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�0. Notation

We use [n] to represent {1, 2, . . . , n}.

For integers a and b, [a, b]means {a, a+ 1, . . . , b}.

A graph Gn is a graph with n vertices.

Given a graph G, e(G) is the number of edges G has.

For a vertex v, denote by N(v) or Γ(v) the set of neighbours of v – all the vertices that have an edge to v.

For a vertex v, denote by dG(v) = |Γ(v)| the degree of v – the number of edges incident on it. If the graph G is clear
from context, we write simply d(V ).

For v ∈ V andK ⊆ V , d(v,K) is the number of edges∣∣{u ∈ K : uv ∈ E}
∣∣

from v into K.

For vertices v, w, write d(v, w) = |Γ(v) ∩ Γ(w)|.
Given a graph G = (V,E), denote by δ(G) and∆(G) the minimum and maximum degree in G respectively. That is,

δ(G) = min
v∈V

d(v) and∆(G) = max
v∈V

d(v).

We shorten “there exists n0 such that for all n > n0” to “for all n sufficiently large”, which in turn is shortened to
“for all n≫ 0”.

We say that something occurs “with high probability” if the probability of the complement occurring converges to
0 as the input size grows to∞.
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�1. Introduction

1.1. Basic De�nitions

Definition 1.1. A (simple undirected) graph G is an ordered pair (V,E) where V is a finite set called the vertex set
and E, called the edge set, is a subset of (V2), where (Sk) represents the set of all k-element subsets of S.

We typically represent graphs pictorially, showing vertices as dots and edges as arcs joining the vertices present in
the corresponding subset.
A few important graphs are:

• the null graph with vertex set V , where E = ∅.

• the complete graph Kn, where V = [n] and E =
(
[n]
2

).
• the complete bipartite graph Km,n, where V = A ∪ B with |A| = m, |B| = n, and A,B are disjoint, and E =
{{a, b} : a ∈ A, b ∈ B}.

• the path graph Pn+1 of length n, where V = [n+ 1] and E = {{m,m+ 1} : m ∈ [n]}.
• the cycle of length n, where V = [n] and E = {{l,m} : l,m ∈ [n], (m− l) ≡ 1 (mod n)}.

Now, consider the graphGwith vertex set [4] and edge set {{1, 3}, {3, 2}, {2, 4}}. This graph appears to be the same
as the path graph of length 3, but how do we make this correspondence more concrete?
Relabeling vertices doesn’t create a “new” graph.

Definition 1.2 (Graph Isomorphism). Two graphs G = (V,E) and G′ = (V ′, E′) are said to be isomorphic and we
writeG ≃ G′ if there exists a bijection f : V → V ′ such that there is an edge between two vertices u and v inG if and
only if there is an edge between f(u) and f(v) in G′.

If two graphs are isomorphic, they are identical for our purposes (we only care about graphs up to isomorphism).
We now give a few more definitions that are useful.

Definition 1.3 (Subgraph). Given a graph G = (V,E), a subgraph H = (V ′, E′) is a graph such that V ′ ⊆ V and
E′ ⊆ E. Given V ′ ⊆ V , the subgraph induced by V ′ on G is that with vertex set V ′ and edge set (V ′

2

)
∩ E.

Definition 1.4 (r-partite Graph). A graph G = (V,E) is said to be r-partite if there exists a partition V1, V2, . . . , Vr

of V such that for any edge e = uv ∈ E, u and v are in distinct Vi. That is, there are no edges within any of the Vi.
In particular, a 2-partite graph is said to be bipartite.

Definition 1.5 (Independent Set). Given a graph G = (V,E), I ⊆ V is said to be independent if no two vertices of
I are adjacent (the subgraph induced by I is null).
α(G), the independence number of G, denotes the size of the largest independent set in G.
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Definition 1.6 (Clique). Given a graphG = (V,E),K ⊆ V is said to be a clique if any two vertices ofK are adjacent
(the subgraph induced by I is complete). ω(G), the clique number of G, denotes the size of the largest clique in G.

Definition 1.7 (Complement Graph). Given a graph G = (V,E), the complement graph of G is Ḡ = (V,
(
V
2

)
\ E).

Observe that S ⊆ V is independent in G if and only if S is a clique in Ḡ. In particular, α(G) = ω(Ḡ).

Definition 1.8 (Connectedness). A graphG is said to be connected if for any pair of vertices u, v, there is a sequence
u = v0, v1, . . . , vr = v for some r such that vi−1vi is an edge for each i ∈ [r].

Definition 1.9 (Girth). The girth of a graph G is the smallest k (> 2) for which Ck is isomorphic to a subgraph of
G.

If G has no cycles, it is said to have infinite girth.

1.2. Kr+1-free graphs

Extremal graph theory is motivated by the following simple problem:

At most how many edges can a graph Gn have if it contains no triangles?

More precisely, what is
max

no subgraph of Gn

is isomorphic to K3

e(Gn)?

Clearly, this number is well-defined since a graph on n vertices cannot have more than (n2) vertices.
A simple observation is that any complete bipartite graph has no triangles: if there were a triangle, then two vertices
would be in the same “part”, which contradicts the existence of edges only between the two parts.
As a consequence, for any 1 ≤ m ≤ n, it is possible to constructm× (n−m) edges (with this bound being attained
for Km,n−m). In particular, it is possible to construct a graph with ⌊n2/4⌋ edges.

Theorem 1.1 (Mantel’s Theorem). If Gn has no triangle, then

e(Gn) ≤

⌊
n2

4

⌋
.

Further, equality is attained iff Gn ≃ K⌊n/2⌋,⌈n/2⌉.

Proof. SupposeGn has no triangles. Saying thatGn has no triangles is equivalent to saying that for distinct adjacent
u, v, Γ(u) ∩ Γ(v) = ∅.
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So, d(u) + d(v) ≤ n. Therefore,

ne(Gn)
(1)

≥
∑
uv∈E

d(u) + d(v)

=
∑
uv∈E

|Γ(u) ∪ Γ(v)|

=
∣∣(e, w) : e = uv ∈ E,w ∈ Γ(u) ∪ Γ(v)

∣∣
=
∑
u∈V

|{(e, w) : w ∈ Γ(u), e = uv ∈ E}|

=
∑
u∈V

|{(v, w) : v, w ∈ Γ(u)}|

(2)
=
∑
u∈V

d(u)2

(3)

≥ 1

n

∑
u∈V

d(u)

2

(4)
=

4e(Gn)
2

n
,

where (2) follows from the changing the main thing being summed over to u, the “middle” vertex in the L-like
structure, (3) follows from the Cauchy-Schwarz inequality, and (4) follows from the handshaking lemma.

What happens when equality is attained? Let us look at the case where n is even.
(1) is only tight when d(u) + d(v) = n for all edges uv and (3) is only tight when d(u) is a constant (independent of
u). This implies that d(u) = n

2 for every u ∈ V . Now, if uv is an edge, Γ(u) ∩ Γ(v) = ∅ implies that Γ(u) ∪ Γ(v) = V ,
and so Gn = Kn

2 ,n2
.

The case where n is odd is analyzed similarly, with slight nuances in (3) since exact equality is not attained. ■

While the above is one of the early results in extremal graph theory, the subject was only really born due to Turán in
the following result.

Theorem 1.2 (Turán’s Thoerem). IfGn has noKr+1 (r ≥ 2), then e(Gn) ≤ tr(n), with equality attained iffG ≃ Tr(n).

The version for r = 2 is just a triangle-free graph and is the same as Mantel’s Theorem. In the proof of this, we split
the vertex set into two parts and dumped all the edges between these parts.
If we want to avoid K4 (r = 3), then perhaps we could split the vertex set into three parts and dump all the edges
between these parts.
In general, we want to partition V of size n into r “almost equal” parts and set only those edges between vertices
in distinct parts – such a graph is known as the Turán graph Tr(n) and the number of edges e(Tr(n)) is the Turán
number tr(n).
In particular, when r | n,

tr(n) =

(
r

2

)(
n

r

)2

=
n2

2

(
1− 1

r

)
.

Here, we give three proofs of Turán’s Theorem.
Proof of Turán’s Theorem. We perform strong induction on n+ r. We have already proved the result for r = 2.
Suppose e(Gn) ≥ tr(n) and Gn isKr+1-free, where r > 2. We wish to prove that G ≃ Tr(n).
Since tr(n) > tr−1(n)

1, the inductive hypothesis implies that G has a copy K ⊆ V of Kr. Observe that for v ̸∈ K,
1To show this, use the fact that any (r − 1)-partite graph can be thought of as r-partite graph with one of the pieces being empty, and then

that the Turán graph has the most edges among r-partite graphs.

https://en.wikipedia.org/wiki/Cauchy-Schwarz_inequality
https://en.wikipedia.org/wiki/Handshaking_lemma
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d(v,K) ≤ r − 1 – otherwise, there would be a copy ofKr+1 in G.
As a result, e(V \K,K) ≤ (r − 1)(n− r). By the induction hypothesis, e(V \K,V \K) ≤ tr(n− r). Therefore,

tr(n) ≤ e(Gn) ≤ tr(n− r) + (r − 1)(n− r) +

(
r

2

)
.

However, as can be checked manually, tr(n− r) + (r − 1)(n− r) +
(
r
2

)
= tr(n)!

It follows that equality holds everywhere – e(Gn) = tr(n), e(V \K) = tr(n−r), and d(v,K) = r−1 for all v ∈ V \K.
This graph is then isomorphic to Tr(n) – for each v ∈ V \K, we can put the vertex in K that is not adjacent to v in
the same bucket as v. Then, the only edges are those between distinct buckets (Why?), so Gn ≃ Tr(n). ■

Erdős’ Proof of Turán’s Theorem. Erdős proves a slightly more general claim: given aKr+1-free graph Gn, there exists
an r-partite graph H on V such that dG(v) ≤ dH(v) for all v ∈ V .
It is then a simple task to check that among the r-partite graphs on n vertices, the Turán graph Tr(n) has the most
edges.

To prove our claim, we perform induction on r.
The claim is trivial for the base case r = 1.
Now, suppose the claim holds for values less than r. Let v0 ∈ V such that dG(v0) = maxv∈V dG(v) (the vertex of
maximum degree in G) and W = Γ(z). Since G is Kr+1-free, W is Kr-free. Inductively, there is an (r − 1)-partite
graph H ′ on W such that for all v ∈W , dH′(v) ≥ dW (v).
Let U = V \W . For each u ∈ U , remove all its edges in G and set its new neighbour set as W .
Our desired graph H is that with these edges along with those in H ′ and the edges from v0 to W . That is, the rth
part is U ∪ {v0} and the remaining (r− 1) parts are those formed byH ′. The graph is clearly r-partite by definition.
What about the degree inequality?

• dG(v0) = dH(v0) trivially.
• For u ∈ U , dH(u) = dG(v0) ≥ dG(u).
• For w ∈W ,

dH(w) = |U |+ 1 + dH′(w) ≥ |U |+ 1 + dW (w) ≥ dU (w) + 1 + dW (w) = dG(w). ■

(Why does equality imply that the graph is isomorphic to Tr(n)?)

Theorem 1.3 (Turán’s Theorem, reformulation). If d = e(Gn)/n is the average degree of the vertices of Gn, then Gn

has an independent set of size at least n/(d+ 1).

Proof. Why is this equivalent to Turán’s Theorem?
If Gn has noKr+1, then α(Ḡ) ≤ r. If Ḡn has average degree d, the above result would imply that r ≥ n/(d+ 1), that
is, d ≤ (n/r)− 1. The total number of edges in Gn is then(

n

2

)
− nd

2
≤
(
n

2

)
− n

2

(
n

r
− 1

)
=

n2

2

(
1− 1

r

)
,

which gives Turán’s bound!

Let us now get to the proof of the above reformulation. First, consider the following algorithm to come up with some
independent set in G:

1. Order V to get {v1, . . . , vn} and initialize S = ∅.
2. Add v1 to S.
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3. Having processed vertices v1 through vi, add vi+1 to S iff there is no vertex in S that is adjacent to vi+1.
It is clear that this always produces an independent set, but the size of the independent set depends on the ordering
we choose at the beginning.
For a given ordering σ, denote by A(σ) the independent set produced by the algorithm.
How do we choose a “good” ordering?
Enter the probabilistic method. Define the random variable π to be uniformly random on the set of all permutations
of V . Then,

E[|A(π)|] = E

∑
v∈V

1v∈A(π)


=
∑
v∈V

E
[
1v∈A(π)

]
=
∑
v∈V

Pr
[
v ∈ A(π)

]
.

Fix some v ∈ V and permutation σ. What is the probability that v ∈ A(σ)?
If at the time of processing v for the ordering σ, Γ(v)∩S ̸= ∅, then v is not picked. In particular, if v is the first element
ofΓ(v)∪{v} in the ordering σ, then it is definitely chosen by the algorithm. The probability of this occurring is 1

d(v)+1 .
So,

E[|A(π)|] =
∑
v∈V

Pr
[
1v∈A(π)

]
≥
∑
v∈V

1

d(v) + 1

(∗)
≥ n2∑

v∈V (d(v) + 1)
=

n

d+ 1
,

where (∗) follows from the AM-HM inequality.
Since the expectation of |A(π)| is at least n/(d+1), there must exist some permutation σ such that |A(σ)| ≥ n/(d+1),
proving the result. ■

1.3. The Zarankiewicz Problem

Turán’s Theorem is the primary result that birthed Extremal Graph Theory. To generalize the problem studied in
the previous section, define the following.

Definition 1.10 (Extremal Function). Given a graph H , define the extremal function

ex(n;H) = max
no subgraph ofGn

is isomorphic to H

e(Gn) (1.1)

as the maximum number of edges in a graph on n vertices without H as a subgraph.
More generally, if F is a family of graphs, define

ex(n;F) = max
no subgraph ofGn

is isomorphic to aH∈F

e(Gn).

In particular, given graphs H1, . . . ,Hm, we denote

ex(n;H1, . . . ,Hm) = ex(n; {H1, . . . ,Hm}).

https://en.wikipedia.org/wiki/HM-GM-AM-QM_inequalities
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With this notation, Turán’s Theorem then says that ex(n;Kr+1) = tr(n), with the corresponding maximum in (1.1)
being attained iff Gn ≃ Tr(n).

Definition 1.11 (Zarankiewicz Function). Fix s, t ∈ N with t ≥ s ≥ 2 and m,n ∈ N. The Zarankiewicz function
z(m,n; s, t) is the maximum number of edges in a bipartite graph G = (A ⊔B,E) such that

• the two components A and B of the graph are of cardinality m and n respectively2, and
• there exist no S ⊆ A, T ⊆ B with |S| = s, |T | = t, and all edges between S and T present in E.3

For ease of writing, we refer to the above described criterion as the Zarankiewicz condition.
That is, we “forbid” the subgraph Ks,t with the components of size s and t on the side of A and B respectively.

