural set of processes that do have localizing sequences,
namely that which consists of functions that are Ft-adapted and satisfy∫ T

0

X2
t dt <∞ almost surely for all T <∞.

A localizing sequence is then

τn = inf

{
t ≤ n :

∫ t

0

X2
s ds ≥ n

}
.

The condition on the integrand implies that τn ↑ ∞ and for all n ∈ N,∫ τn

0

X2
t dt ≤ n

almost surely. We may now state the final definition4 of the Itô integral.

Definition 2.2 (Itô Integral). Let Xt be a Ft-adapted stochastic process with

Pr

[∫ T

0

X2
t dt <∞

]
= 1 for all T <∞.

Then the Itô integral

It(X·) =

∫ t

0

Xs dWs

is uniquely defined, by localization and choice of continuous modification, as a Ft-adapted stochastic process on
[0,∞) with continuous sample paths.

2.1.4. Some Properties

In this section, we give some properties of the Itô integral.

Lemma 2.5 (Linearity). Let Xt and Yt be Itô integrable processes, and α, β ∈ R. Then It(αX· + βY·) = αIt(X·) +
βIt(Y·).

Proof. For the case where Xt and Yt are simple, it follows by definition. If (σn) and (τn) are localizing sequences for
each of the processes, then min{σn, τn} is a localizing sequence for both, which allows us to extend to the general
case by localizing on this sequence. �

Next, we give a slight generalization (to the wider class of processes) of Lemma 2.4.

Lemma 2.6. Let Xt be Itô integrable and τ a Ft-stopping time. Then∫ min{t,τ}

0

Xs dWs =

∫ t

0

Xs1s<τ dWs.

4Technically, there is a more general definition that allows integration with respect to a general martingale and not just the Wiener
process, but we omit it here.
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Proof. If (σn) is a localizing sequence for Xt, then we see that it is also a localizing sequence for Xt1t<τ . For t < σn,
Imin{t,τ}(X·1t<σn) = Imin{t,τ}(X·1t<τ1t<σn

). The result follows by localizing on σn. �

Now, let us extend the Itô isometry to a more general integrand.

Lemma 2.7. Let X· ∈
⋂
T<∞ L2(µT × P). Then for any T <∞,

E

[∫ T

0

Xt dWt

]
= 0 and E

(∫ T

0

Xt dWt

)2
 = E

[∫ T

0

X2
t dt

]
.

Further, X· is a Ft-martingale.

Proof. The results clearly hold for simple integrands. In general, note that if Yn → Y in L2, then E[Yn]→ E[Y ] and
E[Y 2

n ]→ E[Yn] (because convergence in L2 implies convergence in law), and E[Yn | F ]→ E[Y | F ] in L2 (Why?). �

Unfortunately, the above need not hold for a X· in the more general class of processes. In fact, in the general case,
X· need not even be in L1(P), so the expectation need not be defined.

Corollary 2.8. If Xn
· → X· in L2(µT × P), then It(X

n
· ) → It(X·) in L2(P). If the convergence is sufficiently fast,

then It(X
n
· )→ It(X·) almost surely.

We can instead get a condition more general than X· just being a Ft-martingale.

Definition 2.3. A Ft-measurable process Xt is called a Ft-local martingale if there exists a sequence of Ft-stopping
times τn ↑ ∞ such that Xmin{t,τn} is a martingale for each n. Such a (τn) is called a reducing sequence for Xt.

Any Itô integral It(X·) is a local martingale. Indeed, any localizing sequence is a reducing sequence.

2.1.5. Itô Calculus

The definition of the Itô integral is quite hard to work with, so in this section, we give some tools to make it much
handier.
We work in a more general multi-dimensional framework. Suppose we have a filtered probability space (Ω,F , (Ft)t∈[0,∞),P),
on which an m-dimensional Ft-Wiener process Wt = (W 1

t , . . . ,W
m
t ) is defined.

We look at Ft-adapted processes of the form

Xi
t = Xi

0 +

∫ t

0

F is ds+

m∑
j=1

∫ t

0

Gijs dW j
s ,

where F is and Gijs are Ft-progressively measurable processes that satisfy∫ t

0

|F is |ds <∞ and

∫ t

0

(Gijs )2 ds <∞ almost surely

for all t <∞ and i, j.

