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�0. Notation and Prerequisites

Given n ∈ N, [n] denotes the set {1, . . . , n} and [n]0 denotes the set [n] ∪ {0}.
S(n, k), a Stirling number of the second kind, is the number of partitions of [n] into exactly k parts. s(n, k), a Stirling
number of the first kind, is the number of permutations of [n]with exactly k cycles.
Given a graph G and edge e ∈ G, G− e is the graph obtained by deleting e (it has the same vertex set), and G \ e is
the graph obtained by “contracting” e, that is, merging the two vertices of e and having a vertex adjacent to the new
vertex if they are adjacent to either of the earlier vertices.
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�1. Introduction

Exercise 1.1. Recall that the number of k-subsets of [n] is (nk). Given a k-subset S = {x1, . . . , xk} of [n], we write
S< = {x1, . . . , xk}< to denote that x1 < x2 < · · · < xk. Determine the number of k-subsets {x1, . . . , xk}< of [n] such
that xi ≡ i mod 2.
For example, for n = 6 and k = 3, we have the subsets {1, 4, 5}, {1, 2, 3}, {1, 2, 5}, {3, 4, 5}.
Broadly, there are three types of “answers”: a formula, a recurrence, and a generating function. A great example of
the second and third is the following.
p(n), the number of number partitions of n, is given by the generating function∑

n≥0

p(n)xn =
∏
i≥1

1

1− xi
.

Using this, a recursion may be obtained as well. We do not plug in values for x in the above. We merely look at the
coefficient of xn in it. We want the coefficient to be a finite sum for all n. If it is an infinite sum, convergence issues
may arise.

1.1. Counting in Sn

Recall that Sn is generated by transpositions. A transposition (i, j) is a permutation σ defined by

σ(k) =


j, k = i,

i, k = j,

k, otherwise.

In fact, Sn is generated by the set of just “adjacent transpositions” Si = (i, i+ 1) for 1 ≤ i < n. We have

S2
i = Id

SiSi+1Si = Si+1SiSi+1

SiSj = SjSi if |i− j| > 2.

Definition 1.1. Given a permutation π ∈ Sn, define the length ℓ(π) of π to be the smallest k such that there exist
adjacent transpositions σ1, · · · , σk such that π = σ1 · · ·σk.

Proposition 1.2. Consider the inversion number inv(π) of a permutation, defined by

inv(π) =
∣∣{1 ≤ i ≤ j ≤ n : πi > πj}

∣∣ .
Then, ℓ(π) = inv(π).

Definition 1.3. The sign of a permutation π is defined by sign(π) = (−1)inv(π). Equivalently,

sign(π) =

∏
1≤i<j≤n(xπi

− xπj
)∏

1≤i<j≤n(xi − xj)
.
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It is straightforward to see that for all π ∈ Sn, 0 ≤ inv(π) ≤
(
n
2

).
Proposition 1.4. Consider invn(q) =

∑
π∈Sn

qinv(π). Then,

invn(q) =
∏

1≤m≤n

[n]q,

where
[m]q =

{
1 + q + · · ·+ qm−1, m ≥ 1,

0, m = 0.

This quantity [m]q is called the q-analogue of m, and similarly, the q-analogue of n! is ∏n
i=1[m]q (this is slightly

vague). Note in particular that n! = invn(1).
Proof. We prove this by induction. It is easily verified for n = 2.
Take σ ∈ Sn−1. There are n “gaps” where n can be “placed” in σ to get a permutation inSn. If we place it in the ith
position from the end (for 0 ≤ i ≤ n − 1), the inversion number of the newly obtained permutation is i more than
the inversion number of σ.
As a result,

invn(q) = invn−1(q) + q invn−1(q) + q2 invn−1(q) + · · ·+ qn−1 invn−1(q) = [n]q invn−1(q),

where the qi invn−1(q) term corresponds to the case where n is placed in the ith position from the end. The required
follows by the inductive hypothesis. ■

Definition 1.5 (Descent). For π ∈ Sn, define the descents DES(π) = {i ∈ [n − 1] : πi > πi+1}, des(π) = |DES(π)|,
andmaj(π) =

∑
i∈DES(π) i.

Some books define the number of descents as des(π) + 1 instead.
There are central limit theorems for many of these parameters, which we shall not study.
A permutation π has des(π) + 1 many “increasing runs”.
For example, for the permutation π = (1 7→ 5, 2 7→ 1, 3 7→ 2, 4 7→ 6, 5 7→ 4, 6 7→ 3) ∈ S6, DES(π) = {1, 4, 5},
des(π) = 3, and maj(π) = 10.

Proposition 1.6. The distribution ofmaj(π) over Sn is the same as that of inv(π). Equivalently,

majn(q) =
∑

π∈Sn

qmaj(π) =

n∏
m=1

[m]q = invn(q).

This result took nearly 50 years to prove!
Proof. The strategy is similar to that of Proposition 1.4. Let π ∈ Sn−1. As before, there are n positions to insert n.

• Label the positions of descents of σ and the last position from right ot left as 0, 1, . . . ,des(π).
• Label the remaining positions from left to right as des(π) + 1, . . . , n− 1.

We claim that inserting n at a position increasesmaj by the labelled amount.
If inserted anywhere, all the descent positions starting from there increase by 1. This explains why the increase is
equal to the labelled quantity for positions that are descents, since no newdescents are introduced. In the casewhere
we insert it in a position of non-descent, we further introduce a new descent at the position of insertion of n, which
explains why the increase is equal tot he labelled quantity for positions that are not descents.
The remainder of the proof is identical to that of Proposition 1.4, since the increases are in bijection with [n−1]0. ■
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Definition 1.7. A parameter f : Sn → R of permutations such that∑
π∈Sn

qf(π) = [n]q! =
∏

1≤m≤n

[m]q

is said to beMahonian.
As we saw in ?? 1.4?? 1.6, both inv and maj are Mahonian.

1.2. Counting spanning trees

Question 1. Count the number of spanning trees in an arbitrary (finite) graph G.
This was solved by Kirchhoff using the Matrix Tree Theorem.

Theorem 1.8 (Matrix Tree Theorem). Consider the Laplacian L = D − A of a graph G, where A is its adjacency
matrix and D is a diagonal matrix with the diagonal entries being the degrees of the vertices. The determinant of
any (n− 1)× (n− 1) submatrix of L obtained by omitting any arbitrary row and column is equal to the number of
spanning trees of G.

In particular, when G = Kn, we end up getting the following.

Theorem 1.9 (Cayley’s Theorem). The number of spanning trees in Kn is nn−2.

One proof by Prüfer gives an explicit bijection between spanning trees and sequences (v1, . . . , vn−2) of vertices inG.
Another proof is of course using the matrix tree theorem, which reduces it to a simple determinant calculation.
Joyal gave another bijection between elements of the form (T, u, v) where T is a spanning tree and u, v are vertices
in G, and functions from [n]→ [n].

The proof we give uses exponential generating functions. Recall the following result, which we give without proof.
Interested readers may consult Corollary 5.1.6 of [SF99] for further details.

Theorem 1.10 (Exponential Formula). Let {fn}, {gn} be a sequence with exponential generating functions

F (x) =
∑
n≥1

fn
xn

n!
and G(n) =

∑
n≥0

gn
xn

n!
.

Define the sequence hn by
hn =

∑
π∈SetPartn([n])
π={S1,...,Sk}

f|S1|f|S2| · · · f|Sk|gk

and h0 = 1, and let
H(x) =

∑
n≥0

hn
xn

n!
.

Then,
H(x) = G(F (x)).
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Theorem 1.11 (Exponential Formula II). Let {fn} be a sequence and define the sequence hn by

hn =
∑

π∈Sn

π has cycles {C1,...,Ck}

f|C1|f|C2| · · · f|Ck|

and h0 = 1, and let
H(x) =

∑
n≥0

hn
xn

n!
.

Then,

H(x) = exp

∑
n≥1

fn
xn

n

 .

Note that the summation of F is for n ≥ 1, because we may assume that f0 = 0 since f0 does not appear in the
expression of any hn.

Definition 1.12 (Compositional inverse). Generating functions F andG are said to be compositional inverses (of each
other) if F (G(x)) = G(F (x)) = x.

Let
F (x) =

∑
n≥0

fnx
n and G(x) =

∑
n≥0

gnx
n

be compositional inverses of each other. It is reasonably straightforward to show that f0 = g0 = 0 and f1, g1 ̸= 0.
The first condition implies that the coefficient of any xn in F ◦G (or G ◦ F ) is finite.

Theorem 1.13 (Lagrange Inversion Theorem). Let

F (x) =
∑
n≥0

fnx
n and G(x) =

∑
n≥0

gnx
n

be compositional inverses of each other. Then, ngn is the coefficient of 1/x in (1/F (x))n.

Equivalently, ngn is the coefficient of xn−1 in (x/F (x))n.
Proof. We have

x = G(F (x)) =
∑
i≥0

giF (x)i.

Differentiating,
1 =

∑
i≥0

giiF (x)i−1F ′(x).

As a result, (
1

F (x)

)n

=
∑
i≥0

giiF (x)i−1−nF ′(x).
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Whenever i ̸= n, the coefficient of 1/x in F (x)i−1−nF ′(x) =
(
F (x)i−n/(i− n)

)′ is zero. Indeed, recall that the
coefficient of 1/x in the derivative of any power series with possibly negative exponents is zero.
As a result, the coefficient of 1/x in (1/F (x))n is equal to the coefficient of 1/x in gnnF

′(x)/F (x). We have
F ′(x)

F (x)
=

f1 + 2f2x+ · · ·
f1x+ f2x2 + · · ·

.

The coefficient of 1/x in this is f1/f1 = 1, and the desideratum follows. ■

At long last, let us return to Cayley’s Theorem.
Proof of Cayley’s Theorem. Instead of looking at the number Tn of spanning trees, we shall look at RTn, the number
of rooted spanning trees. Clearly, RTn = nTn.
Define RFn to be the number of rooted forests on [n] and let

RF(x) =
∑
n≥0

RFn
xn

n!

RT(x) =
∑
n≥0

RTn
xn

n!
.

Using Theorem 1.10, it is not too difficult to see that
RF(x) = exp(RT(x)). (1.1)

Claim (Polya). RTn+1 = (n+ 1)RFn.
Indeed, any rooted tree on Kn+1 may be obtained from a rooted forest F on Kn by adding a new vertex v, adding
the edge between each root in F and v to the spanning tree, removing the “root status” from all vertices except v. v
can be labelled in n+ 1 ways, so we are done.

As a result,
RF(x) =

∑
n≥0

RTn+1

n+ 1
· x

n

n!
=

1

x
RT(x). (1.2)

Combining Equations (1.1) and (1.2),
RT(x) = x exp(RT(x)).

That is, RT is the compositional inverse of x 7→ xe−x. Now, we use the Lagrange Inversion Theorem to get that
nRTn/n! is equal to the coefficient of xn−1 in (x/xe−x)n = enx, which isnn−1/(n−1)!. Therefore, Tn = RTn/n = nn−2

and we are done. ■

1.3. Chebyshev polynomials

We would like a polynomial Tn(x) such that Tn(cos θ) = cos(nθ). Why does such a polynomial even exist? Recall
that

(cos θ + ι sin θ)n = cosnθ + ι sinnθ.

Since the real part of the left only has even powers of sin, we can convert it to a polynomial of cos θs alone.
For example,

T0(x) = 1,

T1(x) = x,

T2(x) = 2x2 − 1.

Proposition 1.14. T0(x) = 1, T1(x) = x, and for n ≥ 2,

Tn(x) = 2xTn−1(x)− Tn−2(x).
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Proof. Let cos θ = x. We have
Tn(x) = cosnθ = cos(n− 1)θ cos θ − sin(n− 1)θ sin θ

= xTn−1(x)− (sin(n− 2)θ cos θ + cos(n− 2)θ sin θ) sin θ

= xTn−1(x)− Tn−2(x)(1− x2)− x(sin θ sin(n− 2)θ)

= xTn−1(x) + x2Tn−2(x)− Tn−2(x)− x(cos θ cos(n− 2)θ − cos(n− 1)θ)

= 2xTn−1(x)− Tn−2(x). ■

Definition 1.15 (Chebyshev polynomials). The nth Chebyshev polynomial of the first kind Tn is defined as above.
The nth Chebyshev polynomial of the second kind Un is defined by

Un(x) =


1, n = 0,

2x, n = 1,

2xUn−1(x)− Un−2(x), n ≥ 2.

Consider the number of tilings of a 1× n board Bn using squares (1× 1 pieces) and dimers (1× 2 pieces). It is not
too difficult to show that this corresponds to the Fibonacci numbers.
Now, instead consider a weighted version of this problem, where we give squares a weight of 2x and dimers a weight
of −1. The weight wt(T ) of a given tiling T is equal to the product of the weights of the pieces used. Then, the
Chebyshev polynomial Un is just the sum of the weights of all tilings of Bn!

Un(x) =
∑

tilings T of Bn

wt(T ).

Similar to this, we can get a combinatorial model for Tn as well, with the only difference being that a square piece
has weight x if it is at the lefmost (1, 1) position.
Given a tiling T , let S(T ) andD(T ) be the number of squares and dimers in the tiling respectively. In general, define

Fn(s, t) =
∑

tilings T ofBn

sS(T )tD(T ). (1.3)

Then,
F0(s, t) = 1,

F1(s, t) = s,

Fn(s, t) = sFn−1(s, t) + tFn−2(s, t).

1.4. More on q-analogues

Recall the definition of [n]q! =
∏n

i=1[i]q . Inspired by this, define(
n

k

)
q

=
[n]q!

[k]q![n− k]q!
.

This is clearly a rational function of q. It turns out that this is a polynomial in q! For example,(
5

2

)
q

=
[5]q[4]q
[2]q[1]q

= 1 + q + 2q2 + 2q3 + 2q4 + q5 + q6.

Recall that (
n

k

)
=

(
n− 1

k − 1

)
+

(
n− 1

k

)
.
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Proposition 1.16 (q-Pascal’s recurrences). It holds that(
n

k

)
q

= qk
(
n− 1

k

)
q

+

(
n− 1

k − 1

)
q

=

(
n− 1

k

)
q

+ qn−k

(
n− 1

k − 1

)
q

.