The Zarankiewicz problem asks for a closed form representation of z(m,n; s, t). Failing this, for fixed t, it asks for
a tight asymptotic bound on z(n, n; t, t) as n grows large.
Perhaps surprisingly, this problem remains unsolved! (as of the time of writing these notes)

Theorem 1.4 (Kővári-Sós-Turán Theorem). For t ≥ s ≥ 2 and m,n ∈ N,

z(m,n; s, t) ≤ (s− 1)1/t(n− t+ 1)m1−1/t + (t− 1)m.

Proof. Let G be bipartite with vertex set A ⊔B and satisfy the Zarankiewicz condition.
Fix a ∈ A. By definition, |Γ(a)| = d(a). Now, (d(a)t

) is the number of t-element subsets of Γ(a). We may assume that
for all a ∈ A, d(a) ≥ t − 1. Indeed, otherwise, we may add arbitrary edges to a to make its degree t − 1; any vertex
from A in a subgraph isomorphic to Ks,t must have at least degree t so a cannot be part of it.
We have that ∑

x∈A

(
d(x)

t

)
=
∣∣{(x, T ) : x ∈ A, T ⊆ Γ(x), |T | = t}

∣∣
=
∑
T⊆B
|T |=t

|{x ∈ A : T ⊆ Γ(x)}|.

If we fix a T , then the number of such x for that T is at most s− 1, due to our assumption. As a result,∑
x∈A

(
d(x)

t

)
≤
(
n

t

)
(s− 1).

Now, observe that the function
f(x) =

x(x− 1) · · · (x− t+ 1)

t!

is convex on [t− 1,∞). Using Jensen’s inequality together with our assumption that d(x) ≥ t− 1 for all x ∈ A,(
n

t

)
(s− 1) ≥

∑
x∈A

(
d(x)

t

)

≥ m

( 1
m

∑
x∈A d(x)

t

)
= m

(
e(G)/m

t

)
. (1.2)

1by “components” of the bipartite graph we mean that for any edge uv in the graph, u ∈ A and v ∈ B or u ∈ B and v ∈ A.
2we make the tacit assumption that s ≤ m and t ≤ n.

https://en.wikipedia.org/wiki/Jensen%27s_inequality#Finite_form
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Let d = e(G)/m, the average degree of the vertices in A. Simplifying the above expression,

s− 1

m
≥ d(d− 1) · · · (d− t+ 1)

n(n− 1) · · · (n− t+ 1)
≥
(
d− t+ 1

n− t+ 1

)t

,

where the second inequality follows from the fact that d ≤ n. Therefore,

e(G) ≤ m

((
s− 1

m

)1/t

(n− t+ 1) + (t− 1)

)
= (s− 1)1/t(n− t+ 1)m1−1/t + (t− 1)m,

completing the proof. ■

Next, let us look at some consequences of the above bound.

1.3.1. The Zarankiewicz problem and the extremal function for complete bipartite graphs

We get a bound on ex(n;Ks,t). We claim that for n ∈ N and s, t ≥ 2,

ex(n;Ks,t) ≤
1

2
z(n, n; s, t). (1.3)

Indeed, if Gn = (V,E) has no Ks,t, make a bipartite graph G′ that has vertex set V × {0, 1} such that uv is an edge
in G iff {(u, 0), (v, 1)} is an edge in G′.
G′ satisfies the Zarankiewicz condition. If there do exist S ⊆ V ×{0} and T ′ ⊆ V ×{1} such that all S-T edges are in
G, then π1(S)∩π1(T

′) = ∅ (otherwise, a vertex would be adjacent to itself inG, which is clearly false). This implies
thatKs,t ⊆ G, which is a contradiction.
Since e(G′) = 2e(G), the claim follows.

1.3.2. The case where s = t = 2

When s = t = 2, we get

z(m,n; 2, 2) ≤ (n− 1)m1/2 +m and z(n, n; 2, 2) ≤ (n− 1)n1/2 + n.

Therefore,
ex(n;K2,2) ≤

1

2
(n+ (n− 1)

√
n).

Note that K2,2 ≃ C4. Therefore, a square-free graph on n vertices has O(n3/2) edges.

In fact, this bound is tight! We give an algebraic construction of a suitable graph with no K2,2, known as the Levi
graph for the projective plane.
Let q be a prime power and consider the 3-dimensional vector space V = F3

q (over Fq). Let P and L be the set of all
1- and 2-dimensional subspaces of V respectively.
Define the graph G = (P ⊔ L, E) as follows. For x ∈ P and L ∈ L, let x be adjacent to L in G iff x ⊆ L.
We claim that G has no K2,2. Suppose otherwise and let x1, x2 ∈ P and L1, L2 ∈ L such that the xi are adjacent
to the Lj . If x1 = ⟨u⟩ and x2 = ⟨v⟩, then u and v are linearly independent, which implies that Li = ⟨u, v⟩. This
contradicts the fact that the Li are distinct!
What are the cardinalities of P and L?

• To get a 1-dimensional subspace, we pick a non-zero u and consider ⟨u⟩. In V , there are q3 − 1 non-zero u. We
must nowdivide by q−1 to account for the fact that linearly dependent vectors generate the same 1-dimensional
subspace. Any non-zero u has precisely q − 1 non-zero multiples. Therefore,

|P| = q3 − 1

q − 1
= q2 + q + 1.
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• It turns out that the number of 2-dimensional subspace is equal to the number of 1-dimensional subspaces
(more generally, the number of d-dimensional subspaces is equal to the number of (n − d)-dimensional sub-
spaces of Fn

q ), so
|L| = q2 + q + 1.

How many edges does G have?
Fix x = ⟨u⟩ ∈ P . Wewish to determine howmanyL ∈ L are adjacent to x inG. Such anL can be created by choosing
v ̸∈ x and letting L = ⟨u, v⟩.
The number of choices of v is q3 − q, but each such subspace is repeated for q2 − q choices of v since the cardinality
of ⟨u, v⟩ is q2. Therefore,

d(x) =
q3 − q

q2 − q
= q + 1.

The total number of edges is

|P|(q + 1) = (q + 1)(q2 + q + 1) = q3 + 2q2 + 2q + 1,

which is O(|P|3/2)! Therefore, our O(n3/2) bound is tight.
In fact, the Levi graph is optimal in the case where n = 2(q2 + q + 1), as seen in Corollary 1.5.
Corollary 1.5. For n ∈ N,

z(n, n; 2, 2) ≤ n(1 +
√
4n− 3)

2
. (1.4)

Consequently,
ex(n;C4) ≤

1

4
n(1 +

√
4n− 3). (1.5)

Proof. Equation (1.5) clearly follows from Equations (1.3) and (1.4), so it suffices to show the first equation. Equa-
tion (1.2) in the proof of the Kővári-Sós-Turán Theorem for the case where s = t = 2 just says that(

n

2

)
≥ n

(
d

2

)
,

where d = e(G)/m. That is, d2 − d− (n− 1) ≤ 0. Then,

d ≤
1 +

√
1 + 4(n− 1)

2
=

1 +
√
4n− 3

2
,

which is exactly the bound we want. This bound is tight in the case where n = 2(q2 + q + 1), as seen in the Levi
graph. ■

Before we move on to the next section, let us build a tiny bit of intuition for why the construction of the Levi graph
works.
The projective plane is chosen to ensure that any two distinct points determine a unique line (which holds even
in the non-projective plane setting), and any two distinct lines determine a unique point. This corresponds to the
absence of K2,2 – if it was present as a subgraph, then there would be two lines (points) that determine two points
(lines), which cannot happen!

1.3.3. The case where s = t = 3

We next look at ex(n;K3,3).

The Kővári-Sós-Turán Theorem applied here gives

z(n, n; 3, 3) ≤ (2)1/3(n− 2)n2/3 + 2n,

which is O(n5/3).
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Similar to the Levi graph, we construct an (algebraic) extremal example. Let p be a prime and fix some r ∈ Fp.
Consider the graph G that has vertex set V = F3

p where (x, y, z) is adjacent to (u, v, w) iff
(x− u)2 + (y − v)2 + (z − w)2 = r. (1.6)

Before moving on to explaining why this works, let us try to impart some intuition. (1.6) resembles the equation
of a sphere in R3. If we take three spheres of the same radius, the points of intersection of all three must lie on two
circles, corresponding to the circles of intersection of two pairs of spheres. Since any two circles meet at atmost two
points, the absence ofK3,3 follows.
It may be shown that even over Fp, two “spheres” intersect on a “circle” and any two circles meet at at most 2 points
(Check this!).
So, if we have aK3,3 in the described graph, we have three spheres (centered at each of the three points) that inter-
sect at three points, which is not possible.

It remains to count the number of edges in this graph. To do so, let us estimate the degree of (0, 0, 0), since all vertices
have the same degree (Why?). That is, we want to determine

|{(x, y, z) ∈ F3
p : x2 + y2 + z2 = r}|.

Letting z be arbitrary, we want to find
N(ξ) = |{(x, y) ∈ F2

p : x2 + y2 = ξ}|

for any arbitrary ξ ∈ Fp.

Definition 1.12 (Legendre Symbol). For a ∈ Fp, define the Legendre symbol

(
a

p

)
=


1, a ∈ F×

p is a square,
−1, a ∈ F×

p is not a square,
0, a = 0.

With the above, it is not too difficult to see that

N(ξ) =
∑

(a,b):a+b=ξ

(
1 +

(
a

p

))(
1 +

(
b

p

))
.

Let us now compute the above quantity.
• First of all, ∑

(a,b):a+b=ξ

1 = p.

• Observe that ∑
a∈Fp

(
a

p

)
= 0.

Indeed, the number of squares and non-squares in F×
p is the same. As a result,∑

(a,b):a+b=ξ

(
a

p

)
=
∑
a∈Fp

(
a

p

)
= 0.

Therefore,
N(ξ) = p+

∑
(a,b):a+b=ξ

(
a

p

)(
b

p

)
. (1.7)

Notice that the map F×
p → {−1, 1} given by x 7→

(
x
p

)
is a group homomorphism.
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Lemma 1.6. If ξ ̸= 0, N(ξ) = N(1).
Proof. Using (1.7) and letting a′ = a/ξ and b′ = b/ξ,

N(ξ)− p =
∑

a+b=ξ

(
a

p

)(
b

p

)

=
∑

a′+b′=1

(
a′ξ

p

)(
b′ξ

p

)

=
∑

a′+b′=1

(
a′

p

)(
b′

p

)(
ξ2

p

)

=
∑

a′+b′=1

(
a′

p

)(
b′

p

)
= N(1)− p. ■

So, we have

(p− 1)(N(1)− p) =
∑
ξ∈F×

p

∑
(a,b):a+b=ξ

(
a

p

)(
b

p

)

=
∑
ξ∈F×

p

∑
a∈Fp

(
a

p

)(
ξ − a

p

)

=
∑
a∈Fp

(a

p

) ∑
ξ∈F×

p

(
ξ − a

p

)
=
∑
a∈Fp

(
a

p

)(
0−

(
−a
p

))

= −
(
−1
p

) ∑
a∈Fp

(
a2

p

)
(using the group homomorphism property)

= −(p− 1)

(
−1
p

)
and therefore, N(1) = p−

(
−1
p

)
.

If we choose r to be a non-square, then r− z2 ̸= 0 for any z ∈ Fp andN(r− z2) = p−
(

−1
p

)
. In this case, the degree

of (0, 0, 0) is Θ(p2). The size n of the vertex set V is p3, so the number of edges is Θ(p5) which is Θ(n5/3) and thus,
the bound given by the Kővári-Sós-Turán Theorem is (asymptotically) tight.
For s ≤ t, the Kővári-Sós-Turán Theorem gives

ex(n;Ks,t) < Cs,tn
2−1/s

for some cs,t depending only on s and t. However, it is not known if the above bound is tight for most cases.
Lower bounds of the form

ex(n;Ks,t) ≥ cs,tn
2−1/t

are known only if t > (s− 1)!. See [KRS96] for more details.

1.4. Pk+1-free graphs

Next, we study ex(n;Pk+1).
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First of all, note thatKk is Pk+1-free. So, if we split the n vertices up into blocks of k vertices and add all edges within
each block, the resulting graph will be Pk+1-free as well. That is, Gn is a disjoint union ofKks (and possibly oneKr

for r < k). For this particular graph Gn,
e(Gn) ≤

(k − 1)n

2
.

It turns out that we cannot do better than this.

Theorem 1.7. ex(n;Pk+1) ≤ (k − 1)n/2 with equality if and only if Gn is a disjoint union of Kks.

The above theorem just says that equality is not attained for connected graphs without Pk+1.
To prove this, we prove the following (seemingly) more general statement.

Lemma 1.8. Let Gn = (V,E) be connected and suppose d(v) ≥ k for all v ∈ V . If n ≥ 2k, Gn contains a path of
length 2k. Otherwise, Gn contains an n-cycle.

Proof. We prove the result for the case where n ≥ 2k first. Consider the longest path u = v1, v2, . . . , vr = v inGn and
let U = {vi : i ∈ [r]}. We must show that r ≥ 2k. Suppose otherwise and let r < 2k.
First of all, we must have Γ(u) ⊆ U – otherwise, the path can be extended by adding another vertex from Γ(u) \ U .
Similarly, Γ(v) ⊆ U .
Next, v1 and vr cannot be adjacent. If they are, then we can obtain a longer path by cycling through and choosing
some edge from a vertex in U to one outside of U (such a vertex must exist since the graph is connected and has
at least 2k vertices). More generally, if there exists i such that v1, vi+1 and vi, vr are adjacent, then we arrive at a
contradiction (for the same reason).
Let S = {i : vivr ∈ E} and T = {i : v1vi+1 ∈ E}. By the above observation, S ∩ T = ∅. However, by our first
observation, |S| = d(vr) ≥ k and |T | = d(v1) ≥ k. Therefore, r ≥ |S ∪ T | ≥ 2k.
The result for n < 2k is shown using nearly the same proof. ■

Proof of Theorem 1.7. We perform strong induction on n. We may assume that n > k. Suppose Gn has no Pk+1. If
Gn is not connected, then it consists of a disjoint union of connected subgraphs. We may then apply the inductive
hypothesis to each of these smaller pieces.
So, let Gn be connected. By Lemma 1.8, there is some vertex v such that d(v) ≤ (k − 1)/2 (otherwise, there must
be a path of length k). Additionally, observe that Gn does not have any subgraph isomorphic to Kk – using the
connectedness assumption gives a path of length k otherwise.
The graph G \ {x}4 has no Pk+1 and further, it has noKk either. Therefore, G \ {x} is not extremal and e(G \ {x}) <
(k − 1)(n− 1)/2. Therefore,

e(G) = d(x) + e(G \ x)

<
k − 1

2
+

(k − 1)(n− 1)

2
=

(k − 1)n

2
. ■

4This is the subgraph induced by G on the vertex set V \ {x}
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�2. Fundamental Results in Extremal Graph Theory

2.1. The Erd®s-Stone-Simonovits Theorem

2.1.1. Motivation

Using the folklore result that a graph is bipartite iff it has no odd cycle, we have

ex(n;C2k+1) ≥

⌊
n2

4

⌋
.

Remark. It in fact turns out that for n≫ 0, ex(n;C2k+1) = ⌊n2/4⌋, as we shall see later..
Is there any more general relationship between forbidden subgraphs and r-partite graphs?