Definition 2.4 (Itô Process). A process Xt = (X1
t , . . . , X

n
t ) satisfying the above is called an n-dimensional Itô

process. It is also denoted as

Xt = X0 +

∫ t

0

Fs ds+

∫ t

0

Gs dWs. (2.4)

The main result of this section is the following.
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Theorem 2.9 (Itô’s Lemma). Let u : [0,∞) × Rn → R be a function such that u(t, x) is C1 with respect to t and
C2 with respect to x. Then u(t,Xt) is an Itô process:

u(t,Xt) = u(0, X0) +
∑

1≤i≤n
1≤k≤m

∫ t

0

ui(s,Xs)G
ik
s dW k

s

+

∫ t

0

u′(s,Xs) +
∑

1≤i≤n

ui(s,Xs)F
i
s +

1

2

∑
1≤i,j≤n
1≤k≤m

uij(s,Xs)G
ik
s G

jk
s

ds, (2.5)

where u′(t, x) = ∂u(t, x)/∂t and ui(t, x) = ∂u(t, x)/∂xi.

The above might seem quite unwieldy and arbitrary, but it is actually just the analogue of the chain rule for the Itô
integral. Before moving on, let us rewrite this a little to make it more compact.
An Itô process is often written as

dXt = Ft dt+Gt dWt.

This is just suggestive notation for the integrals involved in (2.4). Sticking with this notation, (2.5) says

du(t,Xt) = u′(t,Xt) dt+ ∂u(t,Xt) dXt +
1

2
Tr
[
∂2u(t,Xt) dXt(dXt)

∗] , (2.6)

where ∂u(t, x) is the row vector with ui(t, x), ∂2u(t, x) is the matrix with entries uij(t, x), and dXi
t dXj

t can be
manipulated as

(dW i
t )

2 = dt and (dt)2 = dW i
t dt = dW i

t dW j
t = 0 if i 6= j.

(Check that the two equations are equivalent!)

� If we set the Gij to 0, the third term vanishes and we recover the usual (deterministic) chain rule from calculus.

� The third extra term is essentially a second order approximation. To explain it in an extremely handwavy
fashion, we have (dt)2 = 0 in deterministic functions, which is why that term never crops up. Here however, the
Itô integral does contribute. The reason for this could perhaps be attributed to the fact that E[(Wb−Wa)2] =
b−a, so dWt can be thought of something like

√
dt. As a result, the squared term involved in the second order

term does contribute non-trivially.
In the one-dimensional case, (2.6) reads

du(t,Xt) =
∂u

∂t
(t,Xt) dt+

∂u

∂x
(t,Xt) dXt +

1

2

∂2u

∂x2
(t,Xt)(dXt)

2,

which corresponds exactly to the handwavy argument given above.

Suppose that X1
t and X2

t are two one-dimensional Itô processes and consider u(t, x1, x2) = x1x2. Then u ∈ C2, so
Itô’s rule (in differential form) implies that

dX1
tX

2
t = X1

t dX2
t +X2

t dX1
t + dX1

t dX2
t .

Therefore, the class of Itô processes is closed under multiplication and forms an algebra.

2.2. Stochastic Differential Equations

Stochastic differential expressions are usually encountered written in the form

dXt = b(t,Xt) dt+ σ(t,Xt) dWt and X0 = x.
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As before, this is just suggestive notation for the Itô process

Xt = x+

∫ t

0

b(s,Xs) ds+

∫ t

0

σ(s,Xs) dWs.

For example, if Wt is a m-dimensional Wiener process, A is a n × n matrix, and B is a m × n matrix, then the
n-dimensional equation

dXt = AXt dt+B dWt and X0 = x

is called a linear stochastic differential equation. It (always) has a unique solution

Xt = eAtx+

∫ t

0

eA(t−s)B dWs.

Call that a function f : Rn → Rm is Lipschitz uniformly on s if ‖g(s, x)− g(s, y)‖ ≤ K ‖x− y‖ for some constant
K <∞ that does not depend on s.
For now, let us restrict ourselves to some bounded time [0, T ]. Consider a filtered probability space (Ω,F , {Ft}t∈[0,T ],P)
on which a m-dimensional Wiener process Wt is defined. Choose X0 to be a F0-measurable n-dimensional random
variable, We seek a solution to

Xt = X0 +

∫ t

0

b(s,Xs) ds+

∫ t

0

σ(s,Xs) dWs. (2.7)

We now show existence of a solution to a large class of differential equations.

Theorem 2.10. Suppose that

1. X0 ∈ L2(P),

2. b, σ are Lipschitz continuous uniformly on [0, T ], and

3. ‖b(t, 0)‖ and ‖σ(t, 0)‖ are bounded on t ∈ [0, T ].

There exists a solution Xt to the associated stochastic differential equation (2.7). Moreover, for this solution, Xt,
b(t,Xt), and σ(t,Xt) are in L2(µT × P) and the solution is unique P-almost surely.

Proof. For Ft-adapted Y· ∈ L2(µT × P), consider the map

(P(Y·))t = X0 +

∫ t

0

b(s, Ys) ds+

∫ t

0

σ(s, Ys) dWs.

Our aim is to find a Ft-adapted process X· ∈ L2(µT ×P) such that P(X·) = X·. We carry out the proof of existence
in three parts.