Proof. We show only the first recurrence. The second follows similarly.

qk
(
n− 1

k

)
q

+

(
n− 1

k − 1

)
q

= qk
[n− 1]q!

[k]q![n− k − 1]q!
+

[n− 1]q!

[k − 1]q![n− k]q!

= qk
(
n

k

)
q

[n− k]q
[n]q

+

(
n

k

)
q

[k]q
[n]q

=

(
n

k

)
q

(
qk[n− k]q + [k]q

[n]q

)
=

(
n

k

)
q

. ■

Corollary 1.17.
(
n
k

)
q
is a polynomial in q with non-negative coefficients.

It turns out that the coefficients of the polynomial are unimodal and symmetric! We do not prove this, the reader
can see _ for more details.
A natural question to ask then is: what do the coefficients of this polynomial count?
Let (nk)q = fn,k(q) =

∑
r≥0 a

(r)
n,kq

r. Can we have(
n

k

)
q

=
∑

T∈([n]
k )

qparameter(T )?

a
(r)
n,k then just counts the number of T with the given parameter value.

Recall that (nk) is the number of paths from (0, 0) to (n − k, k) if only upwards and rightwards movements on the
integer lattice Z2 are allowed. Let P be such a path.
Consider the portion of the box above P . This can be viewed as the Ferrer diagram of some number partition λ(P ).
λ(P ) has at most k parts, and no part is of size more than n− k. In fact, all such partitions correspond to some path!
What number is λ(P ) a number partition of? Denote this number as |λ(P )|. Let Sn,k be the set of all paths of the
mentioned form.

Theorem 1.18. ∑
P∈Sn,k

q|λ(P )| =

(
n

k

)
q

.

Perhaps surprisingly, the proof of the above is near-straightforward using the q-Pascal recurrence – merely consider
two cases depending on whether the first step of the path is right or upwards.

1.5. Derivative polynomials

We begin this section by recalling the following rather interesting result.
Define the Bell polynomial Bn,k by

Bn,k(x1, x2, . . . , xn−k+1) =
∑ n!

j1!(1!)j1j2!(2!)j2 · · · jn−k+1!((n− k + 1)!)n−k+1
· xj1

1 xj2
2 · · ·x

jn−k+1

n−k+1,
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where the summation is taken over all indices j1, . . . , jn−k+1 of non-negative integers such that

k = j1 + j2 + · · ·+ jn−k+1 and
n = j1 + 2j2 + 3j3 + · · ·+ (n− k + 1)jn−k+1.

This has a natural correspondence to the Stirling numbers of the second kind, with ji representing the number of
partitions of size i. In particular, the sum of coefficients of Bn,k is Sn,k.

Proposition 1.19 (Faà di Bruno’s Formula,[dB55]).

Dnf(g(x)) =
∑

f (k)(g(x)) ·Bn,k(g
′(x), g′′(x), . . . , g(n−k+1)(x)).

To illustrate this better, let us look at the first few derivatives explicitly. Dropping the (x) on the right to make the
notation more succinct, we have

Df(g(x)) = f ′(g)g′

D2f(g(x)) = f ′′(g)(g′)2 + f ′(g)g′′

D3f(g(x)) = f ′′′(g)(g′)3 + 3f ′′(g)g′g′′ + f ′′(g)g′′′.

Consider the partitions of {1, 2, 3}, given by 1|2|3, 12|3, 13|2, 23|1, and 123. The number of partitions of [n] with ni

parts of size i for each i neatly corresponds to the coefficient of∏i(g
(i))ni !

Let y = f(x). If Dy = p(f(x)) for some polynomial p, then Dny is a polynomial of f as well.
Suppose that Dny = pn(y) for some sequence of polynomials (pn). It is straightforward to see that

p0(y) = y

pn(y) =

{
y n = 0

pn−1(y) · p1(y) n ≥ 1.

For the remainder of this section, set y = tanx and z = secx. Then,Dy = 1+ y2 = z2 andDz = yz. It is not difficult
to see that

D2y = 2yz2

D3y = 4y2z2 + 2z4

D4y = 8y3z2 + 16yz4

Exercise 1.2. With y, z defined as above, show that
1. Dny is a homogeneous polynomial in y, z of degree (n+ 1).
2. Dny has only terms with even exponents of z.

Corollary 1.20. We can write Dny =
∑⌊(n−1)/2⌋

k=0 Wn,kz
2k+2yn−2k−1.

Again, we ask the question: is there some parameter on π ∈ Sn such that

Wn(x) =

⌊(n−1)/2⌋∑
k=0

Wn,kx
k =

∑
π∈Sn

xparameter(π)?
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Definition 1.21 (Peak). Given a permutation π ∈ Sn, we say that i ∈ [n] \ {1, n} is a peak of π if πi > πi−1 and
πi > πi+1. Denote the set of peaks of π by Peak(π), pk(π) = |Peak(π)| the number of peaks.

Lemma 1.22. For n, k ≥ 1,
Wn,k = (2k + 2)Wn−1,k + (n− 2k)Wn−1,k−1.

Proof. We have

Dny = D

⌊(n−2)/2⌋∑
k=0

Wn−1,kz
2k+2yn−2k−2

=

⌊(n−2)/2⌋∑
k=0

(2k + 2)Wn−1,kz
2k+1 · zy · yn−2k−2 + (n− 2k − 2)Wn−1,kz

2k+2yn−2k−3 · z2

=

⌊(n−2)/2⌋∑
k=0

(2k + 2)Wn−1,kz
2k+2yn−2k−1 + (n− 2k − 2)z2k+4yn−2k−3.

The required follows. ■

Theorem 1.23.
Wn(x) =

∑
π∈Sn

xpk(π).

Proof. Let Yn be the polynomial on the right, and let Yn,k be its coefficients. It is easily checked that Yn,k and Wn,k

are equal for n = 0 or k = 0. To prove the statement, we shall merely show that Yn,k satisfies the recurrence of
Lemma 1.22 too.
Similar to what we did in earlier proofs such as those of ?? 1.4?? 1.6, let σ be a permutation in Sn−1.
We shall use it to get a permutation π ∈ Sn by “inserting” n at one of the n possible positions. If we insert it at the
position of a non-peak of σ, the number of peaks increases by one. If we insert it before or after the position of a
peak, the number of peaks stays the same. Since peaks cannot occur immediately after each other, we can insert it at
precisely 2k + 2 positions while ensuring that the number of peaks does not increase (the extra 2 is for the extreme
positions), and so at n− 2k − 2 positions which increases the number of peaks by one. Therefore,

Yn,k = (2k + 2)Yn−1,k + (n− 2(k − 1)− 2)Yn−1,k−1 = (2k + 2)Yn−1,k + (n− 2k)Yn−1,k−1. ■

Corollary 1.24. It is true that ∑
k

Wn,k = n!.

1.6. Matching theory
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Definition 1.25 (Matching). Given a graph G = (V,E), a matching in G is a collectionM ⊆ E of edges such that for
any distinct e1, e2 ∈M , e1 ∩ e2 = ∅.
The number of k-sized matchings is denoted mk(G). Define the matching polynomial

MatchG(x) =
∑
k≥0

(−1)kmk(G)xn−2k

Some books call the above the “defect” matching polynomial, taking the actual matching polynomial as p(x) =∑
k mk(G)xk. Note thatMatchG(x) = xnp(−1/x2).

Clearly, MatchG(x) = xn · p(−1/x2).

There is a very rich literature regarding matching theory. One work that set off a frenzy of results in related areas
was [Edm65], which gave a polynomial-time algorithm to get a maximumweight matching in any graph. It does so
by looking at the polytope in RE that is the convex hull of the indicator functions of all matchings. It is worth noting
that while there is a polynomial time algorithm to find a maximum weight matching, the problem of determining
the number of maximum matchings in a graph is #P-complete. Consequently, no polynomial time algorithm is
known to determinemk(G) given a graph G.

Before moving on, we give some simple lemmas about the matching polynomial.

Lemma 1.26.

(a) If G and H are vertex-disjoint graphs,

MatchG∪H(x) = MatchG(x)MatchH(x).

(b) Given a graph G and vertex v ∈ G,

MatchG(x) = xMatchG−{v}(x)−
∑

u:u↔v

MatchG−{u,v}(x).

(c) Given a graph G and edge e = {u, v} ∈ G,

MatchG(x) = MatchG−e(x)−MatchG−{u,v}(x).

Proof. We omit the proof of (a) as it is straightforward.
(b) Let M be a matching of size k on G. If M does not have an edge incident on v, it is a matching of size k on

G− {v}. Otherwise, there is some edge e = {u, v} ∋M , and M \ {e} is a matching on G− {u, v}. As a result,

mk(G) = mk(G− {v}) +
∑

u:u↔v

mk−1(G− {u, v}).

Multiplying with (−1)kxn−2k and summing over k,

MatchG(x) =
∑
k

(−1)kx · x(n−1)−2kmk(G− {v})−
∑

u:u↔v

(−1)k−1x(n−2)−2(k−1)mk(G− {u, v})

= xMatchG−{v}−
∑

u:u↔v

MatchG−{u,v}(x).
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(c) Similar to (b), let M be a matching of size k on G. If M does not have e, it is a matching of size k on G − e.
Otherwise,M \ {e} is a matching on G− {u, v}. So,

mk(G) = mk(G− e) +mk−1(G− {u, v}).

Multiplying with (−1)kxn−2k and summing over k,

MatchG(x) =
∑
k

(−1)kxn−2kmk(G− e)− (−1)k−1x(n−2)−2(k−1)mk−1(G− {u, v})

= MatchG−e(x)−MatchG−{u,v}(x). ■

Proposition 1.27.

1. mk(Pn) =
(
n−k
k

).
2. mk(Cn) =

n
n−k

(
n−k
k

).
3. mk(Kn) =

(
n
2k

)
· (2k)!

2kk!
.

4. mk(Kn,n) =
(
n
k

)2
k!.

Proof.

1. Collapse every edge in a matching to its left endpoint, and “mark” the collapsed vertices. This results in a
path with n − k vertices with k marked vertices. This process of marking the vertices using the matching is
reversible, and mk(G) =

(
n−k
k

).
2. Fix some edge e. e is absent in exactly (n−k)/n of the k-matchings of Cn. In this case, the remaining matching

forms a matching on Cn − e, which is isomorphic to Pn. Therefore, (n− k)/nmk(Cn) = mk(Pn) =
(
n−k
k

).
3. A k-matching ofKn is obtained by choosing 2k vertices (done in ( n2k)) ways, putting the 2k vertices in k indis-

tinguishable “boxes” by putting 2 in each (this can be done in (2k)!/k!2k ways).

4. A k-matching is obtained by choosing k vertices from each side of the bipartite graph (done in (nk)2 ways),
then assigning each vertex on the left side a vertex on the right that it is joined to in the matching (done in k!
ways). ■

Theorem 1.28. Given a graph G, all roots of MatchG(x) are real.

The version of the proof of the above we give is due to Godsil [GG81].
Proof. Using Lemma 1.26(a), we may assume that G is connected.
We first prove the result for the case where G is a tree T . To prove this, we shall prove thatMatchT (x) is the charac-
teristic polynomial det(xI −A) of the adjacency matrix A of T (!); the result then follows since A is a real symmetric
matrix and thus has real eigenvalues.
Let xI −A = (bij). We have

Charpoly(A) =
∑

π∈Sn

sign(π)

n∏
i=1

biπ(i).

First, we claim that if π ∈ Sn has a cycle of length greater than 2, then the term corresponding to π on the right will
be zero. In other words, the term is zero if π is not an involution. Indeed, this follows immediately since G has no
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cycles (of length ≥ 3). As a result, if (i1, i2, . . . , it) were a cycle in π, then there must be some j such that {ijij+1} is
not an edge in G and bijσ(ij) = 0.
Suppose that some π ∈ Sn has k 2-cycles and (n−2k) fixed points, and also has the term on the right being nonzero.
We have sign(π) = (−1)(n−(k+n−2k)) = (−1)k. Suppose that the k 2-cycles are (i1, j1), (i2, j2), . . . , (ik, jk). We have
birjr = bjrir = (−1) so birjrbjrir = 1, and also that no ir (or jr) is equal to any other is (or js). That is, the edges
constituted by {ir, jr} form a matching of size k! Therefore,

Charpoly(A) =
∑

π∈Sn
π an involution

sign(π)

n∏
i=1

biπ(i) =
∑

π∈Sn
π an involution

(−1)kxn−2k =
∑

matchings M
(−1)|M |xn−2|M | = MatchT (x).

For a general graph, we come up with a tree Ta(G) that depends on a “starting vertex” a ∈ G. We then show that
the matching polynomial of our graph divides the matching polynomial of the tree.
To define Ta, we need paths starting at a inGwithout repeated vertices. These paths are the vertices of Ta(G). There
is an edge between two paths if one is an extension of another by a single vertex – for example, the paths abdc and
abdcewould have an edge between them.
It is straightforward to see thatG is isomorphic to Ta(G) for any vertex a ∈ G ifG is a tree. Indeed, there is precisely
one path from a to any vertex b in the tree. The heart of the argument is the fact that for any a ∈ G,

MatchG−a(x)

MatchG(x)
=

MatchTa(G)−a(x)

MatchTa(g)(x)
. (1.4)

To prove this, we use induction on the number of vertices n. The base case is n = 2, which forcesG to be a tree. Now,

MatchG(x)

MatchG−a(x)
=

xMatchG−a(x)−
∑

b↔a MatchG−a−b(x)

MatchG−a(x)

= x−
∑
b↔a

MatchG−a−b(x)

MatchG−a(x)
.

By the inductive hypothesis,
MatchG−a−b(x)

MatchG−a(x)
=

MatchTb(G−a)−b(x)

MatchTb(G−a)(x)
. (1.5)

Now, very carefully observe that

Tb(G− a)− b =
⋃
c↔b
c ̸=a

Tc(G− a)

Ta(G)− a =
⋃
c↔a

Tc(G− a)

Ta(G)− a− ab =

⋃
c↔a
a̸=b

Tc(G− a)

 ∪
⋃

c↔b
c ̸=a

Tc(G− a− b)

 =

⋃
c↔a
a ̸=b

Tc(G− a)

 ∪ (Tb(G− a)− b
)

We can then use Lemma 1.26(a) to get that

MatchTa(G)−a(x) =
∏
c↔a

MatchTc(G−a)(x).