Definition 2.1 (Chromatic Number). Given a graph G, its chromatic number is given by

χ(G) = min{r : G is r-partite}.

Alternatively, we can define the above using the following.

Definition 2.2. Given a graph G = (V,E), an r-coloring of G is a function f : V → [r] such that for any uv ∈ E,
f(u) ̸= f(v).
The chromatic number of a graph is the least r such that it is r-colorable.

Suppose H is an arbitrary graph such that χ(H) = r + 1. Then, no r-partite graph contains H . As a result,
ex(n;H) > tr(n).

Our earlier observation on ex(n;C2k+1) is then just a consequence of the fact that C2k+1 is 3-colorable.
Let us give a more concrete example. Suppose we want to find ex(n;Petersen), where Petersen is the Petersen graph.
It may be checked that Petersen has chromatic number 3. So,

ex(n;Petersen) > t2(n) =

⌊
n2

4

⌋
.

Can we do better?
This is answered by the Erdős-Stone-Simonovits Theorem.

2.1.2. The result

Theorem 2.1 (Erdős-Stone-Simonovits Theorem, Version 1). Let r ≥ 1 and 0 < ε < 1/2. Then, for n ≫ 0 and any
graph Gn, if

δ(Gn) ≥
(
1− 1

r
+ ε

)
n, (2.1)

there exist pairwise disjoint subsets V1, . . . , Vr+1 of V such that for each i,

|Vi| = t ≥ ε log n

2r−1(r − 1)!

and the complete (r + 1)-partite graph on these subsets is contained in Gn.

https://proofwiki.org/wiki/Graph_is_Bipartite_iff_No_Odd_Cycles
https://en.wikipedia.org/wiki/Petersen_graph
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Theorem 2.2 (Erdős-Stone-Simonovits Theorem, Version 2). Let r ≥ 1 and 0 < ε < 1/2. Then, for n ≫ 0 and any
graph Gn, if

e(Gn) ≥
(
1− 1

r
+ ε

)(
n

2

)
, (2.2)

there exist pairwise disjoint subsets V1, . . . , Vr+1 of V such that for each i,

|Vi| = t ≥ ε log n

2r+1(r − 1)!

and the complete (r + 1)-partite graph on these subsets is contained in Gn.

Observe the difference in the exponent of 2 in the denominator of t in the two versions.
For example, if n ≥ e32/ε and Equation (2.2) is satisfied, then T3(12), and thus Petersen, is a subgraph of Gn.
Therefore, (replacing ε with 2ε)

ex(n;Petersen) ≤
(
1

2
+ 2ε

)(
n

2

)
≤
(
1

4
+ ε

)
n2.

for all ε > 0.

Corollary 2.3. If χ(H) = r + 1, then for any ε > 0, for n≫ 0,(
1− 1

r

)
n2

2
≤ ex(n;H) ≤

(
1− 1

r
+ ε

)
n2 −O(n).

This implies that if χ(H) = r + 1, then for n≫ 0(
1− 1

r

)
n2

2
≤ ex(n;H) ≤

(
1− 1

r
+ o(1)

)
n2

2

Proof of Erdős-Stone-Simonovits Theorem, Version 1. We first show the result for r = 1. Let Gn be a graph such that
δ(Gn) ≥ εn. We want a “large” t such that Kt,t is isomorphic to a subgraph Gn.
Suppose that Gn is Kt,t-free (we shall fix t later). Now, we have that

t

(
n

t

)
(1)
> |{(v, T ) : v ∈ V, T ⊆ Γ(v), |T | = t}| =

∑
v∈V

(
d(v)

t

)
(2)

≥ n

(
εn

t

)
,

where (2) follows from the hypothesis on δ(Gn) and (1) follows due to our assumption that Gn isKt,t-free.
Therefore,

n

(
εn

t

)
< t

(
n

t

)
.

So,

1 <
t

n
· n(n− 1) · (n− t+ 1)

εn(εn− 1) · (εn− t+ 1)

<
t

n
·
(

n

εn− t+ 1

)t

=
t

n

1

εt

(
1

1− t−1
εn

)t

.
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We desire a large t such that the above results in a contradiction. Let us look at the last term. Suppose we want(
1− t− 1

εn

)t

→ 1.

Equivalently,
t log

(
1− t− 1

εn

)
→ 0

t

(
t− 1

εn
+

1

2

(
t− 1

2n

)2

+
1

3

(
t− 1

εn

)3

+ · · ·

)
→ 0.

If εn > t4, the above holds (Why?).
That is, if t < (εn)1/4, then for sufficiently large n, t,(

1− t− 1

εn

)−t

< 2

and
1 <

t

n
· 1
εt

(
1− t− 1

εn

)−t

<
2t

εtn
.

If the above is ≤ 1, we shall arrive at a contradiction. That is, if

log(2t) + t log

(
1

ε

)
< log n,

then we arrive at a contradiction. In particular,
t = ⌈ε log n⌉

is a suitable choice (Why?), completing the proof of the theorem for r = 1.

Now, let us prove the general case by performing induction on r. Let Gn be a graph with

δ(Gn) ≥
(
1− 1

r
+ ε

)
n.

Now,
1− 1

r
+ ε > 1− 1

r − 1
+

1

r(r − 1)
.

Let ε′ = 1/r(r − 1). By induction, there are V ′
1 , . . . , V

′
r such that

|V ′
i | ≥ t′ =

log n

r(r − 1)2r−2(r − 2)!
=

log n

2r−2r!
(2.3)

for each i and the complete r-partite graph on these sets is a subgraph of Gn. Let K =
⋃

V ′
i .

We obviously have ε < 1/r, since the claim is vacuously true otherwise.
We shall find Vi ⊆ V ′

i for each 1 ≤ i ≤ r and some Vr+1 ⊆ V \ K such that the complete bipartite graph on
(V1, . . . , Vr+1) is the required subgraph of Gn.
Now, define

U =

{
x ∈ V \K : d(x,K) ≥

(
1− 1

r
+ λ

)
|K|

}
for some λ we shall fix later. We shall bound e(K,V \K) in two different ways. From the perspective of K,

e(K,V \K) ≥ |K|

((
1− 1

r
+ ε

)
n− |K|

)
.
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From the perspective of V \K,

e(K,V \K) = e(V \ (K ⊔ U),K) + e(U,K)

≤
(
n− |U | − |K|

)(
1− 1

r
+ λ

)
|K|+ |U ||K|.

Putting the two together,

|K|

((
1− 1

r
+ ε

)
n− |K|

)
≤
(
n− |U | − |K|

)(
1− 1

r
+ λ

)
|K|+ |U ||K|(

1− 1

r
+ ε

)
n− |K| ≤

(
n− |U | − |K|

)(
1− 1

r
+ λ

)
+ |U |.

Set λ = ε/2. We then have
r

2
εn ≤

(
1− rε

2

)
(|U |+ |K|).

So,
|U | ≥ rε

2− rε
n− |K|

(∗)
≥ ε

1− ε
n− rt′,

where (∗) follows from the fact that rε/(2− rε) is increasing in r and r ≥ 2.
Since t′, and thus rt′, is of the order of log n, the first term in the expression dominates for sufficiently large n. So,
for n≫ 0, |U | ≥ εn.

Now, (
1− 1

r
+

ε

2

)
|K| ≥

(
1− 1

r
+

ε

2

)
rt′

≥ (r − 1)t′ +
εr

2
t′.

This implies that each u ∈ U has at least (εr/2)t′ neighbours in each V ′
i .

We can now use a pigeonhole argument to choose a subset of U whose vertices are all adjacent to some common set
of vertices in each V ′

i . To do so, consider

|{(u,W1, . . . ,Wr) : Wi ⊆ V ′
i , |Wi| = (εr/2)t′, and u is adjacent to all the vertices of each Wi}|.

By our earlier observation, this must be at least |U | ≥ εn.
On the other hand, it is at most the number of ways of choosing the Wi, which is ( t′

(εr/2)t′

)r.
In particular, using a pigeonhole argument, there exist V1, . . . , Vr and a Vr+1 ⊆ U such that Vi ⊆ V ′

i for each 1 ≤ i ≤ r

and for all u ∈ Vr+1, (u, V1, . . . , Vr) is in the set whose cardinality we just considered, and |Vr+1| ≥ εn/
(

t′

(εr/2)t′

)r. Let
us now bound this expression.

|Vr+1| ≥
εn(
t′

(εr/2)t′

)r

≥ εn

(2e/εr)t′εr2/2
(see here for the bound used)

≥ εn ·
(
ε

e

)t′εr2/2

(since r ≥ 2, 2/r ≤ 1).

Setting
t =

ε log n

2r−1(r − 1)!
,

https://math.stackexchange.com/questions/132625/
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we see that t = εrt′/2.
Keeping in mind that the bound we want is |Vr+1| ≥ t,

log

n

(
ε

e

)t′εr2/2
 ≥ log n+

εr2t′

2
log

(
ε

e

)

≥ t′

(
2r−2r!− log

(
e

ε

)
· εr

2

2

)
(using the expression for t′ in (2.3))

≥ t′

(
2r−2r!− log(2e) · r

2

4

)
(−ε log(e/ε) is decreasing in ε)

≥ log(rt′/2).

Therefore, Vr+1 ≥ t. Since |Vi| = εrt′/2 = t by definition, the proof is complete. ■

Whew. Let us now give a simple corollary of the above result.

Porism 2.4. Suppose H1, . . . ,Hm are graphs. Then, for any ε > 0 and n≫ 0,

ex(n;H1, . . . ,Hm) ≤
(
1− 1

r
+ ε

)
n2

2
−O(n2),

where r + 1 = max{χ(H1), . . . , χ(Hm)}.

Before we move onto the proof of the second version of the Erdős-Stone-Simonovits Theorem, we give a lemma that
will assist in its proof.

Lemma 2.5. For n≫ 0, if e(Gn) ≥ (c+ ε)
(
n
2

) for some c > 0 and ε > 0, then there exists H ⊆ Gn such that
1. |H| ≥ √εn.
2. δ(H) ≥ c|H|.

Proof. Assume thatGn itself does not satisfy the conclusions. Then, there exists some xn ∈ V (Gn) such that d(xn) <
cn.
Let Hn−1 = G \ {xn}. If Hn−1 fails the second conclusion of the theorem, there exists xn−1 ∈ V (Hn−1) such that
d(xn−1) < c(n− 1).
Repeating the above, we get a sequence of graphs Gn = Hn ⊋ Hn−1 ⊋ · · · ⊋ Hℓ, where V (Hn−r) \ V (Hn−r−1) =
{xn−r} for each r and ℓ ≥

√
εn. Further, for each i, dHi(xi) < ci for i = ℓ, . . . , n.

Now,

e(Hℓ) > e(Hn)−
(
cn+ c(n− 1) + · · ·+ c(ℓ+ 1)

)
= (c+ ε)

(
n

2

)
− c

(
n(n+ 1)

2
− ℓ(ℓ+ 1)

2

)
= (c+ ε)

(
n

2

)
− c

((
n

2

)
+ n−

(
ℓ+ 1

2

))

= ε

(
n

2

)
− cn+ c

(
ℓ+ 1

2

)
.
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Now, the final expression must be at most (ℓ2) (since Hℓ has ℓ vertices).
As a result, it would suffice to show that the above expression on taking ℓ = ⌊εn⌋ is greater than (ℓ2) for sufficiently
large n (this implies that the sequence must stop before reaching this ℓ due to one of the graphs satisfying the
conclusions). Indeed, this is seen to be true as

ε

(
n

2

)
− cn+ c

(
ℓ+ 1

2

)
≥ ε

(
n

2

)
+ c

(
(⌊
√
εn⌋+ 1)⌊

√
εn⌋

2
− n

)

≥ ε

(
n

2

)
(for sufficiently large n)

≥
(
ℓ

2

)
,

completing the proof. ■

2.2. An Introduction to Random Graphs

Definition 2.3 (Erdős-Rényi Model). Fix 0 ≤ p ≤ 1. The Erdős-Rényi random graph model, denoted Gn,p is the
randomvariablewhich is a graphwith vertex set [n], such that for each {i, j} ∈ ([n]2 ), {i, j} is an edgewith probability
p, independently across distinct pairs.

So, for any graph H on vertex set [n],

Pr(Gn,p = H) = pe(H)(1− p)(
n
2)−e(H).

Remark. Gn,1/2 is the uniform distribution on the set of graphs on [n].
A recurring theme in probability theory is that random objects tend to behave very nicely given a large number of
samples (along the lines of the laws of large numbers and the central limit theorem).

2.2.1. A motivating extremal problem (bounding ex(n;C2k))

To understand why random graphs are important, let us look at ex(n;C2k).

Theorem 2.6. For any k, there exists a constant c such that for n≫ 0, there is a Ck-free Gn with

e(Gn) ≥ c · n1+1/(k−1).

The above result does not yield anything useful for k odd.
Proof. Consider Gn,p for some p we shall fix later. Let N(G) be the number of copies of Ck in a given graph G.
Given a cycle (v1, . . . , vk), observe that the sequences (v2, v3, . . . , vk, v1) and (vk, vk−1, . . . , v1) determine the same
cycle. That is, performing cyclic shifts of a sequence of vertices or reversing their order around gives the same cycle.
Let C be the set of all these cycles.5 By our observation,

|C| = n(n− 1) · · · (n− k + 1)

2k
=

n!

2k · k!
.

5This can be made more formal by taking all length k sequences of [n] consisting of distinct elements and considering the equivalence classes
formed by the equivalence relation defined on the previous line.
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Now,

E[N(Gn,p)] = E

 ∑
(v1,...,vk)∈C

1v1v2,v2v3,...,vk−1vk,vkv1 are edges


=

∑
(v1,...,vk)∈C

Pr
[
1v1v2,v2v3,...,vk−1vk,vkv1 are edges

]
(linearity of expectation)

=
∑

(v1,...,vk)∈C

pk

=
n!

2k · k!
pk.

This quantity is obviously less than (np)k/2k. If p, and thus the expectation is small, we expect to not see many Cks.
On the other hand,

E[e(Gn,p)] = E

 ∑
{i,j}∈([n]

2 )

1ij is an edge


=

(
n

2

)
p.

Given a graph, if we delete an (arbitrary) edge from each copy of Ck in it, we will be left with no cycles. That is,
given any graph G, there is a graph on the same vertex set with e(G)−N(G) edges that is Ck-free. Inspired by this,
by the linearity of expectation,

E[e(Gn,p)−N(Gn,p)] ≥
(
n

2

)
p− (np)k

2k
.

If we set p =
(

k
2

)1/(k−1)

n−1+1/(k−1), then the above quantity is at least n(n−1)p/4 ≥ c·n1+1/(k−1) for an appropriate
constant c and n≫ 0, completing the proof. ■

2.2.2. Digression: A coloring result of Erd®s

The question we consider in this section is:

Are there C3-free graphs with large chromatic number?

More generally,

Are there graphs with large chromatic number and large girth?