� First, we claim that P maps to a Ft-adapted process in L2(µT × P).
Note that

‖b‖ (t, x) ≤ ‖b(t, x)− b(t, 0)‖+ ‖b(t, 0)‖ ≤ K ‖x‖+K ′ ≤ C(1 + ‖x‖), (∗)

where K, K ′, and C are suitably chosen constants. Doing so similarly for σ, we may assume that C is large
enough such that both the above and ‖σ(t, x)‖ ≤ C(1 + ‖x‖) hold. To show that P maps to a process in L2,
we shall show that each of the terms on the right side of the inequality

‖(P(Y·))t‖22,µT×P ≤ ‖X0‖22,µT×P +

∥∥∥∥∫ t

0

b(s, Ys) ds

∥∥∥∥2
2,µT×P

+

∥∥∥∥∫ t

0

σ(s, Ys) dWs

∥∥∥∥2
2,µT×P

is finite.
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– The first term is
‖X0‖22,µT×P = T 1/2 ‖X0‖22,P <∞

by the first assumption.

– The second term is∥∥∥∥∫ t

0

b(s, Ys) ds

∥∥∥∥2
2,µT×P

≤ T 2 ‖b(s, Ys) ds‖22,µT×P ≤ T
2C2 ‖1 + ‖Y·‖‖22,µT×P <∞,

where the first inequality follows by using Jensen’s inequality to get (t−1
∫ t
0
as ds)2 ≤ t−1

∫ t
0
a2s ds, the

second inequality uses (∗), and the third inequality follows from the fact that Y· is in L2(µT × P).

– The third term is∥∥∥∥∫ t

0

σ(s, Ys) dWs

∥∥∥∥2
2,µT×P

≤ T ‖σ(·, Y·)‖22,µT×P ≤ TC
2 ‖1 + ‖Y·‖‖22,µT×P <∞,

where the first inequality follows on using the Itô isometry and the rest is as in the previous step.

This proves that the mapping is to an element of L2(µT × P). It is clear that P(Y·) is Ft-adapted, proving the
claim.

� Second, we claim that P is continuous.
That is, we want to show that if ‖Y n· − Y·‖2,µT×P → 0, then ‖P(Y n· )−P(Y·)‖2,µT×P → 0. As in the first part,
we get

‖P(Y n· )−P(Y·)‖2,µT×P ≤ T ‖b(·, Y
n
· )− b(·, Y·)‖2,µT×P+

√
T ‖σ(·, Y n· )− σ(·, Y·)‖2,µT×P ≤ K(T+

√
T ) ‖Y n − Y ‖2,µT×P ,

where the second inequality follows for a suitably large K from the uniformly Lipschitz condition. The required
follows.

� Finally, we show the actual existence using a method known as Picard iteration.
Let Y 0

t be an arbitrary Ft-adapted process in L2(µT × P) and for each n ≥ 0, let Y n+1
· = P(Y n· ). If we show

that the (Y n· ) converge, then we are done, since the (unique P-almost surely) limit would be a fixed point of P
(Why?).
To do so, it suffices to show that the sequence is Cauchy. Exactly as in the proof of the above claim (note the
measures involved in each of the norms!),

‖(P(Y·))t − (P(Z·))t‖2,P ≤
√
t ‖b(·, Y·)− b(·, Z·)‖2,µt×P + ‖σ(·, Y·)− σ(·, Z·)‖2,µt×P ≤ L ‖Y· − Z·‖2,P ,

where L = K(
√
T + 1). In general,

‖(Pn(X·))t − (Pn(Z·))t‖22,µT×P =

∫ T

0

‖(Pn(X·))t − (P(Z·))t‖22,P

≤ L2n

∫ T

0

∫ t1

0

∫ t2

0

· · ·
∫ tn−1

0

‖Z· − Y·‖22,µtn×P
dtn dtn−1 · · · dt1

≤ L2nTn

n!
‖Z· − Y·‖22,µT×P .

In particular,

∞∑
n=0

∥∥Pn+1(Y 0
· )−Pn(Y 0

· )
∥∥
2,µT×P

≤
∥∥P(Y 0

· )− Y 0
·
∥∥
2,µT×P

∞∑
n=0

√
L2nTn

n!
<∞,

completing this part of the proof.

Next, suppose that X· is the above obtained solution and Y· is another solution. We prove uniqueness in two steps.
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� If Y· ∈ L2(µT × P), then for any n,

‖X· − Y·‖22,µT×P = ‖Pn(X·)−Pn(Y·)‖22,µT×P ≤
√
L2nTn

n!
‖X· − Y·‖2µT×P .

Letting n→∞, we see that the expression on the left must be 0, so X· and Y· are equal µT × P-almost surely.

� To complete the proof, we show that any solution Yt with Y0 = X0 must be in L2(µT × P).

�
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