MatchTa(G)−a−ab(x) =
∏
c↔a
c ̸=b

MatchTc(G−a)(x)×MatchTb(G−a)−b(x).

Dividing the two,
MatchTa(G)−a−ab(x)

MatchTa(G)−a(x)
=

MatchTb(G−a)−b(x)

MatchTb(G−a)
. (1.6)
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Combining Equations (1.5) and (1.6),

MatchG−a−b(x)

MatchG−a(x)
=

MatchTa(G)−a(x)

MatchTa(G)−a−ab(x)

and
MatchG(x)

MatchG−a(x)
= x−

∑
b↔a

MatchTa(G)−a−ab(x)

MatchTa(G)−a
(x)

=
xMatchTa(G)−a(x)−

∑
b↔a MatchTa(G)−a−ab(x)

MatchTa(G)−a(x)

=
MatchTa(G)(x)

MatchTa(G)−a(x)
. (by Lemma 1.26(b))

Now, to complete the proof, we shall show that MatchTa(G)(x) divides MatchG(x). We do so by induction. To do
this, by Equation (1.4), it suffices to show that MatchG−a(x) divides MatchTa(G)−a(x). Recalling that Ta(G) − a =⋃

b↔a Tb(G− a), the inductive hypothesis implies that MatchG−a(x) divides each MatchTb(G−a)(x), so divides their
product MatchTa(G)−a(x) as well, completing the proof. ■

This result has some consequences.

Definition 1.29 (Log-concave). A sequence (an)n≥0 is said to be log-concave if a2n ≥ an−1an+1 for all n.

Example 1. For a fixed n, (nk) as k varies is log-concave. Indeed,(
n

k

)2

=
(n!)2

(k!)2((n− k)!)2
≥ (n!)2

(k − 1)!(k + 1)! · (n− k − 1)!(n− k + 1)!
=

(
n

k − 1

)(
n

k + 1

)
.

The Stirling numbers of the first and second kind are also log-concave.

Proposition 1.30. If A(x) =
∑n

i=0 aix
i is a polynomial with all real roots, then the sequence of coefficients of A is

log-concave.

Exercise 1.3. Prove the above.
The above has an even stronger version, which we do not prove.

Theorem 1.31. If A(x) =
∑n

i=0 aix
i is a polynomial with all real roots, then

(
ai/
(
n
i

))
i≥0

is log-concave. This is
referred to as ultralogconcavity.

Corollary 1.32. For any graph G, (mk(G))k≥0 is log-concave. That is, for all k,mk(G)2 ≥ mk−1(G)mk+1(G).
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1.7. Colorings

Definition 1.33. Given a graphG = (V,E), a k-coloring (sometimes called proper coloring) is a function c : V (G)→ [k]
such that if u↔ v, c(u) ̸= c(v).
The chromatic number χ(G) of a graph is the minimum number of colours required to colour it. We denote by ck(G)
the number of k-colorings of G.

Determining the chromatic number of a graph is (or rather, determining if there exists a k-coloring) is NP-hard. The
best known algorithm today outputs a colouring which is a n/polylog(n)-approximation of the minimum coloring.
Proposition 1.34. A graph G has chromatic number 1 iff it is an empty graph. It has chromatic number ≤ 2 iff it is
bipartite.
It is difficult to approximate a minimum colouring of even 3-colorable graphs!

Theorem 1.35 (Four-Color Theorem, [AH89]). A planar graph is 4-colorable.

We omit the proof of the above (for reasons obvious to anyone familiar with the result).

Theorem 1.36. For any graph G, there exists a polynomial ChromG, known as the chromatic polynomial, such that
ChromG(k) = ck(G).

For example, ChromKn
(x) = xn. For any tree T on n vertices, ChromT (x) = t(t− 1)n−1.

Observe that the chromatic polynomial is unique for a given graph since we know its value at an infinite number of
points.
The proof of the above follows near-directly from the following result using an inductive argument on the number
of edges – both G \ E and G− e have fewer edges than G.

Proposition 1.37 (Deletion-contraction recurrence). For any graph G, we have for e ∈ G that

ChromG(x) = ChromG−e(x)− ChromG\e(x)

Proof. Take any k-coloring of G − e. If the endpoints of e have the same colour, it corresponds to a k-colouring of
G \ e, and if the endpoints have distinct colours, it corresponds to a k-coloring of G. Therefore,

ck(G− e) = ck(G) + ck(G \ e)

and the result follows. ■

This leads to a method to find the chromatic polynomial of any graph. Since we know the chromatic polynomial of
the empty graph, we can repeatedly delete and contract edges until from our graph until we get to an empty graph.
A natural question based on what we’ve done so far is: what do the coefficients of the chromatic polynomial mean?
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Definition 1.38. Let G = (V,E) be a graph and < a total order on E. Given a cycle C, the corresponding broken
circuit B is given by E(C) \ {e}, where e is the smallest edge in E(C) in the total order. A set A of edges is said to be
an NBC set (no broken circuit) if B ̸⊆ A for any broken circuit B. Also let

NBCk(G) = {A ⊆ E : |A| = k and A is an NBC set}

and nbck(G) = |NBCk(G)|.

Theorem 1.39. If |V | = n, then for any ordering of E,

ChromG(t) =

n∑
k=0

(−1)k nbck(G)tn−k.

Proof. Fix some t. For each A ∈ NBCk(G), consider the corresponding subgraph with edge set A. This describes a
forest on V with n− k components. The number of functions c : V → [t] such that c is constant on components of A
is tn−k. Call such a coloring an A-improper coloring. For each such pair (A, c), assign the sign sign(A, c) = (−1)k.
Denote the set of all such pairs by S.
We would like to show that ∑

(A,c)∈S

(−1)sign(A) = ChromG(t) = ct(G).

Observe that (∅, c) ∈ S for any proper coloring c, so it suffices to show that the summation of the remaining terms
is 0. Call this set of remaining terms S′. We shall come up with an sign-reversing involution ι on S′ to prove that the
sum of signs is 0.
Observe that given any (A, c) ∈ S′, there must exist edges that are monochromatic. Let e be the smallest such edge,
and let ι(A, c) = (A△{e}, c) = (A′, c). It is evident that ι is sign-reversing, and it is an involution because c does not
change, so the smallest monochromatic edge e does not either. We are done if wemanage to show that the expression
on the right is indeed in S.
IfA′ = A\{e}, then it is clearly an NBC set and the coloring isA′-improper (since it isA-improper). IfA′ = A∪{e},
since e joined two vertices of the same color, c is A′-improper. Suppose instead that A′ is not an NBC set. Then, it
contains a broken circuit B such that e ∈ B. Let C be the cycle causing B to be a broken circuit. Because c is A′-
improper, all vertices in C have the same colour. However, e is the smallest monochromatic edge in C, contradicting
the fact that a smaller edge was removed to get B and completing the proof. ■

Corollary 1.40. ChromG is a monic polynomial with coefficients of alternating sign.

Another question (that is not so natural) is: is ChromG(x)meaningful for x ̸∈ N?

Definition 1.41. Given a graphG = (V,E), an acyclic orientation ofG is obtained by replacing each edge uv with one
of the directed arcs # »uv or # »vu.
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Theorem 1.42. ChromG(−1) = (−1)na(G), where n = |V (G)| and a(G) is the number of acyclic orientations of G.

Also observe that by Theorem 1.39, a(G) is equal to the number of NBC sets in G.
Proof. Let e = {u, v} be an arbitrary edge in the graph. Using the Deletion-contraction recurrence, it suffices to show
that

a(G) = a(G− e) + a(G \ e).

Let A(G) be the set of acyclic orientations on G, so a(G) = |A(G)|.
Define f : A(G)→ A(G− e) as the natural restriction map. We claim that f is surjective.
Suppose instead that some O′ ∈ A(G − e) is not in the image of f . Consider the two orientations O1, O2 which are
identical to O′ except that the edge e has orientation u → v or v → u respectively. Since neither of these is in A(G),
there must be a directed path v → u in O′ (because O1 has a cycle) and another directed path u→ v in O′ (because
O2 has a cycle). Concatenating the two, we get a directed closed walk which must contain a cycle, contradicting the
fact that O′ ∈ A(G− e).

Because f is a restriction map, for any O′ ∈ A(G − e), |f−1(O′)| ∈ {1, 2}. Let X and be the set of all O′ with
f−1(O′) = 1 and Y the set of all O′ with f−1(O′) = 2. Also let x = |X| and y = |Y |.
We have a(G− e) = x+ y and a(G) = x+ 2y, so we are done if we show that a(G \ e) = y.

Because we can orient e in either way for any O′ ∈ A(G− e) to get an orientation in A(G), there is no directed path
from u to v or v to u in O′. In particular, when merging u and v in O′ to get an orientation of A(G \ e), there is no
issue in assigning orientations (there cannot be a vertex w such that #  »uw and #  »wv are edges).
This merging procedure can be reversed as well, so there is a bijection between Y andA(G \ e) and we are done. ■

This idea of plugging negative values into polynomials of interest has led to the fascinating subject of combinatorial
reciprocity. This includes the idea of “running recurrences backward”. For example, we have the Fibonacci numbers
defined by f0 = 0, f1 = 1, and fn+1 = fn+fn−1. Canwe extend this to negative numbers such that fm−1 = fm+1−fm,
wherem− 1 is negative. This leads to a signed version of the Fibonacci numbers, with f−n = (−1)n+1fn for n > 0.

One can show that on running the binomial recurrence backwards (for negative n), we get(
−(n+ 1)

k

)
= (−1)k

(
n+ k

k

)
.

Exercise 1.4. Run the recurrence of Sn,k backwards (to negative n, k).
Proof. We have Sn,k = Sn−1,k−1 + kSn−1,k. For negative n,

S−(n+1),k = S−n,k+1 − (k + 1)S−(n+1),k+1.

For k = −1, we get S−(n+1),−1 = S−n,0. In particular, S−1,−1 = 1. ■

The interested reader may refer to [BS] for more details on reciprocity theorems.

1.8. Increasing spanning forests

Definition 1.43 (Increasing spanning forest). Let G = (V,E) and let the elements of V be totally ordered. Let F be
a forest in G. Root each connected component T of F at its minimum vertex. F is called an increasing spanning forest
if each tree is increasing, that is, the “children” of any vertex in the tree with respect to the rooting are larger than



MA 861 : Combinatorics I 19 / 53 Amit Rajaraman

the vertex. Equivalently, any path from a root to a vertex in the tree is increasing.
Let isfm(G) be the number of increasing spanning forests on Gwithm edges, and define

ISFG(x) =
∑
m≥0

(−1)m isfm(G)xn−m.

Lemma 1.44. Let G = (V = [n], E)with the total order on V being the natural order. For each k ∈ V , let

Ek = {{i, k} ∈ E : i < k}.

F is an increasing spanning forest of G iff it has at most one edge from each Ek.

Observe that the Ek are mutually disjoint and their union is all of E.
Proof. Suppose that there are two edges {i, k} and {j, k} in some Ek in an isf E, where i < j. Then, the root of the
tree containing {i, j, k} is at most i. In particular, one of the paths from this root to i or j must contain the subpath
ikj or jki, which contradicts the fact that it is increasing.

On the other hand, let F ⊆ E such that |F ∩ Ek| ≤ 1 for each k.
First, let us show that F is acyclic. Suppose instead that v1v2 · · · vrv1 is a cycle, and let vj = max1≤i≤r vi. Then, both
vj−1vj and vj+1vj are edges in Evj

, contradicting the fact that |F ∩ Evj | ≤ 1.
Now, we must show that it is increasing. Suppose instead that v1v2 · · · vr is a non-increasing path in F , with v1 ≤ vi
for i > 1, and that vj−1 < vj > vj+1. This again contradicts the fact that |F ∩ Evj | ≤ 1, completing the proof. ■

Theorem 1.45. With Ei defined as above,

ISFG(x) =

n∑
i=1

(x− |Ei|).

Proof. Let the polynomial on the right be p. Then, the coefficient of xn−m in p is∑
{i1,...,im}⊆[n]

|Ei1 ||Ei2 | · · · |Eim |.

This is precisely equal to isfm(G) by Lemma 1.44. ■

It has been observed that for certain classes of graphs and orderings, this is equal to the chromatic polynomial – the
interested reader may look at [Sag20] for more details.

1.9. Linear recurrences and rational generating functions

Consider sequences (an) such that
A(x) =

∑
anx

n =
p(x)

q(x)
,

where q is a polynomial of degree d and p is a polynomial of degree < d.
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Definition 1.46. A sequence (an)n≥0 of reals is said to satisfy a linear constant term recurrence (of length d) if there
exist complex numbers c1, . . . , cd with cd ̸= 0 such that

an+d + c1an+d−1 + · · ·+ cdan = 0

for all n ≥ 0.

A simple example of this is the recurrence satisfied by the Fibonacci numbers. Given fn+2 − fn+1 − fn = 0, the
recurrence is

F (x) =
p(x)

1− x− x2
,

where p depends on the initial values. Observe that the coefficients 1,−1,−1 in the denominator match those in the
recurrence!

Theorem 1.47. Let (an)n≥0 be a sequence with generating function A. The following are equivalent.
(a) (an)n≥0 satisfies a linear constant term recurrence of length dwith constants c1, . . . , cd.
(b) There exist

A(x) =
∑

anx
n =

p(x)

q(x)
,

where q(x) = 1 + c1x+ · · ·+ cdx
d and deg(p) < d.

(c) If the roots of the polynomial q in (b) are (1/ri)ki=1, with (1/ri) having multiplicity di, then there are polyno-
mials (pi)ki=1 of degree < di such that

an =

k∑
i=1

pi(n)r
n
i

for all n ≥ 0.

Proof.