For example, if the girth of a graph is 7, then there cannot be adjacent vertices v, w such thatΓ(v)∩Γ(u) andΓ(w)∩Γ(u)
are non-empty for some u distinct from v, w. As a result, we can draw a “2-step tree” rooted at any u, which has Γ(u)
at the first level and the neighbours (other than u) of vertices of Γ(u) at the second.
This seems to suggest some level of sparseness in the graph, due to which there are not too many edges and as
a result, the chromatic number is low. However, it turns out that this intuition is not true, as proved by Erdős in
[Erd59].

Theorem 2.7. There exist graphs with arbitrarily large girth and chromatic number. That is, given a g, k ≥ 3, there
exists a graph Gn such that girth(G) > g and χ(G) > k.
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Proof. Consider Gn,p for some p we fix later. Further assume that np ≥ 1.
Given a graph G, let Ni(G) (for 3 ≤ i ≤ g) be the number of cycles of size i in G. As we saw in the proof of
Theorem 2.6,

E[Ni(Gn,p)] =
n!

2i · i!
pi <

(np)i

6
.

Let N =
∑g

i=3 Ni. Then

E
[
N(Gn,p)

]
= E

 g∑
i=3

Ni(Gn,p)


<

(np)3

6

(
(np)g−2 − 1

np− 1

)

<
(np)g

3
. (since np ≥ 1)

Using Markov’s inequality,
Pr

[
N(Gn,p) >

2

3
(np)g

]
<

1

2
(2.4)

This takes care of the girth (we want the above probability to be small). On the other hand, we need to make the
chromatic number large. Towards this, observe that χ(G) ≥ n/α(G) (Why?). We have

Pr
[
α(Gn,p) ≥ r

]
= Pr

 ⋃
X⊆[n]:|X|=r

{X is independent}


≤
∑

X⊆[n]:|X|=r

Pr[X is independent]

=
∑

X⊆[n]:|X|=r

(1− p)(
r
2)

≤
(
n

r

)
· e−pr(r−1)/2

≤
(
en

r

)r

· e−pr2/3

=

(
e1−pr/3n

r

)r

.

We shall choose r and p such that with positive probability, N(Gn,p) ≤ 2(np)g/3 and α(Gn,p) < r. This implies the
existence of a graph Gn such that both of the above hold.
We cannot use the tactic of removing edges we did in the earlier proof since that might increase α. Deleting vertices
on the other hand works, since this can increase neither α nor N .
If we delete a single vertex from each cycle involved in N , the resulting graph will have girth greater than g. That
is, given a graph Gn, there exists a graph with at least n−N(Gn) vertices that has girth greater than g. Denote this
corresponding graph as G′

n.

Set p = n1/(g+1)−1. In this case, 2(np)g/3 < n/2 for n≫ 0 and using (2.4),

Pr

[
n−N(Gn,p) >

n

2

]
≥ 1

2
. (2.5)

Set r = 4 log n/p = 4n1−1/(g+1) log n. For these values of p and r,

Pr
[
α(Gn,p) ≥ r

] n→∞−−−−→ 0. (2.6)

https://en.wikipedia.org/wiki/Markov%27s_inequality


MA 5109: Topics in Graph Theory 23 / 66 Amit Rajaraman

Using (2.5), our construction of G′, and (2.7), it is true with with positive probability that

|G′
n,p| ≥

n

2
, girth(G′

n,p) > g,

and
χ(G′

n,p) ≥
n

α(G′
n,p)
≥ n

r
=

n1/(g+1)

4 log n

n→∞−−−−→∞.

Therefore, for g, k ≥ 3, there exists n≫ 0 and graph G on n vertices such that girth(G) > g and χ(G) > k. ■

2.3. Szemerédi's Regularity Lemma

The second of our powerful results in extremal graph theory (after the Erdős-Stone-Simonovits Theorem) is Sze-
merédi’s Regularity Lemma, which says that any sufficiently large graph behaves in some way like a random graph.

2.3.1. Motivation

First, let us give a bound from probability theory that will be useful.

Lemma 2.8 (Chernoff Bound). Suppose X ∼ B(n, p), the binomial distribution with parameters n, p. Then for any
t ≥ 0,

Pr
[
X − E[X] ≥ t

]
≤ exp

(
− t2

2
(
E[X] + t/3

))
and

Pr
[
X − E[X] ≤ −t

]
≤ exp

(
− t2

2E[X]

)
.

Fix disjoint A,B ⊆ [n] and let |A| = a, |B| = b. Then given a graph G on [n],

e(A,B) =
∑

x∈A,y∈B

1xy∈E(G).

Fix 0 < p < 1. Then if G ∼ Gn,p,
e(A,B) ∼ B (ab, p) .

By the Chernoff Bound, for some fixed constant c,

Pr

|e(A,B)− pab| > c

b

√
pa log

(
2n

b

)
 n→∞−−−−→ 0.

In particular, if a = b = αn for some 0 < α < 1/3, then with high probability,

|e(A,B)− pab| = O

b

√
ap log

(
2n

b

)
for any sets A,B of sizes a and b respectively.
This seems to say that the actual number of edges between two sets of the given size does not deviate very much
from the expected number of edges between the two sets. The expression on the right is of the order of O(n√n),
which is asymptotically less than the expectation pab = O(n2).

https://en.wikipedia.org/wiki/Binomial_distribution
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2.3.2. The result

The regularity lemma gives a qualitative version of the above observation. Before we move to the actual result, let
us provide some notation.

Definition 2.4 (Density). Given a graphG = (V,E) and U,W ⊆ V , the density d(U,W ) is equal to e(U,W )/|U ||W |.

Remark. Here, e(U,W ) is {(u,w) ∈ U ×W : {u,w} ∈ E}. If U and W are disjoint, this is the same as our earlier
definition of e(·, ·). If they are not disjoint however, edges within the intersection are counted twice in our current
definition.
This does not matter all that much since we usually apply the regularity lemma on disjoint sets.

Definition 2.5 (ε-regular pair). Suppose 0 < ε < 1. A pair of subsets (U,W ) is said to be ε-regular if for any A ⊆ U ,
B ⊆W with |A| ≥ ε|U | and |B| ≥ ε|W |, we have

|d(A,B)− d(U,W )| ≤ ε

This corresponds to some sort of uniform behaviour throughout the sets, where subsets behave similarly to their
parent sets in terms of density. If (U,W ) is ε-regular, all sufficiently large subsets of U,W have roughly the same
edge density as (U,W ).

Theorem 2.9 (Szemerédi’s Regularity Lemma). Given 0 < ε < 1, there exists M such that for n≫ 0, any graph Gn

admits a vertex partition P = (V0, V1, . . . , Vk), where
• k ≤M ,
• |V0| ≤ εn (V0 is known as an “exceptional set”),
• all the Vi for 1 ≤ i ≤ k are of equal size, and
• the number of ε-irregular pairs (Vi, Vj) (1 ≤ i, j ≤ k) is at most εk2.

Such a partition where the number of ε-regular pairs is at most εk2 is often referred to as an ε-regular partition.

We present the proof of the above, that uses an “energy increment” argument, over a series of lemmas.

Definition 2.6 (Energy). Given a graph Gn with vertex set V , for disjoint U,W ⊆ V , define the energy of the pair
(U,W ) by

q(U,W ) =
|U ||W |
n2

d2(U,W ).

If U = {U1, . . . , Um} and W = {W1, . . . ,Wℓ} are partitions of U and W respectively, then the energy of the pair
(U ,W) is

q(U ,W) =
∑

1≤i≤m
1≤j≤ℓ

q(Ui,Wj).
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For a partition P of V , let
q(P) = q(P,P) =

∑
U,W∈P

q(U,W ).

Lemma 2.10. If U,W are disjoint subsets of V and U ,W are partitions of U,W respectively, then

q(U ,W) ≥ q(U,W ).

Proof. Independently pick u,w uniformly randomly from V . Define the random variable

Z(u,w) =

{
d(U ′,W ′), u ∈ U ′ ∈ U , w ∈W ′ ∈ W,

0, otherwise.

Then,

E[Z]2 =

 ∑
U ′∈U
W ′∈W

d(U ′,W ′)

(
|U ′||W ′|
|U ||W |

)
2

=

 1

|U ||W |
∑
U ′∈U
W ′∈W

e(U ′,W ′)


2

= d(U,W )2

=
n2

|U ||W |
q(U,W ) and

E[Z2] =
∑
U ′∈U
W ′∈W

d2(U ′,W ′)

(
|U ′||W ′|
|U ||W |

)

=
n2

|U ||W |
q(U ,W).

Since variance is always non-negative, E[Z2] ≥ E[Z]2 and thus,

q(U ,W) ≥ q(U,W ). ■

Partitioning increases energy! Also observe that since the random variable Z is at most 1 (1/2, in fact), so is the
energy.
This also implies that if the partition Q is a refinement of P , then

q(Q) ≥ q(P).

Lemma 2.11. If (U,W ) is not ε-regular, there is a partition U = {U1, U2} and W = {W1,W2} of U,W respectively
such that

q(U ,W) > q(U,W ) + ε4
|U ||W |
n2

.

Proof. By the ε-irregularity, there exist U1 ⊆ U and W1 ⊆W with |U1| ≥ ε|U |, |W1| ≥ ε|W |, and

|d(U1,W1)− d(U,W )| > ε.
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Consider the partitions U = {U1, U \ U1} andW = {W1,W \W1}. With the same Z as in the proof of the previous
lemma,

E[Z2]− E[Z]2 = E[(Z − E[Z])2]

≥ E[(Z − E[Z])21u∈U ′,w∈W ′ ]

= ε4.

The claim follows. ■

Lemma 2.12. Suppose 0 < ε < 1/4 and let P = (V0, V1, . . . , Vk) be a partition of V such that
• P \ {V0} is not ε-regular (there are at least εk2 irregular pairs),
• P \ {V0} is equitable6, and
• |V0| ≤ εn.

Then, there is a refinement Q = (V ′
0 , V

′
1 , . . . , V

′
ℓ ) of P such that

• ℓ ≤ k4k,
• Q \ {V ′

0} is equitable,
• |V ′

0 | ≤ |V0|+ n/2k, and
• q(Q) ≥ q(P) + ε5/2.

Proof. Let |Vi| = t for all 1 ≤ i ≤ k.
Suppose (Vi, Vj) is an ε-irregular pair in P and let (Vi,1, Vi,2) and (Vj,1, Vj,2) be the partitions of Vi, Vj respectively
described in Lemma 2.11. If Q1 is this particular refinement

P ∪ {Vi,1, Vi,2, Vj,1, Vj,2} \ {Vi, Vj}

of P , then
q(Q1) ≥ q(P) + ε4

|Vi||Vj |
n2

Let us similarly produce refinements corresponding to all irregular pairs of P . Let Q′ be the “common” refinement
of all these partitions (Qi). That is, for each v ∈ V , v is placed in the subset⋂W∈Qi:v∈W W .
We then have

q(Q′) ≥ q(P) + ε4 · t
2

n2
(εk2)

= q(P) + ε5
(tk)2

n2

≥ q(P) + ε5

2
. (tk = n− |V0| ≥ (1− ε)n ≥ 3n/4 and 9/16 ≥ 1/2) (2.7)

To make the partition Q′ equitable, create the partition Q using it as follows.
Suppose we partition Vi into (Vij), where Vij is formed due to the irregularity of (Vi, Vj). Partition each of these parts
of Q′ into sets of size b := ⌊t/4k⌋. Whatever residual part cannot be cut out in this manner, we merge with V0.
Since partitioning can only increase energy, this operation will only strengthen (2.7), if anything.

6All the blocks of the partition are of equal size.
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Since the size of any block of Q is b, the number of blocks is at most n/b = k4k.
Finally, what is the size of |V ′

0 |?
Q′ has at most k · 2k−1 parts (there are at most (k − 1) 2-part partitions of each block of P , and together they give a
partition of size at most 2k−1). So,

|V ′
0 | ≤ |V0|+ |Q′|b

≤ |V0|+ k2k−1 t

4k

≤ |V0|+
n

2k
,

as desired. ■

Observe that with the above lemma, Szemerédi’s Regularity Lemma follows without too much difficulty.
Begin with a partition P0 with k0 parts, where 2k0 ≥ 2/ε.
Given Pk, let Pk+1 be the partition defined by Lemma 2.12. Since the energy of any partition is bounded above by 1,
this process must terminate after at most 2/ε5 steps.
Further, since the size of the refined partition is bounded between quantities dependent solely on the old partition,
the size of the final partition after termination of the above process is at most some quantity dependent only on ε
(this quantity might be massive7, but that is besides the point).

2.4. Some Corollaries of Szemerédi's Regularity Lemma

In this section, we cover several interesting corollaries of Szemerédi’s Regularity Lemma.

Before we begin however, how do we process the regularity lemma? We typically begin with a “cleaning” of the
graph as follows.

• Given ε > 0, get a partition as described in the lemma.
• First, delete all edges between irregular pairs. This loses at most (εk2)t2 < εn2 edges.
• Delete all edges between “sparse” pairs, where we say that a pair (Vi, Vj) is sparse if d(Vi, Vj) < ε (say). This

loses at most k2(εt2) < (ε/2)n2 edges.
• Delete all edges inside the exceptional part V0. This loses at most (ε2/2)n2 edges.

All of these deletions cost at most 2εn2 edges. In the remaining graph, all pairs (Vi, Vj) for 1 ≤ i, j ≤ k are ε-regular.
Further, if e(Vi, Vj) > 0, then d(Vi, Vj) ≥ ε.

2.4.1. The graph counting and removal lemmas

Theorem 2.13 (Triangle Counting Lemma). Suppose V1, V2, V3 forms a pairwise ε-regular partition of the vertex set
of graph Gn, and that d(Vi, Vj) ≥ d (for some d ≥ 2ε). Then, there are at least

ε2(1− 2ε)(d− ε)|V1||V2||V3|

triangles xyz with x ∈ V1, y ∈ V2, z ∈ V3.

7Unbelievably so. For example, ε = 1/8 gives a bound of the order of 4 ↑↑ 215 (using Knuth’s up-arrow notation). It further turns out that
such a massive tetration-type bound is necessary, as proved in [Gow97].

https://en.wikipedia.org/wiki/Knuths_up-arrow_notation
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Proof. Let
X1 = {x ∈ V1 : d(x, V2) ≤ ε|V2|}.

We claim that |X1| < ε|V1|. Suppose otherwise. Then e(X1, V2)/|X1||V2| < ε and further, ε-regularity implies that
d(X1, V2) ≥ (d− ε), which leads to a contradiction.
Similarly, X2 := {x ∈ V1 : d(x, V3) ≤ ε|V3|} has size less than ε|V1| too.
For all x ∈ V1 \ (X1 ∪X2), d(x, V2) ≥ ε|V2| and d(x, V3) ≥ ε|V3|. Fix such an x and let X ′

i = Γ(x) ∩ Vi (for i = 2, 3).
By the ε-regularity of (V2, V3), d(V2, V3)− d(X ′

2, X
′
3) ≤ ε so d(X ′

2, X
′
3) ≥ d− ε. As a result,

e(X ′
2, X

′
3) ≥ (d− ε)|X ′

2||X ′
3| ≥ (d− ε)ε2|V2||V3|.

Therefore, the number of triangles of the desired form is at least
(1− 2ε)|V1|︸ ︷︷ ︸
the number of

such x

· (d− ε)ε2|V2||V3|︸ ︷︷ ︸
the number of triangles
corresponding to each x

,

completing the proof. ■

Along similar lines is the following result.

Theorem 2.14 (Triangle Removal Lemma). Given ε > 0, there exists δ (depending only on ε) such that for n ≫ 0,
any graph Gn with at most δn3 triangles can be made triangle-free by deleting at most εn2 edges.

Proof. Start with an (ε/4) regular partition of Gn using Szemerédi’s Regularity Lemma and the cleaning process
from earlier. Delete all edges within each of the Vi. This costs at most k(t2/2) < (kt)2/2k ≤ εn2/4 edges.
So, we have lost≤ εn2 edges in all. If there is a triangle remaining in the graph, it must come from a triple (Vi, Vj , Vk)
with all three pairs being (ε/4)-regular and density at least ε/2. We can then use the triangle counting lemma to
conclude that there are at least t3(ε/4)3(1 − ε/2) > n3(ε/8)3/M(ε)3. Letting δ to be the 1/6 this quantity, we are
done. ■

Let (V1, V2), (V2, V3), and (V3, V1) all be ε-regular pairs with densities d12, d23, d13 > 2ε. A random graph on V1 ⊔
V2 ⊔ V3 with edge probabilities dij between Vi and Vj has an expected number of triangles of |V1||V2||V3|d12d23d31.
Ideally, we would have a result that the number of triangles is indeed to this quantity (so the graph behaves almost
randomly, in a sense similar to that in Szemerédi’s Regularity Lemma).

Theorem 2.15 (GraphCounting Lemma). LetG be a graph on n vertices andH a graph on [k]. Let V1, . . . , Vk ⊆ V (G)
such that (Vi, Vj) is ε-regular whenever ij ∈ E(H). Then,∣∣{(v1, . . . , vk) : vi ∈ Vi and {v1, . . . , vk} form a copy of H in G}

∣∣
is within εe(H)|V1||V2| · · · |Vk| of

k∏
i=1

|Vi|
∏

ij∈E(H)

d(Vi, Vj),

assuming that∏ij∈E(H) d(Vi, Vj) > εe(H).

Proof. We shall prove this by inducting on e(H). If e(H) = 0, the result is trivial.
Let us rephrase the problem probabilistically. Pick vi ∈ Vi independently and uniformly. Then, we wish to prove
that ∣∣∣∣∣∣Pr [vivj ∈ E(G) for all ij ∈ E(H)

]
−

∏
ij∈E(H)

d(Vi, Vj)

∣∣∣∣∣∣ ≤ εe(H). (2.8)
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Suppose {1, 2} ∈ E(H). It suffices to show that∣∣∣Pr [vivj ∈ E(G) for all ij ∈ E(H)
]
− d(V1, V2) Pr

[
vivj ∈ E(G) for all E(H) \ {1, 2}

]∣∣∣ ≤ ε. (2.9)

Indeed, by induction,∣∣∣∣∣∣∣∣∣Pr
[
vivj ∈ E(G) for all E(H) \ {1, 2}

]
−

∏
ij∈H

ij ̸={1,2}

d(Vi, Vj)

∣∣∣∣∣∣∣∣∣ < ε(e(H)− 1), (2.10)

and (2.8) follows from (2.9) and (2.10) on using the union bound. We shall prove that (2.9) holdswhenwe condition
on the choices vi for i > 2, and thus generally. Let

Aj = {vj ∈ Vj : {vj , vi} ∈ E(G) when {j, i}} ∈ E(H).

for j = 1, 2. Equation (2.9) is then equivalent to∣∣∣∣e(A1, A2)

|V1||V2|
− d(V1, V2)

|A1||A2|
|V1||V2|

∣∣∣∣ ≤ ε. (2.11)

We claim that (2.11) holds for all A1, A2. If |A1| ≥ ε|V1| and |A2| ≥ ε|V2|, then ε-regularity implies that |d(A1, A2)−
d(V1, V2)| ≤ ε, that is, ∣∣∣∣e(A1, A2)

|A1||A2|
− d(V1, V2)

∣∣∣∣ ≤ ε.

So,
|V1||V2|
|A1||A2|

∣∣∣∣e(A1, A2)

|V1||V2|
− d(V1, V2)

|A1||A2|
|V1||V2|

d(V1, V2)

∣∣∣∣ ≤ ε,

and (2.11) easily follows. If |A1| < ε|V1|, then the above follows immediately anyway, since∣∣∣∣e(A1, A2)

|V1||V2|
− d(V1, V2)

|A1||A2|
|V1||V2|

∣∣∣∣ = |A1||A2|
|V1||V2|

∣∣∣∣e(A1, A2)

|A1||A2|
− d(V1, V2)

∣∣∣∣
=
|A1||A2|
|V1||V2|

∣∣d(A1, A2)− d(V1, V2)
∣∣

≤ |A1|
|V1|

< ε,

so we are done. ■

The generalized version of the triangle removal lemma is the following.

Theorem 2.16 (Graph Removal Lemma). Given ε > 0 and any graph H , there exists δ (depending only on ε) such
that for n ≫ 0, any graph Gn with at most δnV (H) subgraphs isomorphic to H can be made H-free by deleting at
most εn2 edges.

2.4.2. Roth's Theorem and Corners

Next, we describe Roth’s Theorem. The result deals with a conjecture of Erdős and Turán:
Given ε > 0 and r ∈ N, there exists N0 such that for all N ≥ N0, the following holds. If A ⊆ [N ] with
|A| ≥ εN , then A contains an arithmetic progression of length r.

https://en.wikipedia.org/wiki/Boole%27s_inequality
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Roth proved in the early 50s that the conjecture holds for r = 3. Szemerédi proved in the early 70s that it holds for
all r. In fact, Szemerédi had originally come up with the regularity lemma to prove this result (this is why it is a
lemma).

Lemma 2.17. Suppose that every edge of Gn is in exactly one triangle. Then, e(Gn) = o(n2).

How is this related to Roth’s Theorem? Given N ≫ 0 and A ⊆ [N ], suppose A is 3-AP free. Let M = 2N + 1 and
construct a 3-partite graph Gwhose three parts X , Y , and Z are copies of Z/M .
For x ∈ X , y ∈ Y , and z ∈ Z, keep an edge from x to y iff y − x ∈ A, y to z iff z − y ∈ A, and z to x iff (z − x)/2 ∈ A.
The final part is well-defined since 2 is invertible in Z/M (Why?).
Observe that if xyz is a triangle with a = y − x, b = z − y, and 2c = z − x, then a+ b = 2c, so a, c, b are in AP.
Since a, b, and c are all in A, then by our assumption we must have a = b = c, y − x = z − y = (z − x)/2, and so x, y,
z must be in AP in Z/M .
This implies that any edge must be in a unique triangle.
By Lemma 2.17, e(G) = o((3M)2) = o(N2). On the other hand, e(G) = 3M |A|. So, 3M |A| = o(N2) and |A| = o(N).
Proof of Lemma 2.17. The number of triangles inGn is exactly e(Gn)/3 = o(n3). By the Triangle Removal Lemma,Gn

can be made triangle-free by removing o(n2) edges. However, we must remove at least e(Gn)/3 edges to make the
graph triangle-free, so e(Gn) = o(n2). ■

Inspired by this problem, a natural question to ask is: what is the maximum sized A ⊆ [N ] that is 3-AP free?
Picking A greedily gives O(

√
n) elements.

It is possible to do better, as shown by Behrend’s construction.
The basic idea is that on a sphere, the midpoint of any two points does not lie on the sphere.
Consider the set S = [k]d ⊆ Rd for some k, d. Observe that ∥x∥2 ≤ k2d for any point in S. By the pigeonhole
principle, there is a (centered) sphere with at least kd−2/d of these points.
To get a subsetA from these points, project x = (a1, . . . , ad) to

∑d
j=1 aj(2k+1)j−1, thus converting it to an integer in

base (2k + 1). Observe that if x1 7→ m1 and x2 7→ m2, then (x1 + x2)/2 7→ (m1 +m2)/2. As a result, if X is a subset
of S on a single sphere, its projection by this map gives a 3-AP free subset.
The maximum element by this projection is k∑d−1

i=0 (2k + 1)i = ((2k + 1)d − 1)/2. Set (2k + 1)d = 2N + 1. By the
argument from before, there is a 3-AP free set of size kd−2/d.
This achieves a bound of

N

ec
√
logn

for some constant c. This is Ω(N1−δ) for any (fixed) δ > 0!

Definition 2.7 (Corner). An A ⊆ [N ]2 is said to have a corner if the points (x, y), (x + d, y), and (x, y + d) are in A
for some d > 0 and x, y ∈ [N ].

Theorem 2.18 (No Corners Theorem). Suppose A ⊆ [N ]2 has no corners. Then |A| = o(N2).

Proof. First, let us get rid of the d > 0 clause.
Denote byA+A the set {a+ b : a, b ∈ A} ⊆ [2N ]2 (the Minkowski sum of the two sets) and by x+A {x+a : a ∈ A}.
By the pigeonhole principle, there exists a z ∈ [2N ]2 such that z = a + b for at least |A|2/4N2 pairs (a, b) ∈ A2.
Consider A′ = A ∩ (z −A) for such a z. Then

|A′| ≥ |A|
2

4N2

https://en.wikipedia.org/wiki/Minkowski_addition
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by the definition of z. It is not too difficult to see that A′ = (z − A′). As a result, there is a correspondence between
corners with positive d and negative d in A′. Further, if A is corner-free, so is A′. By the cardinality bound on A′, it
suffices to show that |A′| = o(N2).
So, let us drop the d > 0 condition on corners and work with a corner-free A.

We construct a 3-partite graph G. Let the three parts of the vertex set V be the set H of horizontal lines in [N ]2, the
set V of vertical lines in [N ]2, and the set D of lines with slope −1 in [2N ]2.
Given ℓ, ℓ′ in distinct parts of V , let ℓ and ℓ′ be adjacent in G iff ℓ ∩ ℓ′ ∈ A. Triangles in this graph correspond to
either corners or three lines all passing through a single point (that is in A). However, there are no corners in A, so
each edge is in a unique triangle. The result then follows from Lemma 2.17. ■

2.4.3. A weaker version of the Erd®s-Stone-Simonovits Theorem

Next, we shall prove a slightly weaker version of the Erdős-Stone-Simonovits Theorem, Version 2 using Szemerédi’s
Regularity Lemma.

Theorem 2.19 (Erdős-Stone-Simonovits Theorem, Version 3). Fix t ∈ N and ε > 0. For n≫ 0, ifGn isKr+1(t)-free,8
then

e(Gn) ≤
(
1− 1

r

)
n2

2
+ εn2.

This is weaker than the original result we saw since here, t is fixed and so cannot grow to the log n estimate we gave
earlier.
Proof. Suppose e(Gn) > (1− 1/r)n2/2 + εn2 edges.
Let δ > 0 which we shall fix later. By Szemerédi’s regularity lemma, we get a partition (V0, V1, . . . , Vk) such that
|V0| ≤ δn, |Vi| = ℓ (for some ℓ) for 1 ≤ i ≤ k, and at most δk2 of the pairs are δ-irregular.
‘Clean’ the graph by deleting all edges within the Vi (losing ≤ ℓ2k/2 edges), edges adjacent to V0 (losing ≤ δn2

edges), edges in irregular pairs (losing ≤ δk2ℓ2 edges), and edges between pairs of density less than δ (losing
≤ ℓδ(k2/2) edges).
The number of deleted edges is thus at most 4δn2. As a result, the graph after purification still has> (1−1/r)n2/2+
(ε− 4δ)n2 edges.

Let H be a graph with vertex set {Vi : 1 ≤ i ≤ k}, and ViVj ∈ E(H) iff (Vi, Vj) is (ε/8)-regular with density at least
ε/4.
By the pigeonhole principle, since e(Vi, Vj) ≤ ℓ2

e(H) ≥
(
1− 1

r
+ ε

)
n2

2ℓ2
≥
(
1− 1

r
+ ε

)
k2

2
.

By Turán’s Theorem,H containsKr+1. Say (V1, . . . , Vr+1) form thisKr+1. All (Vi, Vj) are (ε/8)-regular with density
at least ε/4.
We now use the Graph Counting Lemma. Take F = Kr+1(t). The number of copies of F in (V1, . . . , Vr+1) is at least

r+1∏
i=1

|Vi|t
(
(ε/4)t

2(r+1
2 ) − δt2

(
r + 1

2

))
.

So, if
δ ≤ (ε/4)t

2(r+1
2 )

2t2
(
r+1
2

) ,

then there are several copies of Kr+1 in G, completing the proof. ■
8This is the complete (r + 1)-partite graph with t vertices in each part, that is, Tr+1(t(r + 1)).
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2.4.4. An application in computer science

Now, we give a delightful application from computer science.
Suppose we are given a graphGn and wewish to check (algorithmically) whetherG has any triangles. An easy way
to do this is to iterate through all triples and check if any of them form a triangle, which takes O(n3) time.
In this context, we give a paradigm due to Shafi Goldwasser and Madhu Sudan. We want to come up with an
algorithm that takes a constant number of verifications, and still returns a reasonable output. It is clearly impossible
to return the answer correctly all the time. The output we desire is such that with high probability,

• if Gn has no triangles, our output is correct.
• if Gn has triangles and we output otherwise, then Gn must be “close” to triangle-free.

Such a randomized constant time algorithm is known as a property tester. The questionwewish to answer is: which
graph properties admit such testers?
For starters, does triangle-freeness admit a property tester? It turns out that it does! The algorithm is in fact very
simple.

• Pick a random triple (x, y, z) and check if it forms a triangle.
• If yes, return “not triangle-free”.
• If no, return “ε-close to triangle-free”, where at most εn2 edges need to be deleted to remove all triangles.

Why is this a tester?
By the Triangle Removal Lemma, if Gn is ε-close to being triangle-free, then Gn has at most δn3 triangles for some
δ. That is,

Pr[xyz is not a triangle] ≥ 1− δn3(
n
3

) ≥ 1− 6δ,

so our algorithm is indeed a property tester.
We shall return to property testing in more detail later.

2.4.5. The Frankl-Pach Theorem

Theorem 2.20 (Frankl-Pach Theorem). Suppose s, r ∈ N and 0 < c < 1. Then, for n≫ 0,

ex(n;Kr+1,Ks,⌈cn⌉) ≤

(
c1/s

(
1− 1

r

)1/s

+ o(1)

)
n2.