(a)⇒(b) Multiply the linear constant term recurrence by xn+d and sum over all n ≥ 0. Setting c0 = 1, we get

0 =

d∑
t=0

ctx
t

A(x)−
d−t−1∑
i=1

aix
i

 ,

so

A(x) =

∑d
t=0 ctx

t
(∑d−t−1

i=1 aix
i
)

∑d
t=0 ctx

t
=

p(x)

q(x)
,

where deg(p) < d.
(b)⇒(a) We have q(x)A(x) = p(x). Because deg(p) < d, the coefficient of xn+d on the right hand side is zero. On the

left, this coefficient is precisely equal to the left hand side of the desired recurrence.
(b)⇔(c) Let us check that (b) implies (c) first. We have

A(x) =
p(x)∏k

i=1(1− rix)di

.

Checking that (c) holds true amounts to expanding the denominator to the numerator and matching coeffi-
cients. The argument is reversible as well, so (c) implies (b). ■
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Also observe that running a linear constant term recurrence backwards (extending it to negative n) gives another
linear constant term recurrence!

Theorem 1.48. Let (an)n≥0 be a sequence satisfying a linear constant term recurrence. Obtain a(−n) by running the
recurrence backwards, and set

Arev(x) =
∑
n≥1

a(−n)xn.

Then,
Arev(x) = −A

(
1

x

)
.

Proof. ■

There are numerous multivariate extensions of this proved by Stanley.

1.10. Exponential Generating Functions

Definition 1.49. Given a sequence (an)n≥0, its exponential generating function (egf) is defined by

A(x) =
∑
n≥0

anx
n

n!
.

Lemma 1.50. If A(x) and B(x) are the egfs of (an) and (bn) respectively, then A(x)B(x) is the egf of (cn)n≥0 defined
by

cn =

n∑
k=0

(
n

k

)
akbn−k.

The above is very simple to prove, and we omit the proof.
Let us use the above to determine the egf for dn, the number of derangements inSn. Take by convention that d0 = 1.
Proposition 1.51. It is true that

n∑
k=0

(
n

k

)
dn−k = n!.

Proof. Given a bijection π ∈ Sn, let S ⊆ [n] be the set of fixed points {i : πi = i} of the permutation. This results in a
derangement of [n] \ S, and this idea results in a bijection between

Sn and {(S, σ) : S ⊆ [n], σ is a derangement of [n] \ S}.
■

Corollary 1.52. The egf of (dn)n≥0 is equal to

D(x) =
1

ex(1− x)
.
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Proof. By the previous proposition,
n! =

∑
k=0

(
n

k

)
· dn−k · 1.

The egf of the constant sequence 1 is ex and the egf of (n!) is 1/(1 − x). By Lemma 1.50, D(x)ex = 1/(1 − x),
completing the proof. ■

Proposition 1.53. If (an)n≥0 has egf A(x), then

A′(x) =
∑
n≥0

an
xn−1

(n− 1)!
.

We now encourage the reader to do ??.

1.11. Another equidistributed pair of parameters

Recall how we had seen in Proposition 1.6 a pair of parameters that have the same distribution. Now, we shall look
at another such pair of parameters.
Recall descents in Sn from Definition 1.5.

Definition 1.54 (Eulerian polynomial). Define the Eulerian polynomial

An(t) =
∑

π∈Sn

tdes(π). (1.7)

For example,A3(t) = 1+4t+t2. LetAn,k be the coefficient of xk inAn – this is the number of π ∈ Sn with des(π) = k.
One gets the recurrence

An,k = (k + 1)An−1,k + (n− k)An−1,k−1

for n ≥ 1 with A0,0 = 1. This may be proved by the (hopefully) now standard trick of seeing how the number of
descents changes on inserting n+ 1 at various positions in π ∈ Sn.

Also observe that on reversing a permutation, we have des(πrev) = (n− 1)− des(π). This means that the coefficients
of An are palindromic. Further, descents and “ascents” are equidistributed.

Definition 1.55 (Excedances). Given π ∈ Sn, define the set of excedances

EXC(π) = {i ∈ [n] : πi > i}

and the number of excedances exc(π) = |EXC(π)|.

Excedances are something of a cyclic counterpart of descents.

Theorem 1.56. Descents and excedances are equidistributed. Equivalently,

An(t) =
∑

π∈Sn

texc(π).

Similar to excedances, consider non-excedances – points where πi < i.
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Proposition 1.57. exc(π) = nonexc(π−1).
Proof of Theorem 1.56. Let π ∈ Sn have cycles c1, . . . , ck. For each i, let mi be the maximal element of ci, and assume
that ci is written starting withmi. Also assume that we write the cycles in increasing order ofmi. We refer to this as
the canonical cycle decomposition of π. Suppose we write the permutation in this form, as

((c1)1(c1)2 · · · (c1)r1) · · · ((ck)1(ck)2 · · · (ck)rk).

Observe that the parenthesising is redundant! Reading the string (c1)1(c1)2 · · · (c1)r1 · · · (ck)1(ck)2 · · · (ck)rk from left
to right, we can recover the cycles – a certain position is the beginning of a cycle iff it is greater than all the elements
before it. This gives a bijection between canonical cycle representations and Sn (which is not the obvious one).
Therefore, composing the twomaps, letΦ : Sn → Sn be the map that given a permutation, reads it from left to right
to get a canonical cycle decomposition, and yields as output the permutation corresponding to this cycle decompo-
sition.
This map gives some sort of conversion from a linear form to a cyclic form. Recall how excedances were something
of the cyclic analogue of the linear phenomenon of descents.

We claim that nonexc(Φ(π)) = des(π) for any π ∈ Sn.
Let π ∈ Sn and σ = Φ(π). Let i ∈ DES(π). That is, πi > πi+1. Observe that πi, πi+1 are forced to be in the same cycle
in σ (due to the “left to right maxima” conversion). That is, σ(πi) = πi+1. Because this is less than πi, any descent
in π map to a non-excedance in σ.
It remains to show that ascents do not map to non-excedances. If πi < πi+1, then πi, πi+1 are either

• in different cycles of σ, in which case it is either an excedance if the size of the cycle is > 1 (because it maps to
the first element of the cycle, which is the maximum) or a fixed point otherwise, or

• within a cycle, in which case they contribute to exc(σ) (and so definitely not nonexc(σ)),
completing the proof. ■

Consider a palindromic polynomial
f(t) = f0 + f1t+ · · ·+ fdt

d,

where fr = fd−r. Let k be the “center of palindromicity” which is roughly d/2. For a fixed d, observe that the sum
of palindromic polynomials is palindromic, and the scalar multiple of a palindromic polynomial is palindromic as
well. That is, the set of palindromic polynomials form a vector space.
One obvious basis of this vector space is

{tr + td−r : 0 ≤ r ≤ k}.

Another (less obvious) basis of this space is

span
{
tj(1 + t)d−2j : 0 ≤ j ≤ k

}
.

This is referred to as the Gamma basis – why is it a basis?

Theorem 1.58 ([DS20]). The Eulerian polynomial is γ-positive.

That is, when the Eulerian polynomial is represented as a linear combination of the elements of the Gamma basis,
all coefficients are positive. For example,

A5(t) = 1 + 26t+ 66t2 + 26t3 + t4 = (1 + t)4 + 22t(1 + t)2 + 16t2.

We do not prove the above.
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1.12. Carlitz' identity

Consider the generating function
Pn(t) =

∑
j≥0

jntj

Theorem 1.59 (Carlitz’ Identity). It is true that

P (t) =
tAn(t)

(1− t)n+1
.

Equivalently,
An(t)

(1− t)n+1
=
∑
j≥0

(j + 1)ntj .

Proof. Define a barred permutation to be a permutation of length n with “vertical bars” between elements such that
there is a bar between πi, πi+1 if i ∈ DES(π). There are allowed to be more than one bar between any elements of
the permutation, the only constraint is that there must be at least one bar at positions of descent. Given a barred
permutation π, let bars(π) be the number of bars in it. We shall look at∑

π is a barred permutation of length n

tbars(π). (1.8)

Also denote
((

n
k

))
=
(
n+k−1

k

) to be the number of k-sized multisets of [n]. So,

1

(1− t)n+1
=
∑
k≥0

((
n+ 1

k

))
tk.

Observe that tdes(π)/(1 − t)n+1 for some permutation π is precisely the contribution of π to Equation (1.8)! The
coefficient of tk in 1/(1− t)n+1 is precisely the number of ways to insert k bars in the n positions. Therefore,

∑
π is a barred permutation of length n

tbars(π) =
∑

π∈Sn

tdes(π)

(1− t)n+1
=

An(t)

(1− t)n+1
.

Let us now count this expression in another way, looking at the coefficient of tk. This amounts to just putting n
“distinct balls” in k + 1 “distinct bins”, which is (k + 1)n. Therefore,

An(t)

(1− t)n+1
=
∑
k≥0

(k + 1)ntk. ■

Proof due to class. Observe that

Pn+1(t) =
∑
j≥0

jn+1tj = t
∑
j≥0

jn(jtj) = tP ′
n(t).

It is also seen that
P0(t) =

∑
j≥0

tj =
1

1− t
.

The two equations above are seen to imply that Pn(t) is a rational function for any n. Further, the denominator of
any Pn is some exponent of (1− t).
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In general, suppose Pk(t) = pk(t)/(1− t)rk for a polynomial pk such that pk(1) ̸= 0. Then,

tP ′
k(t) =

t
(
p′k(t)(1− t)rk − rk(1− t)rk−1pk(t)

)
(1− t)2rk

=
t(1− t)p′k(t)− rktpk(t)

(1− t)rk+1
.

The numerator is nonzero at 1, so rk+1 = rk + 1. Since r0 = 1, rk is just k + 1. We also have
pk+1(t) = t(1− t)p′k(t)− (k + 1)tpk(t).

It is seen that this recurrence is satisfied by tAn(t) and p1(t) = tA1(t), completing the proof. ■

Now, consider the egf
S(t, u) =

∑
n≥0

An(t)
un

n!
.

We have by Theorem 1.59 that
S(t, u)

1− t
=
∑

n,m≥0

(m+ 1)ntm
(
u(1− t)

)n
n!

=
∑
m≥0

tm
∑
n≥0

(
u(m+ 1)(1− t)

)
n!

=
∑
m≥0

tm exp(u(m+ 1)(1− t))

= exp(u(1− t))
∑
m≥0

(
t exp(u(1− t))

)m
=

eu(1−t)

1− teu(1−t)

=
1

eu(t−1) − t

S(t, u) =
1− t

eu(t−1) − t
.

Despite not having anything explicit for the Eulerian polynomial itself, we do get an explicit egf for it!

Recall γ-positivity of palindromic polynomials.
Definition 1.60. If f(t) =∑n

k=r akt
k with ar, an ̸= 0 then f is said to be palindromic if tn+rf(1/t) = f(t).

Typically, we discuss palindromic polynomials for a fixed r.
The center of symmetry of the polynomial is roughly (n + r)/2, and the set of palindromic polynomials for a fixed
r form a vector space of dimension roughly (n− r)/2.
Some bases of this space are

B1 =
{
tℓ + tn+r−ℓ : k = r, . . . , (n− r)/2

}
B2 = Γ(n−r)/2 =

{
tr+ℓ(1 + t)n−r−2ℓ : ℓ = r, . . . , (n− r)/2

}
B3 = G(n−r)/2 =

{
[b+ 1− ℓ]t − [r + ℓ]t : ℓ = 0, . . . , (n− r)/2

}
.

Example 2. It is true that

[5]q = 1 + q + q2 + q3 + q4

= (1)(1 + 4q + 6q2 + 4q3 + q4) + (−3)(q + 2q2 + q3) + q2.
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Let us string the coefficients that appear above as a polynomial. For example,

γ[5]q (t) = 1− 3t+ t2 and γ[4]q (t) = 1− 2t. (1.9)

Do the γ-coefficients of [n]q alternate in sign?
Recall the 1 × n board Bn, which we saw how to tile with squares and dimers. Also recall Equation (1.3) and the
recurrence thereafter. It is easily verified that

F3(s, t) = s3 + 2st

F4(s, t) = s4 + 3s2t+ t2.

Observe that these coefficients match (up to sign) the coefficients in Equation (1.9)!

Lemma 1.61.
Fn(1 + q,−q) = [n+ 1]q.

Proof. We prove this inductively. The base cases n = 1, 2 are trivially true as F1(1 + q,−q) = 1 + q = [2]q and
F2(1 + q,−q) = (1 + q)2 + (−q) = [3]q . In general, using the inductive hypothesis,

Fn(1 + q,−q) = (1 + q)Fn−1(1 + q,−q)− qFn−2(1 + q,−q)
= (1 + q)[n]q − q[n− 1]q

=

1 + 2
∑

1≤i≤n−1

qi + qn

− ∑
1≤i≤n−1

qi = [n+ 1]q. ■

Let
[n]q = Fn−1(1 + q,−q) =

n−1∑
k=0

fn−1,k(1 + q)n−1−2k(−q)k.

What are these fn−1,k?

Given a graph G of size n, consider the bivariate polynomial

MatchG(s, t) =
∑

Mmatching in G
|M|=k

sn−2ktk =
∑
k≥0

mk(G)sn−2ktk.

There is an straightforward correspondence between matchings on Pn and tilings Fn. For each edge {i, i + 1} in a
matching, consider the tiling on Bn with dimers precisely at positions {i, i + 1}. This is sensible because the edges
form a matching.
As a result,

Fn(s, t) = MatchPn(s, t) =
∑
k≥0

(
n− k

k

)
sn−2ktk

and fn,k =
(
n−k
k

). Consequently,
[n]q =

∑
k≥0

(−1)k
(
n− 1− k

k

)
(1 + q)n−1−2kqk︸ ︷︷ ︸
element of the Γ-basis!

.

The γ-coefficients of [n]q do alternate in sign.
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�2. Symmetric functions

2.1. Introduction

Let G = {x1, x2, . . . , } be a countably infinite abelian group.
Consider the group action induced by the set of permutations ofN on the set ofmonomials xαi1

i1
· · ·xαik

ik
. For example,

if σ = (1, 2) and m = x2
1x2x

3
4, then σ(m) = x1x

2
2x

3
4. σ thus acts on Q[x1, . . . , ] by extending this linearly. A function

f is said to be symmetric if σ(f) = f for all σ. The collection of homogeneous degree d symmetric functions (with
the zero polynomial) forms a vector space over Q.