Observe that one of the graphs we are forbidding depends on n itself.
Proof. Let ε > 0 and G be a graph on n vertices that is Kr+1- and Ks,⌈cn⌉-free. Using Szemerédi’s regularity lemma
and the cleaning process, obtain a graph G′ such that

• V (G′) = V1 ⊔ · · · ⊔ Vk where k = Oδ(1),
• |Vi| = ℓ for all i and V (G′) ≥ (1− δ)n,
• All pairs (Vi, Vj) are δ-regular,
• if e(Vi, Vj) > 0, d(Vi, Vj) ≥ η, and
• e(G)− e(G′) ≤ εn2
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for some δ, η > 0 depending only on ε. Henceforth, we operate only in G′.

Construct a graphH on vertex set [k]with ij ∈ E(H) iff d(Vi, Vj) ≥ η. By the Graph Counting Lemma, ifH contains
Kr+1, so does G′ and thus G. Therefore, H isKr+1-free and by Turán’s Theorem, e(H) ≤ (1− 1/r)k2/2.
Since n≫ 0 and k = Oδ(1), ifKs,⌈cn⌉ appears inG, one of the Vis must have at least s vertices for n≫ 0 (by a simple
pigeonhole argument).
So, let us bound e(G) given thatKs,⌈cn⌉ is forbidden and the size s part of the bipartite graph does not come from a
single Vi.
Similar to what we did in the Kővári-Sós-Turán Theorem, let us count pairs (x, S) where |S| = s, S ⊆ Vi for some i,
and x is adjacent to every y ∈ S. We call such a structure an (i, s)-claw. We have that

number of (i, s)-claws =
∑
x∈V ′

k∑
i=1

(
|N(x) ∩ Vi|

s

)
.

On the other hand, by our assumption regarding Ks,⌈cn⌉-freeness,

number of (i, s)-claws ≤ (⌈cn⌉ − 1)
k∑

i=1

(
|Vi|
s

)
≤ cnk

(
ℓ

s

)
.

Therefore, ∑
x∈V ′

k∑
i=1

(
|N(x) ∩ Vi|

s

)
≤ cnk

(
ℓ

s

)
.

Define P = {(x, i) : |N(x) ∩ Vi| > 0}. Applying Jensen’s inequality in a manner similar to that in proof of the
Kővári-Sós-Turán Theorem, ∑

(x,i)∈P

(
|N(x) ∩ Vi|

s

)
≥ |P|

(
(1/|P|)

∑
(x,i)∈P |N(x) ∩ Vi|

s

)

= |P|
(
2e(G′)/|P|

s

)
= |P|

(
u

s

)
,

where u = 2e(G′)/|P|. Then,

cnk
ℓs

s!
≥ cnk

(
ℓ

s

)
≥
∑
x∈V ′

k∑
i=1

(
|N(x) ∩ Vi|

s

)
=

∑
(x,i)∈P

(
|N(x) ∩ Vi|

s

)

≥ |P|
(
u

s

)
≥ |P| (u− s+ 1)s

s!
.

Simplifying,
e(G′) ≤ u|P|

2
≤ 1

2

(
(cnk)1/sℓ|P|1−1/s + |P|(s− 1)

)
. (2.12)

To bound |P| from above, observe that
|P| ≤ e(H) · 2ℓ
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since each edge in H gives at most 2ℓ choices for x (if the edge is ij, x is in Vi or Vj). By Kr+1-freeness, e(H) ≤
(1− 1/r)k2/2 so

|P| ≤
(
1− 1

r

)
k2ℓ.

Substituting the above back in (2.12),

e(G′) ≤ 1

2

(
(cnk)1/sℓ|P|1−1/s + |P|(s− 1)

)
≤ 1

2

(
(cn)1/s

(
1− 1

r

)1/s

(kℓ)2−1/s +

(
1− 1

r

)
k2ℓ(s− 1)

)

≤ 1

2

(
c1/s

(
1− 1

r

)1/s

n2 +

(
1− 1

r

)
k(s− 1)n

)

=

(
c1/s

(
1− 1

r

)1/s

+ o(1)

)
n2

2
.

The result follows since e(G)− e(G′) ≤ εn2. ■

It turns out that the bound given by the Frankl-Pach Theorem is asymptotically tight!

2.4.6. A look at ex(n;C2k+1)

As we saw back in Corollary 2.3,
n2

4
≤ ex(n;C2k+1) ≤

(
1

4
+ o(1)

)
n2.

Recall that if e(Gn) ≥ n2/4− t and Gn isK3-free, then Gn can be made bipartite by deleting atmost t edges.

Lemma 2.21. Given ε > 0, there exists δ > 0 such that the following holds for n ≫ 0. If Gn is C2k+1-free and has
≥ (1/4− δ)n2 edges, it can be made bipartite by deleting at most εn2 edges.

Proof. First, we shall try to make δ(Gn) ‘large’. If Gn has a vertex of degree < (1/2− 2
√
δ)n, delete this vertex to get

a graph Gn−1. Perform this process repeatedly to finally arrive at some Gℓ such that

e(Gℓ) >

(
1

4
− δ

)
n2 −

(
1

2
− 2
√
δ

)(
n+ (n− 1) + · · ·+ (ℓ+ 1)

)
=

(
1

4
− δ

)
n2 −

(
1

2
− 2
√
δ

)((
n+ 1

2

)
−
(
ℓ+ 1

2

))

=

(
1

4
− δ

)
n2 −

(
1

4
−
√
δ

)(
n2 + n− ℓ2 − ℓ

)
≥
(
1

4
− δ

)
ℓ2 + (

√
δ − δ)n2 −

(
1

4
− δ

)
n.

If the quantity above is at least (1/4 + η
)
ℓ2 for some constant η > 0, we have

ℓ <

√√
δ − δ

η + δ
n.

This implies that for sufficiently large ℓ (by virtue of sufficiently large n),Gℓ has C2k+1 which yields a contradiction.
Therefore, setting η appropriately, this process must terminate with ℓ ≥ (1− 4

√
δ)n.
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Therefore, suppose G′ = (V ′, E′) is a subgraph of Gn such that |V ′| = n′ ≥ (1− 4
√
δ)n, δ(G′) ≥ (1/2− 2

√
δ)n′, and

G′ is C2k+1-free. We have e(G′) ≥ (1/4−
√
δ)n′2.

Recall that ex(n;C2k) is o(n2). As a result, it follows that if n≫ 0,G′ contains a copy ofC2k, say v1v2 · · · v2kv1. Letting
W = V ′ \ {v1, . . . , vk}, we must have that A1 = N(v1) ∩W and A2 = N(v2) ∩W are disjoint. Since G′ is C2k+1-free,
the subgraph induced on A1 (or A2) is P2k-free. By Theorem 1.7, e(A1) (or e(A2)) is at most kn′. To summarize,

• |A1|, |A2| ≥ (1/2− 2
√
δ)n′ − 2k ≥ (1/2−

√
δ)n′.

• e(A1), e(A2) ≤ kn′.
• A1 ∩A2 = ∅.

Delete all edges that are not betweenA1 andA2 (namely those within theAis and those that touch at least one vertex
not in A1 ∪A2). This deletes at most

2kn′︸︷︷︸
e(Ai)

+ 2
√
δn′2︸ ︷︷ ︸

|V ′\(A1∪A2)|≥2
√
δn′

.

The resulting graph is clearly bipartite. Thus, from Gn, we have deleted at most, say, 5
√
δn2 edges, so setting δ less

than say ε2/100 works. ■

Theorem 2.22. For n≫ 0,
ex(n;C2k+1) =

⌊
n2

4

⌋
.

Proof. LetGn be C2k+1-free and have the maximum possible number of edges. Since the complete bipartite graph is
C2k+1-free, e(Gn) ≥ ⌊n2/4⌋.
Let ε > 0. For starters, let us assume that δ(Gn) ≥ (1/2 − 2

√
ε)n. By Lemma 2.21, Gn can be made bipartite by

deleting at most εn2 edges (due to the assumption on δ(Gn) and the previous proof). Let (A,B) be the parts of such
a bipartite graph. Further assume that e(A,B) is the maximum possible (we choose that bipartite subgraph with
the most edges). We claim that |A| and |B| are at least (1/2− ε)n. Indeed, otherwise, since |A|+ |B| = n,

e(A,B) ≤ |A||B| <
(
1

2
−
√
ε

)(
1

2
+ ε

)
n2 =

(
1

4
− ε

)
n2.

In this case, e(Gn) ≤ e(A,B) + εn2 < ⌊n2/4⌋, proving the claim.

Since e(A,B) is the maximum possible, it follows that for any a ∈ A, d(a,B) ≤ d(a,A) (otherwise we can switch a
from A to B).
Next, we claim that no vertex a of A is such that d(a,A) ≥ 2

√
εn. Suppose otherwise. We then have d(a,B) ≥ 2

√
εn

as well. Let A1 = A ∩ Γ(a) and B1 = B ∩ Γ(a). Consider the bipartite subgraph on (A1, B1). This subgraph is
P2k-free. By Theorem 1.7,

e(A1, B1) ≤ 2kn.

In particular, the number of missing edges between A1 and B1 is at least 4εn2− 2kn > εn2 ≥ e(A) + e(B) for n≫ 0.
As a result,

e(Gn) = e(A,B) + e(A) + e(B)

≤ e(A,B) + (number of missing pairs between A1 and B1)

< |A||B| ≤ n2/4,

which gives a contradiction.
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Let a, a′ ∈ A be adjacent. We have

|(Γ(a) ∩B) ∩ (Γ(a′) ∩B)| ≥ d(a,B) + d(a′, B)− |B|

> d(a)− 2
√
εn+ d(a′)− 2

√
εn−

(
1

2
+
√
ε

)
n

≥ 2δ(Gn)− 4
√
εn−

(
1

2
+
√
ε

)
n

≥
(
1

2
− 9
√
ε

)
n.

Let B′ = Γ(a) ∩ Γ(a′) ∩ B and A′ = A \ {a, a′} and consider the bipartite subgraph between these two parts. Since
the previous subgraph was C2k+1-free, there cannot be a P2k−1 between two vertices in B′ (or A′). It follows that
there does not exist a path of length 2k between any two vertices of A′ ∪B′. So,

e(A′, B′) ≤ 2kn.

Estimating the number of edges again,

e(Gn) ≤ e(A′, B′) + e(A \A′, V ) + e(B \B′, V )

= 2kn+ 2n︸︷︷︸
|A\A′|=2

+ 10
√
εn︸ ︷︷ ︸

|B|≤(1/2+
√
ε)n

|B′|≥(1/2−9
√
ε)n

<
n2

4
for n≫ 0,

giving a contradiction again.

Therefore, it now suffices to show why we can make our initial assumption that δ(Gn) ≥ (1/2 − 2
√
ε)n. As in the

proof of the previous lemma, repeatedly delete any vertex that has degree less than (1/2− 2
√
ε)n. We must stop at

some Gℓ with ℓ > (1 − 4
√
ε)n. Further, Gℓ must have greater than ℓ2/4 edges and is C2k+1-free, so we arrive at a

contradiction anyway due to our proof taking the assumption at the beginning. ■

2.5. Pseudorandomness

Szemerédi’s regularity lemma, in layman terms, says that any dense graph consists ‘mostly’ of a ‘small’ number of
‘random-like’ bipartite graphs. The meaning of the first two words within the quotes should be clear; they just say
that |V0| is small and that k is bounded. The question then is: what does it mean to say that a graph is random-like?
We have a single graph, not a distribution.

2.5.1. Notions of randomness

Let us first list a couple of features that feel like something a random-like graph should have. Suppose that Gn has
(p+ o(1))

(
n
2

) edges, where p is a fixed constant.
1. Disc (Discrepancy). For all X,Y ⊆ V (G), ∣∣e(X,Y )− p|X||Y |

∣∣ = o(n2).

2. Disc′. For all X ⊆ V (G), ∣∣∣∣∣e(X)− p

(
|X|
2

)∣∣∣∣∣ = o(n2).

3. Count. For a fixed H , the number of labelled copies of H in G is (1 + o(1))pe(H)n|V (H)| (Why choose this
number?).
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4. Codegree. We have ∑
x,y∈V

|d(x, y)− p2n| = o(n3).

5. Eigen. If λ1 ≥ · · · ≥ λn are the eigenvalues of the adjacency matrix of Gn, then
λ1 = pn(1 + o(1))

and
max
i>1
|λi| = max{|λ2|, |λn|} = o(n).

Observe that there are already asymptotics at play here since o(·) is not very meaningful when we are dealing with
a single graph.

While the reader is likely familiar with what an adjacency matrix is, we define it here for the sake of completeness.
Definition 2.8 (Adjacency Matrix). Given a graph G = (V,E), the adjacency matrix A of G is a matrix whose rows
and columns are indexed by V , and for v, w ∈ V

Avw =

{
1, vw ∈ E,

0, vw ̸∈ E.

The eigenvalues of A are sometimes referred to as the eigenvalues of G.
While the first four properties above might make sense based on our discussion thus far, the last seems to come out
of nowhere.
To motivate Eigen, we give the following result.

Theorem 2.23 (Expander Mixing Lemma). Suppose G = (V,E) is a d-regular graph on n vertices and λ =
max{|λ2|, |λn|}, where λ1 ≥ · · · ≥ λn are the eigenvalues of G. Then for any X,Y ⊆ V ,∣∣∣∣e(X,Y )− d

n
|X||Y |

∣∣∣∣ ≤ λ
√
|X||Y |.

Proof. Observe that
e(X,Y ) = 1

⊤
XA1Y ,

where 1X is the ‘indicator vector’ of X , a vector indiced by the vertices of G, with 1 at the positions in X and 0
elsewhere.
Let A be the adjacency matrix of G. Since A is real symmetric, we can apply the spectral theorem to write A =∑

i λiviv
⊤
i , where vi is an eigenvector for λi.

Observe that d is an eigenvalue of A with corresponding eigenvector 1, the all 1s vector. In fact, d is the largest
eigenvalue – if λ1 is the largest eigenvalue and x is an eigenvector with xv = maxu |xu|,

|λ1xv| = |(Ax)v| =

∣∣∣∣∣∣
∑

u∈Γ(v)

xu

∣∣∣∣∣∣ ≤ d(v)|xv| ≤ ∆(G)|xv|.

Letting J be the all 1s matrix of appropriate size,∣∣∣∣e(X,Y )− d

n
|X||Y |

∣∣∣∣ = ∣∣∣∣1⊤
XA1Y −

d

n
1XJ1Y

∣∣∣∣
=

∣∣∣∣∣1⊤
X

(
A− d

n
J

)
1Y

∣∣∣∣∣
≤
∥∥∥1⊤

X

∥∥∥∥∥∥∥A− d

n
J

∥∥∥∥ ∥1Y ∥ .
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We claim that
∥∥A− (d/n)J

∥∥ ≤ λ. Since A is symmetric with all row sums as d, it commutes with J , and so they can
be simultaneously diagonalized. Further, n is an eigenvalue of J and d is an eigenvalue of Awith eigenvector 1. ■

Next, the following result says that all five notions of randomness we came up with are equivalent!

Theorem 2.24 (Chung-Graham-Wilson Theorem). Disc, Disc′, Count, Codegree, and Eigen are equivalent.

Proof. To prove this we shall show that all of our 5 are equivalent to the following.
C4-Count. The number of labelled C4s is (p4 + o(1))n4 (this is just Count for H = C4 specifically).

• Disc to Disc′. Setting X = Y then dividing by 2 gives the result directly.
• Disc′ to Disc. Let X,Y ⊆ V . We have

e(X,Y ) = e(X ∪ Y ) + e(X ∩ Y )− e(X \ Y )− e(Y \X)

Applying Disc′ to each of these 4 sets gives the results near directly:

e(X,Y ) = p

(
|X ∪ Y |

2

)
+ p

(
|X ∩ Y |

2

)
− p

(
|X \ Y |

2

)
− p

(
|Y \X|

2

)
+ o(n2)

= p|X||Y |+ o(n2).

• Disc to Count. This is just the Graph Counting Lemma (we only use the Disc part of regularity in the proof).
• Count to C4-Count. This is clear from the definition.
• C4-Count to Codegree. Now, ∑

x,y∈V

d(x, y) =
∑
x∈V

d(x)2

≥ 1

n

∑
x∈V

d(x)

2

=
4e(G)2

n
= (1 + o(1))p2n3.

Also note that ∑
x,y∈V

d(x, y)2 = number of labelled C4s+ o(n4) = (1 + o(1))p4n4.

So,

∑
x,y∈V

|d(x, y)− p2n| ≤ n

 ∑
x,y∈V

(d(x, y)− p2n)2

1/2

= n

 ∑
x,y∈V

d(x, y)2 − 2p2n
∑

x,y∈V

d(x, y) + p4n4

1/2

≤ n
(
(1 + o(1))p4n4 − 2p2n(1 + o(1))p2n3 + p4n2

)1/2
= n(o(1)n4)1/2

= o(n3).
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• Codegree to Disc. We have

∑
x∈V

|d(x)− pn| ≤
√
n

∑
x∈V

(d(x)− pn)2

1/2

=
√
n

∑
x∈V

d2(x)− 2pn
∑
x∈V

d(x) + p2n3


=
√
n

 ∑
x,y∈V

d(x, y)− 2p2n3 + p2n3o(n)


=
√
n

 ∑
x,y∈V

(
d(x, y)− p2n

)
≤
√
n

 ∑
x,y∈V

∣∣∣d(x, y)− p2n
∣∣∣
 = o(n2).

For X,Y ⊆ V , ∣∣e(X,Y )− p|X||Y |
∣∣ ≤∑

x∈X

∣∣d(x, y)− p|Y |
∣∣

≤
√
|X|

∑
x∈X

(d(x, Y )− p|Y |)2
1/2

≤
√
|X|

∑
v∈V

(d(v, Y )− p|Y |)2
1/2

=
√
|X|

∑
v∈V

d(v, Y )2 − 2p|Y |
∑
v∈V

d(v, Y ) + p2|Y |2n

1/2

=
√
|X|

 ∑
y,y′∈Y

d(y, y′)2 − 2p|Y |
∑
y∈Y

d(y) + p2|Y |2n

1/2

=
√
|X|

• Eigen to C4-Count. Note that the number of labelled C4s in G equals the number of closed walks of length 4
minus O(n3). Now, observe that given two vertices v, w, the number of walks from v to w of length 4 is just
(A4)vw (Why?). In particular, the number of closed walks from v to v is (A4)vv . Recalling that the trace of a
matrix is the sum of its eigenvalues,

number of C4s = Tr(A4)−O(n3)

≤ λ4
1 +

∑
i>1

λ4
i

≤ (1 + o(1))(pn)4 +

(
max
i>1

λ2
i

) n∑
i=1

λ2
i

= (1 + o(1))(pn)4 + o(n2) · 2e(G)

= (1 + o(1))(pn)4 + o(n4) = (1 + o(1))p4n4.
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• C4-Count to Eigen. The maximum eigenvalue of A is just

λ1 = sup
∥x∥2=1

x⊤Ax.

Taking x = (1/
√
n)1, we have

λ1 ≥
2e(G)

n
= (p− o(1))n.

For the remaining eigenvalues,

max
i ̸=1
|λi|4 ≤ Tr(A4)− λ4

1

≤ (p4 + o(1))n4︸ ︷︷ ︸
from C4−Count

−(p− o(1))4n4

= o(n4),

completing the proof.
■

Remark. • The proof requires p = Ω(1), in particular to show that Disc implies Count.
• Count does not hold in sparse regimes. In fact, Noga Alon in the 90s gave a graph with p = Ω(n−1/3) which is

Eigen-pseudorandom, but triangle-free.

2.5.2. Strongly regular graphs

Do we have any ‘known’ families of pseudorandom graphs?

Definition 2.9. Suppose q is a prime power such that q ≡ 1 (mod 4). Consider the Paley graph Pq with vertex set
V (Pq) = Fq and xy is an edge iff x− y is a quadratic residue9.

Let us see a couple of properties of the Paley graph.

Definition 2.10. A graph G is said to be an (n, d, λ)-graph if it is a regular graph of degree d over n vertices with
maxi̸=1 |λi| ≤ λ, where λ1 ≥ · · · ≥ λn are the eigenvalues of the graph.

Definition 2.11. A graph G = (V,E) is a (n, d, λ, µ)-strongly regular graph if
• |V | = n,
• G is regular with degree d,
• Any two adjacent vertices have exactly λ common neighbours, and
• Any two non-adjacent vertices have exactly µ common neighbours.

If a graph is (n, d, λ, µ)-strongly regular for some n, d, λ, µ, it is just said to be strongly regular.

9x− y = a2 for some a ∈ F×
q .
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For example, a complete graph on n vertices is (n, n− 1, n− 1, 0)-strongly regular and C5 is (5, 2, 0, 1)-strongly reg-
ular.
Slightly more complicatedly, the Petersen graph is (10, 3, 0, 1)-strongly regular.

Observe that a graph is (n, d, λ, µ)-strongly regular iff its adjacency matrix A is such that

(A2)vw =


d, i = j,

λ, v, w are adjacent,
µ, v, w are not adjacent.

More succinctly,
A2 = dI + λA+ µ(J − I −A).

We see that
A3 = dA+ λA2 + µdJ − µ(A+A2)

0 = A3 + (µ− λ)A2 − dA− µdJ.

The graph is strongly regular iff its adjacency matrix satisfies a cubic with integer coefficients and leading coefficient
1!
This further implies that a strongly regular graph has only 3 eigenvalues, with one of them being d.

Returning to the Paley graph, it is not too difficult to check that it is (q, (q−1)/2, (q−5)/4, (q−1)/4)-strongly regular.
Consequently, it is a (q, (q − 1)/2, (

√
q + 1)/2

)-graph.
Observe that any strongly regular graph has eigenvalues (other than λ1) bounded in a similar fashion.

2.5.3. The sparse regime

Let us restrict ourselves to (n, d, λ)-graphs. A popular family of (n, d, λ)-graphs comes from the following.

Definition 2.12. Suppose Γ is a finite group and S ⊆ Γ \ {1} is such that S = S−1. We define the Cayley graph
Cay(Γ, S) as that on vertex set Γwith gh ∈ E(G) iff g−1h ∈ S.

It is easy to see that Cay(Γ, S) is |S|-regular. In fact, Pq is just a Cayley graph with Γ = Fq (under addition) and S is
the set of quadratic residues in Fq other than 1.

Theorem 2.25 (Conlon-Zhao, 2017). For Cayley graphs, Disc and Eigen are equivalent.

Proof. First, note that Eigen implies Disc with the same constant for both. That is, if
max
i ̸=1
|λi| ≤ εn.

then ∣∣e(X,Y )− p|X||Y |
∣∣ ≤ εn2

by the Expander Mixing Lemma.
To show the other side, we require a result of Grothendieck’s:

There exists an absolute constant K > 0 such that for all real matrices A = (aij) and a Hilbert spaceH,

sup
xi,yj∈H

∥x∥,∥y∥=1

∑
ij

aij⟨xi, yj⟩ ≤ K sup
{u,v}∈{−1,1}n

∑
i,j

aijuivj .
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The best possible K is unknown, but we do know that K < 1.79 is possible. We skip the proof of this.
Suppose that Disc holds with a constant of ε and letA be the adjacency matrix ofG = Cay(Γ, S). Let u, v ∈ {−1, 1}n.
Denote by u+ and u− the positive and negative parts of u respectively. Letting U+ ⊆ V be the support of u+ (the
subset of vertices with non-zero components) then using Grothendieck’s lemma,

(u±)⊤
(
A− d

n
J

)
v± = e(U±, V ±)− d

n
|U±||V ±|,

where the sign over the Us (resp. V s) are the same as that over u (resp. v). Using Disc,

u⊤
(
A− d

n
J

)
v ≤ 4(εd)n.

Now, since
max
i̸=1
|λi| = sup

∥x∥=∥y∥=1

x⊤
(
A− d

n
J

)
y,

it suffices to show that the quantity on the right is ‘small’.
Let B = A− (d/n)J . We have

x⊤By =
∑

g,h∈Γ

xgBg,hyh

=
1

n

∑
s,g,h∈Γ

xsgBsg,shysh

=
1

n

∑
s,g,h∈Γ

xsgBg,hysh (Γ is an automorphism group of G)

=
1

n

∑
g,h∈Γ

Bg,h

∑
s∈Γ

xsgysh


=

1

n

∑
g,h∈Γ

Bg,h⟨x(g), y(h)⟩ where x(g)
k = xkg

≤ 1

n
sup

∥x∥=∥y∥=1

∑
g,h∈Γ

Bg,h⟨x(g), y(h)⟩ (
∥∥∥x(g)

∥∥∥ = ∥x∥ = 1 and
∥∥∥y(h)∥∥∥ = ∥y∥ = 1)

≤ 1

n
·K · (4εdn) (using Grothendieck’s result and the above result)

< 8εd,

using the fact that
∥∥∥x(g)

∥∥∥2 = ∥x∥2, completing the proof. ■

Theorem 2.26. If G is d-regular, then λ = max{|λ2(G)|, |λn(G)|} is at least
√
d(1− on(1)).

Proof. Let A be the adjacency matrix of G. Observe that

nd = Tr(A2)

=
∑
i

λ2
i

≤ d2 + (n− 1)λ2,

so
λ ≥
√
d(1− on(1)). ■
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However, we can get a better bound.

Theorem 2.27 (Alon-Boppana bound). If G is a connected d-regular graph, then λ(G) = max{|λ2(G)|, |λn(G)|} is
at least 2√d− 1(1− on(1)).

Proof. To prove the result, we shall get a vector x ⊥ 1 such that

x⊤Ax

x⊤x
≥ 2
√
d− 1(1− on(1)).

Fix a vertex v and let r ∈ N (which we shall fix later). For u ∈ V (G), consider the vector x defined by

xu =

{
(d− 1)−i/2, d(u, v) = i ≤ r − 1,

0, otherwise,

where d(u, v) is the distance between the vertices u and v. Let Vi = {u : d(u, v) = i}. We have

x⊤x =

r−1∑
i=0

|Vi|
(d− 1)i

and

x⊤Ax =
∑
u∈V

xu

∑
w∈Γ(u)

xw

≥
r−2∑
i=0

|Vi| ·
1

(d− 1)i/2

(
1

(d− 1)(i−1)/2
+

(d− 1)

(d− 1)(i+1)/2

)
+

|Vr−1|
(d− 1)(r−1)/2

· 1

(d− 1)r/2

(if u ∈ Vi, then Γ(u) ⊆ Vi−1 ∪ Vi+1, and umust have a neighbour in Vi−1)

≥
r−2∑
i=0

|Vi| ·
2
√
d− 1

(d− 1)i
+
|Vr−1|(d− 1)

(d− 1)(2r−1)/2

≥ 2
√
d− 1

r−2∑
i=0

|Vi|
(d− 1)i

+
1

2

|Vr−1|
(d− 1)r


≥ 2
√
d− 1

(
1− 1

2r

) r−2∑
i=0

|Vi|
(d− 1)i

. (|Vi|/(d− 1)i ≤ |Vi−1|/(d− 1)i−1)

So,
x⊤Ax

x⊤x
≥ 2
√
d− 1

(
1− 1

2r

)
.

However, x is not orthogonal to 1, so this does not directly yield a bound on λ(G).
Now note that if n > 1 + (d− 1) + (d− 1)2 + · · ·+ (d− 1)k−1, hen there must be two vertices that are at a distance
of at least k. Equivalently,

n >
(d− 1)k − 1

d− 2
,

which gives a lower bound on k that is Ω(log n).
Let v1, v2 be two farthest vertices in G, and let r such that d(v1, v2) ≥ 2r. Let the vector x1 be that as defined above
with v = v1 with

x⊤
1 Ax1

x⊤
1 x1

≥ 2
√
d− 1

(
1− 1

2r

)
.
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Similarly get x2 using v2. Note that x1 and x2 must be orthogonal. Let c be a constant such that y = (x1 + cx2) is
orthogonal to 1 (Why does such a c exist?). We then have

y⊤y = ∥x1∥2 + c2 ∥x2∥2

and
y⊤Ay = x⊤

1 Ax1 + c2x⊤
2 Ax2 ≥ 2

√
d− 1

(
1− 1

2r

)
(∥x1∥2 + c2 ∥x2∥2),

completing the proof. ■

This leads to the following definition, which we shall not get into.

Definition 2.13. An (n, d, λ)-graph is called a Ramanujan graph if λ ≤ 2
√
d− 1.

This notion is due to Lubotzky, Phillips, and Sarnak, who constructed what are called “LPS graphs”, that are Cayley
graphs on the group PSL(2,Fq), that are (q + 1)-regular and Ramanujan.

Alon conjectured (mayhaps surprisingly) that random regular graphs are Ramanujan with high probability. This
was resolved by Joel Friedman in the early 2000s.
Questions on the existence of Ramanujan graphs (and explicit constructions) are largely open, and an active area of
research in combinatorics and theoretical computer science.
For α > 0, one can also define (n, d, α)-expanders, which are (n, d, λ)-graphs with λ ≤ αd.
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�3. Matching Theory

Definition 3.1. Given a graph G, a matchingM in G is a collection of pairwise disjoint edges in G (no two of the
edges have a common vertex).

For example, {{1, 6}, {2, 5}, {3, 4}} is a matching in K6.

Definition 3.2. Given a graph G, thematching number ν(G) of G is the size of a maximum matching in G.

Given a graph, how do we compute a maximum matching, or simpler yet, ν(G)?

3.1. The Bipartite Setting

For this section, suppose that G = (X,Y,E) is bipartite, where all edges in E are between X and Y . Assume
|X| ≤ |Y |. It is clear that ν(G) ≤ |X|.

The question is: under what conditions on G is ν(G) = |X|?
This (the bipartite scenario) is sometimes referred to as a system of distinct representatives (SDR). That is, G has an
SDR if ν(G) = |X|.

3.1.1. Hall's Marriage Theorem

An obvious necessary condition is that given any S ⊆ X ,
|Γ(S)| ≥ |S|.

Otherwise, there cannot exist a matching since two vertices in S would be forced to map to the same element in Y .
This is known as Hall’s condition.
It in fact turns out that Hall’s condition is sufficient for the existence of a matching too!