Example 3. The unique symmetric function (up to scaling) of degree 1 is f =
∑

i≥1 xi.
For d = 2, we get∑i<j xixj and

∑
i x

2
i as a basis.

Denote the vector space of Λd
Q. It is not too difficult to show that dim(Λd

Q) = p(d), the number of number-partitions
of d.
The basis of Λd

Q suggested by the above example is as follows. Let λ = (λ1, . . . , λℓ(λ)) be a partition of d (denoted
λ ⊢ d). Define the monomial symmetric function

mλ =
∑

symmetric
xλ1
1 xλ2

2 · · ·x
λk

k =
∑

xλ.

The “symmetric” means that we sum over all distinct ways to permute the exponents λ1, . . . , λk. The summation
above is slightly strange, because we want to ensure that every monomial inmλ appears with coefficient 1. {mλ}λ⊢d
is a basis of Λd

Q.
Question 2. Given a matrix Mℓ×k, on summing each row of M , we get a vector rowsum(M) = (r1, . . . , rℓ) and on
summing the columns we get a vector colsum(M) = (c1, . . . , ck). When does there exist a 0-1 matrix M such that
rowsum(M) and colsum(M) are each equal to given vectors (r1, . . . , rℓ) and (c1, . . . , ck)?
For starters, we clearly require ∑ ri =

∑
cj =: S. Assume without loss of generality that r1 ≥ · · · ≥ rℓ and

c1 ≥ · · · ≥ ck – if a matrix for this exists, we can first reorder the rows to ensure the correct order of row sums, then
reorder the columns. That is, we have two number partitions λ = (r1, . . . , rℓ) and µ = (c1, . . . , ck) of S.
We shall return to this problem later.

Now, we define some partial orders on the set of number partitions.
First, we consider an order that allows the comparison of number partitions of different numbers.

Definition 2.1 (Young’s order). Under Young’s order, given two number partitions λ, µ, λ ≼ µ iff the Ferrer diagram
of λ is contained in that of µ.

Observe that under this order, two number partitions of the same number are not comparable.
Next, we define a total order over number partitions of a fixed number.

Definition 2.2 (Lexicographic order). Fix some d and two partitions λ = (λ1, . . . , λk), µ = (µ1, . . . , µℓ) of d. Under
the lexicographic order, we have λ < µ iff for some r ≤ k, λr < µr and λi = µi for all i < r.

Finally, we define a partial order over number partitions of a fixed number.
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Definition 2.3 (Dominance/Majorisation Order). Fix some d and two partitions λ = (λ1, . . . , λℓ(λ)), µ =
(µ1, . . . , µℓ(µ)) of d. Padding zeros at the end of one of the partitions, assume that ℓ(λ) = ℓ(µ) =: p. Under the
majorisation order, we have λ ≼ µ iff for 1 ≤ j ≤ p,

j∑
i=1

λi ≤
j∑

i=1

µi.

2.2. Elementary symmetric functions

We shall now see another basis of Λd
Q. Consider the elementary symmetric functions

en = m1n =
∑

i1<i2<···<in

xi1xi2 · · ·xin .

Recall that p(d) grows exponentially with d. Observe that if f, g are symmetric functions, then fg is also symmetric.
For example,

m2
1 =

∑
i

xi

∑
i

xi

 = m2 +m1,1.

Multiplying increases the degree as well, which is the number the partition corresponds to. As another example,

m2m1 = m3 +m2,1.

For λ ⊢ dwith λ = λ1, · · · , λℓ, where ℓ ≥ 2 (we have already looked at the case where λ = d), define

eλ =

ℓ∏
i=1

eλi
.

For example,

e3 = m13 =
∑

i<j<k

xixjxk and

e2,1 = e2e1 =

∑
i<j

xixj

∑
k

xk

 = 3m1,1,1 +m2,1.

We claim that {eλ : λ ⊢ d} is a basis of Λd
Q. In the case of d = 4, we have

e4 = 1m14

e3,1 = 4m14 + 1m2,1,1

e2,2 = 6m14 + 2m2,1,1 + 1m2,2

e2,1,1 = 12m14 + 5m2,1,1 + 2m2,2 + 1m3,1

e14 = 24m14 + 12m2,1,1 + 6m2,2 + 4m3,1 + 1m4.

As the coefficients seem to be non-negative and integral, one can ask for a combinatorial interpretation. If

eλ =
∑
µ⊢d

Mλµmµ,

what is Mλµ?



MA 861 : Combinatorics I 29 / 53 Amit Rajaraman

Theorem 2.4. Let λ, µ ⊢ d. Then, Mλµ is the number of ℓ(λ) × ℓ(µ) 0, 1-matrices A with rowsum(A) = λ and
colsum(A) = µ.

Recall Question 2.
Proof. Let ℓ(λ) = r, ℓ(µ) = k. Consider the r × k matrix

x1 x2 · · ·
x1 x2 · · ·
... ... . . .

 .

Choose a 0, 1 vector with λi 1s and paste it in in M at the ith row. The coefficient of xµ1

1 xµ2

2 · · ·x
µk

k in∏i eλi
is given

by choosing for each i ∈ [r] a set of indices in [k] such that ■

Consider the p(d)× p(d)matrix M with the λ, µth entry equal to theMλµ that we defined earlier.

Corollary 2.5. M is symmetric.

This follows immediately from Theorem 2.4 upon taking the transpose of any matrix.

Theorem 2.6 (Gale-Ryser). Let λ, µ ⊢ d. There exists a 0, 1-matrix A with rowsum(A) = λ, colsum(A) = µ (equiva-
lently, Mλµ ̸= 0) iff λ ≼ µ∗ under the majorisation order.

Here, λ∗ is the conjugate partition of λ, which is such that its Ferrer diagram is the transpose of that of λ. More
precisely,

(λ∗)i =
∣∣∣{j : λj ≥ i

}∣∣∣ .
For a proof of the above, one can see this link. Note that the notation used here swaps our definitions of row sum
and column sum.
Proposition 2.7. Given partitions λ, µ ⊢ d, λ ≼ µ∗ iff µ ≼ λ∗.
Proof. ■

Let us now return to the question of whether the eλ form a basis of Λd
Q. We would like to show that M is invertible.

1. First, suppose that the partitions that index the and the rows lexicographically, starting with the partition 1n

and ending with n. Totally order the columns as λ(1), λ(2), . . . , λ(p(d)) such that it is compatible with majori-
sation – if µ ≽ θ, then µ ≥ θ (in our new order), and the reverse conjugate order is also compatible with
majorisation. It turns out that the reverse lexicographic order satisfies this.

2. Show that this newmatrix is upper triangular. To prove this, show that the lexicographic order is a topological
sorting of the majorisation partial order.

3. Argue that all the diagonal elements of this matrix are nonzero (in fact, they are 1). This amounts to showing
that the diagonal elements correspond to partition pairs of the form (λ, λ∗).

Proposition 2.8. The lexicographic order is a topological sorting of the majorisation partial order.

http://www.math.iitb.ac.in/~krishnan/phd-2022/krause_gale_ryser.pdf
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Proof. This amounts to showing that if λ ≽ µ, then λ ≥lex µ. Let t be the first index where λt ̸= µt. Then,
∑t

i=1 λi ≥∑t
i=1 µi, and since λi = µi for i < t, this implies that λt ≥ µt, proving the claim. ■

Corollary 2.9. The lexicographic order is compatible with majorisation, and so is its reverse conjugate.
Proof. The first part is precisely what we showed in the previous proposition. For the second part, we have that if
λ ≽ µ, then µ∗ ≽ λ∗, so λ∗ ≥revlex µ∗. Indeed, if r is the first index where λr, µr differ, we have

λr =

r∑
i=1

λi ≥
r∑

i=1

µi = µr. ■

Corollary 2.10. M is invertible and has an integral inverse. Consequently, {eλ}λ⊢d is a basis of Λd
Q.

Proof. By Proposition 2.8 and theorem 2.6, M is upper triangular. Further, Mλλ∗ = 1 for all λ. Therefore, M is
invertible. As it has determinant 1, it has an integral inverse. ■

Definition 2.11 (Algebraic independence over R). Let A be an algebra. α1, α2, . . . ∈ A are said to be algebraically
independent over R if there exists no polynomial f with coefficents in R such that f(y1, . . .)

∣∣
yi=αi

= 0.

Recall that Λd
Q is an algebra over R.

Corollary 2.12. {en}n≥1 are algebraically independent.

Proof. Suppose instead that there exists a polynomial f(y1, . . .) such that f(y1, . . .)
∣∣
yi=ei

= 0.
Because monomials of different degree do not interact, we may assume that deg(mj

∣∣
yi=ei

) = d for all monomialsmj

for some d. Therefore,
f(y1, . . .)

∣∣
yi=ei

=
∑
λ⊢d

cλeλ

where some cλ ̸= 0. This immediately contradicts Corollary 2.10, which says that the {eλ}λ⊢d are linearly indepen-
dent. ■

Linear independence implies algebraic independence!

Consider the following, where we look at the products of finitely many terms on the left.∏
i,j≥1

(
1 + xiyj

)
.

This givesmeaningful termswhenwe choose finitelymany terms of the form xiyj and 1 from the rest. Now, any such
choice can be though of as an r× s 0, 1-matrix A, where Aij = 1 if we choose xiyj and 0 otherwise. The contribution
of this matrix A is just xrowsum(A)ycolsum(A)! Therefore,∏

i,j≥1

(
1 + xiyj

)
=

∑
A finite 0, 1-matrix

xrowsum(A)ycolsum(A)

=
∑
d≥0

∑
λ,µ⊢d

Mλµmλ(x)mµ(y)∏
i,j≥1

(
1 + xiyj

)
=
∑
d≥0

∑
λ⊢d

mλ(x)eλ(y). (2.1)
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Proposition 2.13. ∏
i,j≥1

(1 + xiyj) =
∑
λ⊢d

mλ(x)eλ(y)

2.3. Homogenous symmetric functions

Define a new class of symmetric functions, known as the complete homogenous symmetric functions, by

hn =
∑
µ⊢n

mµ

and for λ = (λ1, . . . , λℓ) ⊢ d,

hλ =

ℓ∏
i=1

hλi
.

For example,

h2 = m2 +m1,1

h1,1 = (m1)
2 = m2 + 2m1,1

h3 = m3 +m2,1 +m1,1,1

h2,1 = (m2 +m1,1)m1 = m3 + 2m2,1 + 3m1,1,1

h1,1,1 = m3
1 = m3 + 3m2,1 + 6m1,1,1.

As in the eλ, is it true that hλ is a non-negative integer combination of the mµ?

Lemma 2.14. Let λ ⊢ d. If
hλ =

∑
µ⊢d

Nλµmµ,

then Nλµ is the number of N-matrices A with rowsum(A) = λ, colsum(A) = µ.

Proof. As before, we shall establish a bijection between the set of described matrices and the terms in the product
that contribute to mµ (each way of taking products).
Let λ = λ1, . . . , λℓ and µ = µ1, . . . , µk. Given a way of taking products, taking mθi =

∑
xθi from hλi

, consider the
ℓ× k matrix that assigns the power of xr to the (r, i)th entry.
Because hn =

∑
θ⊢n mθ, we now have the advantage of choosing any entries in the rth row, as long as the sum is

λr. ■

Proposition 2.15. Prove that Nλµ ̸= 0 for any λ, µ ⊢ d. That is, show that there always exists an N-matrix A such
that rowsum(A) = λ, colsum(A) = µ.
Proof. We prove it using strong induction on d. The base case where d = 1 is trivial. Otherwise, fill the first (1, 1)
element of the matrix withmin{λ1, µ1}. Assume that λ1 ≥ µ1. Now, we only need to fill the submatrix omitting the
first column of a matrix with elements such that the row-sum is (λ1−µ1, λ2, . . .) and the column-sum is (µ2, µ3, . . .).
Such a filling exists by the inductive hypothesis. ■

It turns out, however, that the problem of determining Nλµ is #P-complete.
The next natural question to ask is: are the (hλ) a basis as well?
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Before moving to this, let us quickly look at analogues of Proposition 2.13. We have∏
i,j≥1

1

1− xiyj
=
∏
i,j≥1

(
1 + (xiyj) + (xiyj)

2 + · · ·
)

=
∑

A finite N-matrix
xrowsum(A)ycolsum(A)

=
∑
d

∑
λ,µ⊢d

Nλµmλ(x)mµ(y)

∏
i,j≥1

1

1− xiyj
=
∑
d

∑
λ⊢d

mλ(x)hλ(y). (2.2)

Recall that ΛQ is generated by {en}n≥1.

Theorem 2.16. Consider the algebra homomorphism ω : ΛQ → ΛQ defined by ω(en) = hn for all n, so ω(eλ) = hλ.
ω is an involution. In particular, (hλ)λ⊢d forms a basis of Λd

Q.

Proof. Let E(t) =
∑

n≥0 ent
n be the ogf of the ei, and similarly H(t) =

∑
n≥0 hnt

n. By Equation (2.2) and proposi-
tion 2.13, setting x = (t, 0, 0, . . .) and noting that mλ(x) ̸= 0 iff λ is n, we have that

E(t) =
∏
i≥1

(1 + xit)

H(t) =
∏
i≥1

1

(1− xit)
.

That is, H(t)E(−t) = 1. Therefore, for r > 0, ∑
0≤k≤r

(−1)r−kekhr−k = 0.

Now, let us prove by induction that ω(hi) = ei. The base case, n = 1, is trivial since e1 = h1. Using the above
equation for r = n, assuming that ω(hk) = ek for k < n, we get

0 = ω

 ∑
0≤k≤n

(−1)n−kekhn−k


=

∑
0≤k≤n

(−1)n−khkω(hn−k)

= (−1)nω(hn) +
∑

1≤k≤n

(−1)n−khken−k

= (−1)nω(hn) + (−1)n
∑

1≤k≤n

(−1)khken−k

= (−1)nω(hn)− (−1)nen + (−1)n
∑

0≤k≤n

(−1)khken−k

0 = (−1)n(ω(hn)− en).

Therefore, ω is an involution. The second part of the theorem follows directly, because if the {hλ}λ⊢d were not linearly
independent, then applying ω yields a violation to the linear independence of {eλ}λ⊢d. ■

Remark. ω : Λd
Q → Λd

Q is a linear transformation satisfying ω2 − Id = 0. Therefore, the minimal polynomial of ω is
x2 − 1 = 0, and the characteristic polynomial of ω is (x− 1)α(x+ 1)p(d)−α for some α. We shall figure out the value
of α later, after Theorem 2.25.
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2.4. Power sum symmetric functions

Let us look at one more class of symmetric functions, known as the power sum symmetric functions. For n > 0, define

pn = mn =
∑
i≥1

xn
i .

For λ = (λ1, . . . , λℓ) ⊢ d, define

pλ =

ℓ∏
i=1

pλi
.

Let
pλ =

∑
µ⊢d

Rλµmµ.

For example,

p3 = m3

p2,1 = m3 +m2,1

p1,1,1 = m3 + 3m2,1 + 6m13

and

p4 = m4

p3,1 = m4 +m3,1

p2,2 = m4 + + 2m2,2

p2,12 = m4 + 2m3,1 + 2m2,2 + 2m2,12

p14 = m4 + 4m3,1 + 6m2,2 + 12m2,12 + 24m14 .

It is obvious that Rλµ is a non-negative integer for each λ, µ. As before, is there some combinatorial interpretation
of these coefficients?
Let λ = (λ1, . . . , λℓ) and µ = (µ1, . . . , µk). We want to find the number of ways to get xµ1

1 xµ2

2 · · ·x
µk

k on expanding∑
i1≥1

xλ1
i1

∑
i2≥1

xλ2
i2

 · · ·
∑

iℓ≥1

xλℓ
iℓ

 .

This number ofways is equal to the number of orderedpartitions (sometimes called preferential arrangements) (S1, . . . , Sk)
of [ℓ] such that for each 1 ≤ r ≤ k, ∑

j∈Sr

λj = µr.

Theorem 2.17. If Rλµ > 0, then µ ≽ λ.

Note that unlike Gale-Ryser, this is not an iff statement.
Proof. Let (S1, . . . , Sk) be an ordered partition of [ℓ] such that for each 1 ≤ r ≤ k, ∑j∈Sr

λj = µr. In particular,
λj ≤ µr for any j ∈ Sr.
Let i ∈ Spi

for each i ∈ [ℓ]. Then, for any 1 ≤ r ≤ ℓ,
r∑

i=1

λi ≤
∑

µpi ≤
r∑

i=1

µi,

so µ ≽ λ. ■
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Therefore, the p(d)× p(d)matrix R with rows and columns ordered reverse lexicographically is lower-triangular!
Further, it is not too difficult to see that for λ ⊢ d, Rλλ ̸= 0.
Proposition 2.18. For λ ⊢ d, if λ = 1n12n2 · · · dnd ,

Rλλ = n1!n2! · · ·nd!.

Proof. Suppose that λ has r parts. By the combinatorial interpretation of Rλλ, we wish to find the number of pref-
erential arrangements (S1, . . . , Sr) of [r] such that ∑j∈Sk

λj = λk. Since no Sk can be empty, each Sk must be a
singleton, suppose that it contains the element σ(k) (where σ : [r] → [r] is a permutation). The second condition
gives that λσ(j) = λj for each j. The number of such permutations is precisely

Rλλ = n1!n2! · · ·nd!. ■

Corollary 2.19. {pλ}λ⊢d is a basis of Λd
Q.

Recall that two permutations in Sd are conjugate iff they have the same cycle type, so a conjugacy class can be
determined (“indexed”) by a partition of [d]. For λ ⊢ d, define zλ by

d!

zλ
= size of conjugacy class of Sd indexed by λ.

Recall Equation (2.2) and proposition 2.13.
Proposition 2.20. ∏

i,j≥1

1

1− xiyj
=
∑
d≥0

∑
λ⊢d

1

zλ
pλ(x)pλ(y).

Proof. We have

log

∏
i,j≥1

1

1− xiyj

 =
∑
i,j≥1

log

(
1

1− xiyj

)

=
∑
i,j≥1

∑
n≥1

(xiyj)
n

n

=
∑
n≥1

1

n

∑
i,j≥1

(xiyj)
n

=
∑
n≥1

1

n
pn(x)pn(y).

Now, we shall use the permutation formula Theorem 1.11. Set fn = pn(x)pn(y). Then, the corresponding gn in the
formula is given by

gn =
∑
λ⊢n

(
n!

zλ

)
· pλ(x)pλ(y).

Therefore, setting x = 1 in the permutation formula, we get

∏
i,j≥1

1

1− xiyj
= exp

∑
n≥1

1

n
pn(x)pn(y)


= exp

∑
n≥1

1

n
fn


=
∑
n≥0

gn
n!

=
∑
n≥0

∑
λ⊢n

1

zλ
pλ(x)pλ(y). ■
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We can also get an explicit formula for zλ. Let cλ = n!/zλ be the size of conjugacy class of Sd indexed by λ. Let
λ = 1m12m2 · · ·nmn , wheremi ≥ 0 is the multiplicity of i in λ. Clearly,∑i imi = n. Any permutation with cycle type
λ can be attained by taking a permutation in Sn, then grouping together the∑i≤r imi + j + 1 to∑i≤r imi + j + r
elements in a cycle of size r for 0 ≤ j ≤ mr − 1. Further, each permutation is overcounted (repeated) precisely∏

i≥1 i
mimi! times, so

cλ =
n!∏

i≥1 i
mimi!

=
n!

zλ
.

Corollary 2.21.
hn =

∑
λ⊢n

1

zλ
pλ.

Proof. Set y1 = t and everything else as 0 in the previous proposition. Then,

∑
d≥1

hdt
d =

∏
i≥1

1

1− txi
=
∑
d

∑
λ⊢d

1

zλ
pλ(x)

 td.

Matching the coefficients of td completes the proof. ■

Proposition 2.22. For any π ∈ Sn with cycle type λ, setting ϵλ = sign(π),∏
i,j≥1

(1 + xiyj) =
∑
d≥0

∑
λ⊢d

ϵλ
zλ

pλ(x)pλ(y),

Proof. The proof is largely similar to that of Proposition 2.20, with the only difference being that in the log expansion,
we get an extra ϵλ term. ■

Corollary 2.23.
en =

∑
λ⊢n

ϵλ
zλ

pλ.

The following may be proved in precisely the same way as Corollary 2.12.

Porism 2.24. {pn}n≥1 and {hn}n≥1 are algebraically independent families.

Recall the involution ω from Theorem 2.16. What is ω(pn), or ω(pλ)more generally?

Theorem 2.25. For all λ ⊢ d, ω(pλ) = ϵλpλ. Therefore, {pλ}λ⊢d forms an eigenbasis of ω, with pλ having eigenvalue
ϵλ, and ω is diagonalisable.

Therefore, with respect to the {pλ}λ⊢d basis, ω as a linear transformation is diagonal. This gives us an alternate proof
that ω2 = Id. Further, it gives that

Charpoly(ω) = (x− 1)α(d)(x+ 1)p(d)−α(d),

where α(d) is the number of partitions λ ⊢ d such that d− ℓ(λ) is even.
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Proof. We think of ω acting onmλ(x)while symmetric functions in the variables y1, y2, . . . are thought of as scalars.
Recalling that ω(eλ) = hλ,

∑
d

∑
λ⊢d

1

zλ
pλ(y)ω(pλ(x)) = ω

∏
i,j≥1

1

1− xiyj


= ω

∑
d≥0

∑
λ⊢d

mλ(y)hλ(x)


=
∑
d≥0

∑
λ⊢d

mλ(y)eλ(x)

=
∏
i,j≥1

(1 + xiyj)

=
∑
d≥0

∑
λ⊢d

ϵλ
zλ

pλ(x)pλ(y).

Matching the coefficients of pλ(y), we get ω(pλ) = ϵλpλ. ■

2.5. Dual bases

We now endow Λd
Q with a scalar product (a bilinear form over Q) by

⟨mλ, hµ⟩ = δλµ =

{
1, λ = µ,

0, otherwise.

Given this inner product, one can ask for an orthogonal basis of Λd
Q.

Definition 2.26 (Dual basis). If {uλ} and {vµ} are a pair of bases for Λd
Q (for all d), we say that they are dual pair of

bases if ⟨uλ, vµ⟩ = δλµ.

Theorem 2.27. If {uλ}λ⊢d and {vµ}µ⊢d are a pair of bases of Λd
Q, then they form a dual pair iff

∏
i,j≥1

1

1− xiyj
=
∑
d≥0

∑
λ⊢d

uλ(x)vλ(y).

Proof. Let
mλ =

∑
φ⊢d

Aλφuφ and hµ =
∑
θ⊢d

Bµθvθ.

By definition,

δλµ = ⟨mλ, hµ⟩

=

〈∑
φ⊢d

Aλφuφ,
∑
θ⊢d

Bµθvθ

〉
=
∑
φ,θ

AλφBµθ⟨uφ, vθ⟩.
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Defining the p(d)× p(d)matrix T by Tφθ = ⟨uφ, vθ⟩, the above gives that

Ip(d) = ATB⊤.

Suppose that {uλ}, {vµ} form a pair of dual basis, so T = Ip(d), and I = AB⊤ = A⊤B. That is,

δλµ =
∑
θ⊢d

AθλBθµ.

Now, ∏
i,j≥1

1

1− xiyj
=
∑
d≥0

∑
λ⊢d

mλ(x)hλ(y)

=
∑
d≥0

∑
λ⊢d

∑
φ⊢d

Aλφuφ(x)

∑
θ⊢d

Aλθvθ(y)


=
∑
d≥0

∑
φ,θ⊢d

uφ(x)vθ(y)

∑
λ⊢d

AλφBλθ


=
∑
d≥0

∑
φ⊢d

uφ(x)vφ(y),

completing the forward direction of the proof.
The entire argument is reversible, and we omit the details of checking this. ■

Recall that ∏
i,j≥1

1

1− xiyj
=
∑
d≥0

∑
λ⊢d

1

zλ
pλ(x)pλ(y),

so
⟨pλ, pµ⟩ = zλδλµ.

Corollary 2.28.

1. {pλ}λ⊢d is an orthogonal basis of Λd
Q.

2. {pλ/√zλ}λ⊢d is a self-dual basis of Λd
R.

3. {pλ}λ⊢d and {pλ/zλ}λ⊢d form a pair of dual bases of Λd
Q.

The above also allows us to show properties of symmetry, non-negativity etc.

Corollary 2.29. Let f, g ∈ Λd
Q. Then,

1. ⟨f, g⟩ = ⟨g, f⟩.
2. ⟨f, f⟩ ≥ 0, with equality iff f = 0.

Proof. Let f =
∑

λ⊢d Aλpλ and g =
∑

λ⊢d Bλpλ.
1. We have

⟨f, g⟩ =
∑
λ⊢d

zλAλBλ = ⟨g, f⟩.
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2. We have
⟨f, f⟩ =

∑
λ⊢d

zλA
2
λ,

which is non-negative and equal to 0 iff all Aλ are 0. ■

Start with {mλ}λ⊢d and run Gram-Schmidt Orthogonalization. What is the output orthogonal basis?

2.6. Schur symmetric functions

Now, let us define another basis (which will turn out to be orthogonal).
Let λ ⊢ d. Consider the Ferrer’s diagram of λ. We shall fill the boxes with positive integers such that

1. each row is weakly increasing from left to right and
2. all columns are strictly increasing.

Example 4. For the partition λ = (3, 1) of 4,
1 1 2

3

is such a filling.

Such a filling is called a semi-standard Young Tableau (SSYT) of shape λ. Let F be an SSYT withmi occurrences of i in
it – this yields a vector (m1,m2, . . . , ), called the content of F and denoted content(F ). Clearly,∑i mi = d.
Define

sλ =
∑

SSYTs F of shape λ
xcontent(F )

For example, when λ = (2, 1),
sλ = m2,1 + 2m13

Theorem 2.30 (Knuth-Bender). Let d ≥ 0 and λ ⊢ d. Then, sλ is a symmetric function.

Proof. Fix some content vector (m1,m2, . . .). Let F be the set of SSYTs F of shape λwith content(F ) = (m1,m2, . . .).
Fix arbitrary i, and letFi be the set of SSYTsF of shapeλwith content(F ) = (m1,m2, . . . ,mi−1,mi+1,mi,mi+2,mi+3, . . .)
(the ith and (i+ 1)th coordinates are swapped).
We shall demonstrate a bijection φi between F and Fi – this implies the result because i is arbitrary (Why?).
Let F ∈ F . In a given column, there are four possibilities.

1. both i and i+1 occurs – in this case, theremust be precisely one of each in the column and they are consecutive.
2. neither i not i+ 1 occur.
3. only i or only i+ 1 occur – in this case, there is precisely one of it in the column.

In the first two cases, we say that the occurences of i, (i+1) are “paired”. In the third case, we say that the occurence
is free. Suppose that some row of F has a is and b (i + 1)s. Note that these (a + b) occurrences are consecutive!
Showing this requires the fact that F is an SSYT – show that all paired is are before free is, then that all free (i+ 1)s
are before paired (i+ 1)s.
We then define φi(F ) to be that filling where this consecutive block of (a+ b) elements is changed to have b is then
a (i+1)s; the remainder of the diagram is left unchanged compared to F . Note that this filling is indeed in Fi! φi is
also clearly a bijection since the same operations define an inverse function from Fi to F . ■
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The (sλ) are known as the Schur symmetric functions.
Note that for any n, sn = hn and s1n = en.
Let us now try to show, as per usual, that the (sλ) form a basis of Λd

Q. We have

s3 = m13 +m2,1 +m3

s2,1 = 2m13 +m2,1

s13 = m13 .

Let
sλ =

∑
µ⊢d

Kλµmµ. (2.3)

Here, theKλµ are known as the Kostka numbers. By definition,Kλµ is the number of SSYTs with shape λ and content
µ. In a spirit much like Gale-Ryser, we shall show that K is upper-triangular when we order both the rows and
columns in the reverse-lexicographic order.

Theorem 2.31. Kλµ is nonzero iff λ ≽ µ (under the majorisation partial order).

Proof. First, suppose that Kλµ ̸= 0. Note that the ith row cannot have any element less than i + 1. In particular, all
the is for i ≤ k are contained in the first k rows. This precisely says that∑r

i=1 λi ≥
∑r

i=1 µi, since the first term is
the number of cells in the first k rows and the second is the number of i ≤ k in the first k rows.
For the converse, given λ ≥ µ, we must construct an SSYT with shape λ and content µ. We do so in the following
manner. Having filled all the elements< r, fill the rth rowwith rs as long as there are filled cells in the corresponding
cell one row above. After doing this, fill any remaining rs in the (r − 1)th row as long as there are filled cells in
the corresponding cell one row above. Repeat this until µr rs are filled up. Both row-increasingness and column-
strictness are trivial, and the construction is well-defined because∑r

i=1 λi ≥
∑r

i=1 µi. ■

Now, note that the diagonal entries of K are equal to 1.

Corollary 2.32. (sλ)λ⊢d forms a basis of Λd
Q.

Unfortunately, Kλµ has no good formula in general. However, there are formulae in certain special cases.
When µ = 1d, we wish to determine the number of SSYTs with shape λ such that each element of {1, 2, . . . , d} occurs
precisely once.

Definition 2.33. A Standard Young Tableau (SYT) of shape λ ⊢ d is an SSYT of shape λ where each element of [d]
occurs precisely once. The number of SYTs of shape λ is denoted fλ = Kλ,1d .

Note that this implies that rows are strictly increasing. The number of SYTs of a given shape has some very neat
formulae!

Theorem 2.34 (Hook length formula). Given a cell c in the Ferrer diagram of λ ⊢ n, the hook at cell c consists of c,
cells to the right of c, and cells below c. Denote by hc the size of the hook at λ. Then,

fλ =
n!∏

c∈cell(λ) hc
.
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We do not prove the above. The original proof was due to Frame, Robinson, Thrall [FRT54], and Greene, Wilf,
Nijenhuis [GNW79] later gave an easier (probabilistic!) proof.
Using the above, note in particular that the number of SYTs of shape (n, n) is

fn,n =
1

n+ 1

(
2n

n

)
,

the nth Catalan number Cn!

2.7. The RSK algorithm

Theorem 2.35. ∑
λ⊢n

f2
λ = n!.

Proof. Let λ ⊢ n. Recall that Sn has p(n) distinct irreducible representations (up to isomorphism), indexed by the
conjugacy classes of Sn. Further, the irreducible representation indexed by λ has dimension fλ. The desideratum
then follows by standard results, see Theorem 2.34 of my notes on Representation Theory of Finite Groups, for
instance. ■

Let us give an alternate bijective proof of this. We would like to come up with a bijection

φ : {(P,Q) : P,Q are SYTs of the same shape} → Sn.

We shall do somethingmore general, by giving a bijection betweenN0-matricesM and SSYT pairs (P,Q) of the same
shape λ, with contents equal to the column sum and row sum of M respectively.
We use the RSK algorithm. We start with a finite matrix M with non-negative integer entries. We encode this as a
2 × r matrix, where r is the sum of entries of M . To construct this matrix, we iterate through the entries of M in
row-major form, and insert the column

(
i
j

)
Mij many times. Let the first row of this matrix beQ and the second be

P .
By definition, the lengths of both P and Q is the sum of entries of M . Because we are iterating through the entries
in row-major order, P is weakly increasing. For example, in the case where M is a permutation matrix, Q is just
1, 2, . . . , n and P some permutation of [n].
Now, using this new 2×rmatrix, we shall form an SSYT. The algorithm just repeats the following. Iterating through
[r], suppose we are at the ith entry.

1. If it is possible to add Pi at the end of the first row, we append it.
2. If this is not possible, we “kick out” the first element t in the first row that is greater than Pi, replacing it with

Pi. We then insert t in the part of the tableau below this, in a recursive fashion.
3. Insert Qi at an appropriate position in order to ensure that the shapes of the tableaux remain the same.

https://amitrajaraman.github.io/notes/rep-th/main.pdf
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Example 5. Suppose our initial matrix is (
1 0 2
0 2 0

)
.

Converted to a 2× 5 matrix, this is (
1 1 1 2 2
1 3 3 2 2

)
,

where the first row is Q and the second row P . We begin by inserting the first elements (1, 1) of each of the
rows to get

P1 =
1 and Q1 =

1
.

We next insert 3 into P1 to get P2. Since it is possible to do this just by appending it to the end of the first row,
we get

P2 =
1 3

.

To ensure that the shapes remain the same,

Q2 = 1 1 .

Again inserting 3 into P2 is similar, so we get

P3 =
1 3 3 and Q3 =

1 1 1
.

Now, when we attempt the insertion of 2 into P3, it is not possible to do so by appending it at the end of the
first row. So, we kick out the first element that is greater than it, namely the first 3. ChangingQ4 appropriately
to ensure that shapes remain the same, this gives

P4 =
1 2 3

3
and Q4 =

1 1 1

2
.

Inserting the next 2 kicks out the other 3 in the first row, so we get

P4 = 1 2 2

3 3
and Q4 = 1 1 1

2 2

as our final tableaux P,Q.
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Example 6. As another example, consider the permutation matrix0 0 1
1 0 0
0 1 0

 .

This has associated 2× 3 matrix (
1 2 3
3 1 2

)
.

Incrementally creating the Pi, Qi, we get

P1 = 3 and Q1 = 1

P2 = 1

3
and Q2 = 1

2

P3 = 1 2

3
and Q3 = 1 3

2
.

By the construction, it is easy to see that P,Q have the same shape and P is an SSYT. We must show that Q is an
SSYT as well.
This is easy to see in the case where M is a permutation matrix, since the element of Q we add is always strictly
greater than previous elements so there is no chance of violating column strictness or row strictness. The issue
arises with column strictness in non-permutation matrices since the element we are adding might coincide with
other elements in the tableau.
In general, we prove this with the following lemma.

Lemma 2.36. Given an tableau R and j, denote by R← j the set of cells modified in R, including the newly formed
cell, on the insertion of j into R in the above described manner. Letting R′ be the tableau attained after inserting j
into R, denote by (R← j)← k the set R′ ← k.
If j ≤ k, every cell of P ← j is strictly to the left of any cell in (P ← j) ← k. That is, if (r, s) ∈ P ← j and
(r, t) ∈ (P ← j)← k, then s < t.

Proof. Suppose that (r, s) ∈ (P ← j). On inserting k, the (r, t)th cell can only be altered if it is either a newly formed
cell (in which case t > s trivially), or if it is the first element in the rth row of P ′ that is at least equal to k. Since the
rows of P ′ are weakly increasing, we again have t > s. ■

In the casewhereM is a permutationmatrix, it is quite easy to see that this transformation is bijective aswell! Indeed,
the SSYT of Q precisely describes the order in which the cells were formed. Given Q(i), the location of the largest
element of Q(i) is the location of the newly formed cell. If this is in the first row, this is indeed the element of P that
was inserted as well. Otherwise, we must go to higher rows and “reverse-kick” entries, by determining the largest
element smaller than this reverse-kicking number.
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Example 7. Let us explain this idea of “reverse-kicking” using an example. Suppose our final SSYTs are

P = P5 = 1 3 4

2 5
and Q = Q5 = 1 2 5

3 4
.

This corresponds to a case where the initial matrix is a permutation matrix. The largest element in Q5 is the
5. Since the element in the same position in P5, is in the first row, 4must have been what was inserted in the
final step. As a result,

P4 = 1 3

2 5
and Q4 = 1 2

3 4
.

Now, since the largest element in Q4, the 4, is in the second row, this new position must have been created
by kicking the 5 out of the previous row. Now, with the knowledge that 5was kicked out of the first row, the
only element it could have been kicked out by is the 3. Therefore, to get P4, we inserted a 3 in

P3 = 1 5

2
and Q3 = 1 2

3
.

The largest element inQ3 is 3, which means that the 2 in P3 was kicked out of the first row, which means that
1 was inserted.

P2 =
2 5 and Q2 =

1 2
.

Here, the largest element in Q2 is 2, and since the corresponding element 5 in P2 is in the first row, it was
inserted.

P1 = 2 and Q1 = 1

Therefore, the permutation corresponding to the SSYT pair (P,Q) is(
1 2 3 4 5
2 5 1 3 4

)
.

In the permutation matrix, we do the reversal by looking at the position of the largest entry in Q(i). In general, it
turns out that we must look at the position of the rightmost largest entry in Q(i), and this will be unique, due to the
column strictness of SSYTs. The remainder of the reversing is identical.
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Example 8. Suppose our final SSYTs are

P = P5 = 1 1 2

2 3
and Q = Q5 = 1 2 2

2 3
.

The rightmost largest element in Q5 is the 3. The element in the same position in P5 is the 3, so it must have
been kicked out of the first row by an inserted 2.

P4 =
1 1 3

2
and Q4 =

1 2 2

2
.

The rightmost largest element inQ4 here is the 2 in the third column. The corresponding element, 3, is in the
first row so it must have been inserted.

P3 = 1 1

2
and Q3 = 1 2

2
.

The rightmost largest element here is the 2 in the second column. The corresponding element, 1, is in the first
row so it must have been inserted.

P2 =
1

2
and Q2 =

1

2
.

The largest element here is the 2. Since the corresponding element 2 in P2 is in the second row, it must have
been kicked out of the first row by an inserted 1.

P1 = 2 and Q1 = 1

Therefore, the 2-row matrix corresponding to this pair is(
1 2 2 2 3
2 1 1 3 2

)
,

which corresponds to matrix 0 1 0
2 0 1
0 1 0

 .

Theorem 2.37. The RSK algorithm is a bijection between N0-valued matrices M and ordered pairs (P,Q) of SSYTs
such that

content(Q) = rowsum(M) and content(P ) = colsum(M).

A better proof of SSYT RSK reversibility case is by using the SYT permutationmatrix case, by performing the follow-
ing transformation. Iterating upwards, change repeating elements from left to right to distinct values. For example,
if we have three 1s, change them to 1, 2, 3 in order from left to right.
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Example 9. For example, if we start off with (3, 1, 2, 3, 1, 2), we first make both 1s distinct. This makes
it (3, 1, 2, 3, 2, 2). We next make all the 2s distinct to get (3, 1, 2, 3, 3, 4). Making all the 3s distinct gives
(3, 1, 2, 4, 5, 4), making all the 4s distinct gives (3, 1, 2, 4, 5, 5), and finally making all the 5s distinct gives
(3, 1, 2, 4, 5, 6).

The permutation matrix case yields the desired bijection we mentioned earlier, so∑
λ⊢n

f2
λ = n!.

Proposition 2.38. If running the RSK algorithm onM gives (P,Q), running it onM⊤ gives (Q,P ).
In particular, if running it on π ∈ Sn gives (P,Q), running it on π−1 gives (Q,P ). Further, P = Q here iff π2 = Id,
so the number In of involutions of Sn is equal to∑λ⊢n fλ.

Proof. ■

Exercise 2.1. Show that ∑
n≥0

In ·
xn

n!
= exp

(
x+

x2

2

)
.

Exercise 2.2. Show that In = In−1 + (n− 1)In−2 for n ≥ 3.
Let us look at a couple of interesting corollaries of the above construction.

Theorem 2.39 (Schensted). Apply the RSK insertion algorithm on the string w = w1w2 · · ·wd to get an SSYT P .
Then, the length of the first row of P is the length of the longest weakly increasing subsequence of w. The length of
the first column of P is the length of the longest weakly decreasing subsequence of w.

Proof. We prove the first part of the theorem. Let m the length of the longest weakly increasing subsequence of w.
For each 1 ≤ i ≤ m, set ri to be the rightmost element j such that the longest increasing subsequence ending at j is
of length i. We claim that the first row of P is r1, r2, . . . , rm.
Let us prove this via induction on the length d of the sequence. The case d = 1 is trivial since P just has a single
cell, which is r1. Now, suppose that the statement is true for w = w1, . . . , wd−1 with corresponding tableau P ′, and
on inserting wd, we get the tableau P . Let j be the length of the longest increasing subsequence s1, . . . , sj ending at
wd. If j is greater than the length of the first row of P ′, we are done. Suppose otherwise, so we wish to show that
rj−1 ≤ wd < rj . Suppose that the longest increasing subsequence ending at rj is t1, t2, . . . , tj .
Ifwd ≥ rj , then the subsequence t1, t2, . . . , tj , wd, an increasing subsequence of length j+1 ending atwd, contradicts
the definition of j. For the other side, note first that j − 1 is the length of the longest increasing subsequence ending
at sj−1. Suppose that rj−1 > wd. If the index of sj−1 is equal to that of rj−1, we clearly have a contradiction as
wd ≥ sj−1. Otherwise, by the definition of rj−1, sj−1 is to the left of rj−1. We also have rj−1 > wd ≥ sj−1, but this
means that there is an increasing subsequence s1, . . . , sj−1, rj−1 of length j ending at rj−1, a contradiction. ■

Corollary 2.40 (Erdős-Szekeres). Given a sequence of (mn+1) elements, there exists an increasing subsequence of
length (m+ 1) or a decreasing subsequence of length (n+ 1).
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Corollary 2.41 (Cauchy’s Identity). It is true that∏
i,j≥1

1

1− xiyj
=
∑
d≥0

∑
λ⊢d

sλ(x)sλ(y).

Proof. The coefficient of xαyβ on the left is equal to Nα,β , the number of N0-matrices M with rowsum(M) = α and
colsum(M) = β. The coefficient of xαyβ on the right is equal to the number of SSYT pairs (P,Q), where P,Q have
the same shape and content(P ) = α, content(Q) = β. Since the RSK algorithm is a bijection, we get that the two are
equal and are done. ■

Theorem 2.27 with the above immediately yields the following.

Corollary 2.42. {sλ}λ⊢d is an orthonormal basis of Λd
Q.

Recall the Kostka numbers Kλ,µ from Equation (2.3). The next corollary immediately follows by looking at the
coefficient of xαyβ in Cauchy’s identity, as we did in the proof.

Corollary 2.43. Let α, β ⊢ d. Then,
Nαβ =

∑
λ⊢d

KλαKλβ .

That is, N = K⊤K.

It turns out that the change-of-basis matrix from {mλ} to {sλ} is the change of basis-matrix from {sλ} to {hλ}!

Corollary 2.44. For µ ⊢ d,
hµ =

∑
λ⊢d

Kλµsλ.

Proof. Let hµ =
∑

λ⊢d aλµsλ, using the fact that the sλ form a basis. Because the {sλ}λ⊢d are orthonormal,

aλµ = ⟨hµ, sλ⟩ = ⟨hµ,
∑
θ⊢d

Kλθmθ⟩ = Kλµ,

where we use that ⟨hµ,mθ⟩ = δµθ. ■

2.8. The dual RSK algorithm

Theorem 2.45. Given any 0, 1-matrix M , we can bijectively get a pair (P,Q) of tableaux of the same shape, where
P⊤, Q are SSYTs, and content(P ) = colsum(M) and content(Q) = rowsum(M).



MA 861 : Combinatorics I 47 / 53 Amit Rajaraman

This proof uses the dual RSK algorithm. Instead of going from non-negative matrices to SSYT pairs (P,Q) of the same
shape, we shall go from 0, 1-matrices M to pairs (P,Q) of the same shape where P⊤, Q are SSYTs. Equivalently, it
outputs SSYT pairs (P ′, Q)where P ′ is of shape λ′ and Q is of shape λ.
The algorithm is mostly similar to the RSK algorithm, with one minor modification – in the kicking step, instead of
kicking the first element that is (strictly) greater than the current element, we insert the first element that is at least
the current element. This ensures row strictness of P , which is needed for its conjugate to be an SSYT.

Example 10. Consider the matrix 0 1 1
1 0 1
1 0 1

 ,

which has corresponding 2-row matrix (
1 1 2 2 3 3
2 3 1 3 1 3

)
.

Since the algorithm is nearly identical to the RSK algorithm, we just give the sequence of tableaux and leave
it to the reader to check the modification we have done to the RSK algorithm.

P1 = 2 and Q1 = 1

P2 = 2 3 and Q2 = 1 1

P3 = 1 3

2
and Q3 = 1 1

2

P4 = 1 3

2 3
and Q4 = 1 1

2 2

P5 =
1 3

1 3

2

and Q5 =
1 1

2 2

3

P6 = 1 3

1 3

2 3

and Q6 = 1 1

2 2

3 3

By construction, P and Q have the same shape, and P⊤ is an SSYT. What about Q? Much like the earlier proof, we
must look at the rightmost occurrence of the largest element in Q.

Corollary 2.46 (Dual Cauchy Identity). Denoting by λ′ the conjugate of λ ⊢ d, we have∏
i,j≥1

(1 + xiyj) =
∑
d≥0

∑
λ⊢d

sλ′(x)sλ(y).

Corollary 2.47. For λ ⊢ d, ω(sλ) = sλ′ .
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This follows immediately on applying ω to the Cauchy identity and using the dual Cauchy identity. This presents
yet another proof that ω2 = Id.

2.9. Symmetric functions in n variables

Let Λd,n
Q be the vector space over Q of degree d symmetric functions in n variables. Clearly, dim(Λd,n

Q ) ≤ dim(Λd
Q).

In fact, the dimension is the number of partitions of dwith at most n parts. Note that if we have at least d variables,
the two become equal.
The classical definition of the Schur symmetric function is onnvariables, a function sλ(x1, . . . , xn). Letα = (α1, . . . , αn).
Sn acts on monomials xα as π(xα) =

∏n
i=1 x

απ(i)

i . Define

fα(x) =
∑

π∈Sn

sign(π)π(xα).

Note that fα is not symmetric, since σ(fα) =
∑

π∈Sn
sign(π)σ(π(xα)). However, this is equal to σ(fα) = sign(σ)fα.

Definition 2.48 (Skew-symmetric function). A function f such that σ(f) = sign(σ)f is called a skew-symmetric
function.

Proposition 2.49. fα ̸= 0 iff all the αi are distinct. Further, (xi − xj) | fα for distinct i, j.

The first part above is easily seen by considering σ(fα)where σ is just a transposition of two equal exponents.

The form of fα is quite reminiscent of the determinant of a matrix! In fact fα is precisely equal to the determinant
of the matrix

Mα =


xα1
1 xα1

2 · · · xαn
n

xα2
1 xα2

2 · · · xα2
n

... ... . . . ...
xαn
1 xαn

2 · · · xαn
n

 .

That is, (Mα)ij = x
αj

i . This presents an easy proof of the above proposition.

Assume henceforth that α has all distinct parts, and α1 > α2 > · · · > αn.
Because the (xi − xj) are linear monomials, some ring theory yields that∏

i<j

(xi − xj) | fα.

The expression on the left is precisely the Vandermonde determinant

det


xn−1
1 xn−1

2 · · · xn−1
n

xn−2
1 xn−2

2 · · · xn−2
n

... ... . . . ...
1 1 · · · 1

 .

Setting δn = (n − 1, n − 2, . . . , 0) (denoting it as just δ if n is clear from context), the above is just fδ . Now, fα is a
polynomial of∑αi and fδn is a polynomial of degree (n2). As a result, fα/fδn , which is a polynomial, has degree(∑

i αi

)
−
(
n
2

). Note that because fα and fδ are skew-symmetric, their quotient is symmetric!
Set λi = αi − (n− i) so α = λ+ δ, so fα/fδ has terms like xλ. Note that the λi are weakly decreasing, so they form a
partition of some number with at most n parts (some of which may be 0). We are interested in fλ+δ/fδ .
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Definition 2.50 (Schur symmetric function). For a partitionλwith atmostnparts, define the Schur symmetric function
sλ(x1, . . . , xn) by

sλ =
fλ+δ

fδ
.

The above is Cauchy’s bialternant definition of the sλ. We must now show that this coincides with the earlier Schur
symmetric function we have studied, on setting xj = 0 for j > n.
Recall that hµ =

∑
λ⊢d Kλµsλ. Applying ω, we get eµ =

∑
λ⊢d Kλ′µsλ. Set all variables xj for j > n as 0. We now

wish to show that
fδeµ =

∑
λ⊢d

Kλ′µfλ+δ.

Let µ = (µ1, . . . , µr). Note that the expression on the left is skew-symmetric. We wish to find the number of ways of
choosing indices (where for a fixed k, the ik,r are distinct) such that

(xn−1
1 xn−2

2 · · ·xn−1)(xi1,1xi1,2 · · ·x1,µ1) · · · (xir,1 · · ·xir,µr
) = (xλ1+n−1

1 xλ2+n−2
2 · · ·xλn

n ).

Consider each suchway of choosing indices such that at no point in the above n steps ofmultiplication do two indices
become equal. Consider the matrix M as defined in the above example, where Mij = 1 if the ith step chooses the
index j and is 0 otherwise. Encode this matrix as the tableau with the jth column having those indices where
Mij = 1, arranged in increasing order of i from top-to-bottom. It is quite easy to see that this tableau is column-
strict. It also clearly has shape λ′ and content µ. We would like to show that this is an SSYT, that is, that weak row
ordering holds as well.
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Example 11. Suppose we have λ = (5, 3, 2, 1) and µ = (3, 2, 2, 1, 1, 1, 1). That is, we would like to go from
x3
1x

2
2x

1
3 to x8

1x
4
2x

3
3x4 in 7 steps, with the ith step multiplying by exactly µi indices. One way of doing this is

encoded by the matrix 

1 1 1 0
1 0 1 0
1 1 0 0
0 1 0 0
1 0 0 0
1 0 0 0
0 0 0 1


,

where the ijth element of the matrix being 1 denotes that the index j is present in the indices in the µith step.
We encode this as the tableau

1 1 1 7

2 3 2

3 4

5

6

.

This has shape λ′ and content µ. This is not an SSYT, but note that this multiplication gives 0 due to skew-
symmetry! Indeed, (x3

1x
2
2x

1
3)(x1x2x3)(x1x3) = x5

1x
3
2x

3
3.

For another example, consider the series of multiplications encoded by

1 1 1 0
1 1 0 0
1 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0
1 0 0 0


with corresponding tableau

1 1 1 4

2 2 3

3 6

5

7

.

Again, this has shape λ′ and content µ. One can check that this multiplication does indeed give something
nonzero at every stage, and the above is clearly an SSYT.

We would like to show that we get an SSYT iff no two exponents are equal in the process.

Lemma 2.51. We can encode multiplication of terms from eµ1 , eµ2 , . . . to the monomial xδ to get xλ+δ as a filling of
shape λ′ and content µ. Further, this filling is an SSYT iff at each stage of the multiplication, all the exponents are
distinct.

Proof. Let us prove the forward direction first. Suppose that weak row ordering is violated somewhere, say between
the first two columns. That is, let the first k entries of the first column (vertically) be r1, . . . , rk and the second column
be r′1, . . . , r′k with rk > r′k. Note that



MA 861 : Combinatorics I 51 / 53 Amit Rajaraman

(i) Initially, the difference of the exponents of x1 and x2 is +1.
(ii) At the end of the r′kth multiplication, the difference is ≤ 0.
(iii) At each multiplication, the difference changes by at most one.
These three observations imply that at some step, the difference is precisely 0, proving the lemma. This argument is
reversible, so the backward direction follows as well. ■

2.10. Determinants and paths

Consider the lattice Z2, and the standard problem of going from A = (β, γ) to B = (α, δ) with steps only E (east)
and S (south) of unit length, where α ≥ β and γ ≥ δ. We encode any such path P by a monomial xP =

∏
i∈[δ,γ] x

Pi
i ,

where Pi = |{j ∈ Z : P takes an E step at (j, i)}|.

Example 12. The following path from (1, 4) to (5, 1) corresponds to the monomial x1x
2
3x4.

A(1, 4)

B(5, 1)

4

3 3

1

Clearly, this transformation is injective. This monomial xP has total degree (α−β) and only involves xi for i ∈ [δ, γ].
As remarked, the set of all suchmonomials is in bijection with set of all paths. We encode the set of paths from (β, γ)
to (α, δ) as the polynomial

h(α− β, δ, γ) =
∑

δ≤i1≤···≤iα−β≤γ

xi1 · · ·xiα−β
.

Note that this is a variant of the complete homogenous polynomial we have seen.
In more generality, we can have a path system with n pairs of points denoted by α = (α1, . . . , αn), β, γ, δ satisfying
αi ≥ βi and γi ≥ δi for each i. Now, let us look at the set NonIn(α, β, γ, δ) of non-intersecting (vertex-disjoint)
paths (P1, . . . , Pn), where Pi is from Ai = (αi, γi) to Bi = (βi, δi). We encode each element of this set as the product
of the polynomials of the constituent paths. Note that this can be used to recover the paths when the paths are
non-intersecting.

Theorem 2.52 (Lindström-Gessel-Viennot Lemma). LetNonIn(π(α), β, δ, π(γ)) be non-empty only for π = Id. Then,

NonIn(α, β, γ, δ) = detM,

whereMij = h(αj − βi, δj , γi), the set of paths from Ai to Bj .

Proof. We would like to show that

NonIn(α, β, γ, δ) =
∏

π∈Sn

sign(π)

n∏
i=1

h(απ(i) − βi, δπ(i), γi).
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Suppose that according to some permutation π, some two paths from Ai to Bπ(i) intersect. Consider the minimum
intersecting pair index (i, j) (according to the lexicographic order, say). Say the two paths intersect at A. Note that
this cancels out with the set of paths for (π(i), π(j))π by looking at the paths from Ai to A to Bπ(j) and Aj to A to
Bπ(i). Therefore, the only terms in the determinant that survive correspond to those π which have non-intersecting
paths, which is only Id by the hypothesis. ■

Theorem 2.53 (Jacobi-Trudi Theorem). Let λ ⊢ d with λ1, λ2, . . . , λn. Consider the n× n matrix Mλ with (Mλ)ij =
hλi+j−i, where hn is taken to be 0 for negative n. Then, sλ = detMλ.

Proof. Take some very large N (∞ in the limit). Consider the points Ai = (n− i,N) and Bi = (n− i+ λi, 1). In the
limit as N → ∞, the tranpose of the matrix from the previous question is precisely Mλ! The set of paths from Aj to
Bi is h((λi − i+ n)− (n− j), 1, N) = hλi+j−i.
By the Lindström-Gessel-Viennot lemma, the determinant of this matrix corresponds to the set of non-intersecting
paths from Ai to Bi for each i (it is easily checked that the only permutation with non-intersecting paths is the
identity). To complete the proof, it suffices to establish an equivalence between such collections of paths and SSYTs
of shape λ.
Let us explain this bijection via an example.

Example 13. Consider the partition λ = (4, 3, 1) and setN = 4 for simplicity. The points areA1 = (2, 4), A2 =
(1, 4), A3 = (0, 4) and B1 = (6, 1), B2 = (4, 1), B3 = (1, 1). Take the following collection of paths.

A1A2A3

B1B2B3

4 4

3 33 3

22

To this, we associate the tableau
4 4 3 3

3 3 2

2

.

Finally, to convert this to an SSYT, we replace each element with the maximum element in the tableau plus 1
minus the element to get

1 1 2 2

2 2 3

3

.

It is evident that the shape of this SSYT is λ and the rows are weakly increasing. So, it suffices to show that the
columns are strictly increasing, that is, the columns of the earlier tableau are strictly decreasing. This means that if
the ith east from Aj to Bj is taken at a height of y, then the ith east from Aj+1 to Bj+1 is taken at a height y′ < y. By
the definition of the paths, this path from Aj to Bj passes through (n− j+ i− 1, y), and the path from Aj+1 to Bj+1

passes through (n − (j + 1) + i, y′). Clearly, the sections of the two paths until here can be non-intersecting only if
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y′ < y, completing the proof. ■
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