Theorem 3.1 (Hall’s Marriage Theorem). Suppose G = (X,Y,E) is bipartite with |X| ≤ |Y |. Then ν(G) = |X| if
and only if it satisfies Hall’s condition.

Much like Turán’s theorem, this has a large number of proofs.
Proof 1 of Hall’s Marriage Theorem. We begin with a proof by induction over |X|. If |X| = 1, the theorem obviously
holds.
Make the stronger assumption that for all S ⊆ X of size |X|−1, |Γ(S)| > |S|, and |Γ(X)| ≥ |X|. Pick x ∈ X and pair it
with an arbitrary neighbour y ∈ Y . Using the inductive hypothesis on the subgraph induced on (X \{x})∪(Y \{y}),
we get a matching on G.
Now, let S ⊆ X with |Γ(S)| = |S| = |X| − 1. Using the inductive hypothesis on the subgraph induced on S ∪ Γ(S),
together with the edge from the (single) element inX \S to any element in Γ(X)\Γ(S), we get a matching onG. ■

An alternate way to prove this is by doing the first part of the proof with all non-empty S ⊆ X (instead of only those
of size |X| − 1). In the case where we have some non-empty S ⊆ X with |Γ(S)| = |S|, we can use the inductive
hypothesis twice to get two matchingsM1 andM2 on the subgraphs induced by S ∪Γ(S) and (X \S)∪ (Y \Γ(S)),
then take the union of the two matchings to get a matchingM on the original graph G.

A nice consequence of the above proof is that it allows us to extend Hall’s Theorem to an infinite setting as well.



MA 5109: Topics in Graph Theory 46 / 66 Amit Rajaraman

Definition 3.3. Given a matchingM on a graphG = (V,E), call a v ∈ V unsaturated if no edge ofM is incident on
v.
For a matchingM, x ∈ X , y ∈ Y such that x, y are unsaturated (with respect toM), a path P from x to y is called
M-augmenting if every alternate edge in it is aM-edge.
Observe that ifM admits an augmenting path, thenM is not maximal. Indeed, we can ‘flip’ the edges in the path to
show this. That is, given an augmenting path P , where every yixi is inM, it is not too difficult to show thatM△P
is a matching that has strictly more edges.

Proof 2 of Hall’s Marriage Theorem. LetM be a maximum matching of a bipartite graph G = (X,Y,E) that satisfies
Hall’s condition. Suppose there exists x0 ∈ X such that x0 is unsaturated byM. Let y1 be a neighbour of x0 (such
a y1 exists by Hall’s condition).
If y1 is unsaturated byM, then x0y1 is aM-augmenting path, contradicting its maximality. So, suppose x1y1 ∈M.
In general, if we have y1, . . . , yr, x1, . . . , xr, we can pick yr+1 ∈ Γ({x0, . . . , xr}) (distinct from all the yi for 1 ≤ i ≤ r).
If yr+1 is unsaturated, we have aM-augmenting path from x0 to yr+1, contradicting the maximality ofM.
If it is not, we can jump back to the xr+1 ∈ X (distinct from the xi for 1 ≤ i ≤ r) such that yr+1xr+1 ∈ E, then
continue the process. This must terminate at some point since the number of vertices in Y incident on some element
ofM is at most |X \ {x0}| < |Y |, completing the proof. ■

3.1.2. Some applications

Next, let us look at a few applications of Hall’s Theorem.

Definition 3.4 (Perfect Matching). A matchingM in a graph G = (V,E) is said to be a perfect matching if |M| =
|V |/2, that is, every vertex in V is saturated byM.

Theorem 3.2. If a bipartite graph G = (X,Y,E) is d(> 0)-regular, it has a perfect matching.

Proof. It suffices to check that Hall’s condition holds. Let S ⊆ X . We clearly have e(S,Γ(S)) = d|S|. However, the
total number of edges coming into Γ(S)must include all the edges coming from S, that is, S ⊆ Γ(Γ(S)). So,

d|Γ(S)| = e(Γ(S),Γ(Γ(S)))

≥ e(Γ(S), S)

= d|S|,

completing the proof. ■

For the next result, consider the following definition.

Definition 3.5. A matrix A ∈ Rn×n is said to be doubly stochastic10 if for all i, j,

0 ≤ aij ≤ 1 and
∑
k

aik =
∑
k

akj = 1.

10These are interesting to study since they arise as the transitionmatrices of a certain class of discreteMarkov chains. The stationary distribution
of a discrete Markov chain with a doubly stochastic transition matrix is the uniform distribution.
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It is not too difficult to see that any permutation matrix is doubly stochastic.
Suppose A1, A2 are doubly stochastic and 0 ≤ λ ≤ 1. Then observe that λA1 + (1 − λ)A2 is doubly stochastic too
(Why?).
As a result, a convex combination of doubly stochastic matrices is doubly stochastic.

Theorem 3.3 (Birkhoff-von Neumann Theorem). A matrix is doubly stochastic iff it is a convex combination of
permutation matrices.

Proof. We want to show that if A is doubly stochastic, then A =
∑k

i=1 λiPi, where the Pi are permutation matrices,∑
i λi = 1, and λi ≥ 0.

The idea is something like performing induction on k. If A is doubly stochastic, P is a permutation matrix, and
0 < λ < 1 such that every entry of B = A− λP is non-negative, then every row sum and column sum of B is equal
to 1−λ. So, if we can find such λ and P with λ chosen ‘maximally’ (in the sense that if we increase it anymore, some
entry will become negative), we can ensure that B has more zero elements than A. This then allows us to induct on
the number of non-zero entries in A.
The base case is when A has exactly n non-zero entries and in this case, A is equal to a permutation matrix (Why?).
Given the earlier claim about the existence of λ and P , the result follows-near directly on applying the inductive
hypothesis to (1/(1− λ))B.
To prove the claim, consider the bipartite graph G = (X,Y,E) with X and Y being the rows and columns of B
respectively, and xy ∈ E(G) iff Bxy > 0. If the graph has a perfect matching, then there exist λ, P of the required
form – set P as the permutation matrix that has 1s at the edges corresponding to the matching, and let λ be equal to

min{bxy : xy is an edge in the matching}.

To show that the graph admits a perfect matching, we check Hall’s condition. For all S ⊆ X , we want to show that
|N(S)| ≥ |S|. Now, by definition, the submatrix corresponding to the rows indexed by S and columns indexed by
Y \ S is then the zero submatrix. Using the row sum condition,∑

x∈S
y∈N(s)

bxy = α|S|.

Since B is non-negative, this sum is at most ∑
x∈X

y∈N(S)

bxy = α|N(S)|

by the column sum condition. The claim follows. ■

Now, let us look for a moment at matchings in graphs in general (that need not be bipartite).

Theorem 3.4. A matchingM in a graph G is maximum iff it admits noM-augmenting path.

Proof. The proof we gave earlier to show that admitting aM-augmenting implies non-maximality works out even
in the non-bipartite scenario.
For the converse, suppose thatM is a matching that admits noM-augmenting path, and thatN is a matching with
|N | > |M|. Consider the subgraph H of G that retains only those edges inM or N , but not both. Note that for any
vertex of G, dH(v) ≤ 2.
It is not too difficult to show that H is a disjoint union of cycles and paths. Since theM edges and N edges are
individually pairwise disjoint, there cannot be an odd cycle in H . Since N >M, there must be a path that contains
more N edges thanM edges, and this is just an augmenting path(!), thus completing the proof. ■
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The above proposition allows us to find maximum matchings using a polynomial time algorithm.
We give such an algorithm in the bipartite scenario.

Definition 3.6. A directed graph is a pair D = (V,E), where V is the vertex set of D, and E ⊆ V × V is the set of
directed edges or arcs. An edge e = (u, v) is said to be directed from u to v.

We often abuse notation and denote an edge (u, v) by # »uv or uv.
A loop is an edge of the form (v, v).
We can define several things here similar to in ordinary simple graphs. For example, a directed path is a sequence
v1, . . . , vn of vertices such that (vi, vi+1) is an edge for all valid i.

Theorem 3.5. Suppose G = (X,Y,E) is bipartite with |X| ≤ |Y |. There exists a polynomial time algorithm to find a
maximum matching in G.

Proof. The idea of the proof is to construct augmenting paths. Given an augmenting path P for a matchingM,
M△P is a matching with strictly more edges. If we begin with an arbitrary matching and perform this operation
repeatedly, we must terminate within |X|/2 iterations.
LetM be a matching. Our objective is to either produce an augmenting path, or show that there exists noM-
augmenting path. Let XM and YM be the vertices in X and Y respectively saturated byM, and let XU = X \XM
and YU = Y \YM. Notice that an augmenting path (if it exists) is uniquely determined by its sequence inXM (since
the edges from XM to YM are fixed).
Now, define the directed graph DM = (X, E) with (x1, x2) ∈ E iff there exists y ∈ YM such that x2y2 ∈ M and
x1y2 ∈ E(G).
Let X∗ = N(YU ). Observe that G has aM-augmenting path iff DM has a path from XU to X∗. This is easily
resolved by just finding the set of vertices ‘reachable’ from XU in DM. This is possible to do efficiently using the
breadth-first-search (BFS) algorithm, which we shall detail next. ■

The BFS algorithm is as follows.
Algorithm 1: BFS algorithm
Input: A directed graph D = (V,E) and a set X ⊆ V .
Output: The set of vertices in D reachable from X

1 S ← X
2 Queue q ← X // in any arbitrary order

3 while q ̸= ∅ do
4 v ← pop(q)
5 for u ∈ N(v) do
6 if u ̸∈ S then
7 S ← S ∪ {u}
8 push(q, u)

9 return S

IfX = {v}, then this algorithm in fact finds a shortest path from v to every reachable vertex from it. The correctness
of the algorithm follows by a simple induction on the distance from v to u.

It is not too difficult to see that the BFS algorithm runs inO(|V |+ |E|), wherem is the number of edges in the graph,
since each edge is checked at most twice. So, BFS runs linearly in the input size.
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3.2. Flow

3.2.1. Flows and Cuts

Definition 3.7 (Network). A network is a tuple (D, s, t, C), such that
• D is a directed graph,
• s and t are (distinct) specified vertices known as the source and sink respectively, and
• C : E(D)→ R≥0 is known as the capacity function.

Given an edge e, C(e) is referred to as the capacity of the edge e.

This has a very simple-to-understand physical meaning. We can think of s as a source of water and t as a reservoir,
with the intermediate edges being pipes that have a limit on how much they can carry and the intermediate nodes
being junctions that transmit water. The main question we wish to answer then is: what is the maximum rate of
water flow that can be sent from the source to the sink without violating any capacity constraints?
More concretely,

Definition 3.8 (Flow). Given a network N = (D, s, t, C), a flow is a function f : E(D)→ R≥0 such that
• For all e ∈ E(D), f(e) ≤ C(e),
• For every v ̸= s, t, ∑

v∈V :uv∈E

f(uv) =
∑

u∈V :vu∈E

f(vu).

This is known as Kirchhoff’s Law.
Given a flow f , we define the value Val(f) of the flow by

Val(f) =
∑

u∈V :su∈E

f(su)−
∑

u∈V :us∈E

f(us).

Given A,B ⊆ V , denote
f(A,B) =

∑
e=uv∈E
u∈A,v∈B

f(e)−
∑

e=vu∈E
u∈A,v∈B

f(e).

Definition 3.9 (Cut). Given a network (D, s, t, C), a cut is the ordered pair (S, S) for some S ⊆ V with s ∈ S and
t ̸∈ S. We further define the capacity of this cut by

C(S, S) =
∑

e=uv∈E
u∈S,v∈S

f(e).

Since Kirchhoff’s law is satisfied, we get the following.
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Theorem 3.6. For all S ⊆ V such that s ∈ S and t ̸∈ S,

Val(f) = f(S, S).

Note that the claim follows by definition for S = {s}.
Proof. For v ∈ V and e ∈ E, let

ϕ(v, e) =


1, e = vu for some u ∈ V ,

−1, e = uv for some u ∈ V ,

0, e is not incident on v.

Note that Kirchhoff’s law then just says that for any v ∈ V \ {s, t},∑
e∈E

ϕ(v, e)f(e) = 0.

Denote by E(S, S) the set of all edges between S and S (in either direction).
We have

f(S, S) =
∑

e=uv∈E
u∈S,v∈S

f(e)−
∑

e=vu∈E
u∈S,v∈S

f(e)

=
∑

e∈E(S,S)

∑
v∈S

f(e)ϕ(v, e)

=
∑
v∈S

∑
e∈E(S,S)

f(e)ϕ(v, e)

=
∑
v∈S

∑
e∈E

f(e)ϕ(v, e)− sumv∈S

∑
e∈E(S,S):
ϕ(v,e)=1

f(e) + sumv∈S

∑
e∈E(S,S):
ϕ(v,e)=−1

f(e)

=
∑
v∈S

∑
e∈E

f(e)ϕ(v, e),

where the last step follows since for any edge uv in E(S, S), ϕ(u, e) = 1, ϕ(v, e) = −1, and ϕ(w, e) = 0 for all other
vertices w.
By Kirchhoff’s law, ∑

v∈S

∑
e∈E

f(e)ϕ(v, e) =
∑
e∈E

f(e)ϕ(s, e) = Val(f),

completing the proof. ■

Corollary 3.7. For a flow f ,
Val(f) =

∑
u∈V :ut∈E

f(ut)−
∑

u∈V :tu∈E

f(tu).

The above is sometimes taken as an alternate definition for the value of a flow.

3.2.2. The Max-Flow Min-Cut Theorem

Corollary 3.8. For a network N , a flow f , and any cut (S, S),

Val(f) ≤ C(S, S).
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Observe that for any networkN , there exists at least one flow (namely the zero flow), and the flow value is bounded
above.
Definition 3.10. Given a networkN , amaximum flow is a flow such thatVal(f) is the maximum among all possible
flows.
Theorem 3.9. Any network N on a finite directed graph has a maximum flow.
Proof. It is clear that

sup{Val(f) : f is a flow on N}
is well-defined and finite since for any flow f

Val(f) ≤ min
(S,S) is a cut

C(S, S). (3.1)

It is easy to show that the supremum is attained by a flow by considering a sequence of flows that converge (in value)
to the supremumflowvalue, considering an appropriate subsequence such that the flow in each edge converges (this
is possible since the set [0, C(e)] is compact for each edge e, so we can apply the Bolzano-Weierstrass Theorem), and
considering the flowwhose value in each edge is equal to the limit of the sequence of flow values in this edge. Since
the capacity constraint is a weak one and not strong, this is indeed a flow that satisfies the capacity constraints. ■

It in fact turns out that the bound in (3.1) is attained!

Theorem 3.10 (Ford-Fulkerson Theorem). For a network N = (D, s, t, C) (where D is finite),

max
f is a flow

on N

Val(f) = min
(S,S) is a cut

C(S, S).

The above is also referred to as the max-flow min-cut theorem.
Proof. (3.1) shows that the term on the right is at least the quantity on the right. Therefore, it suffices to show that if
f is a max-flow, there exists a cut (S, S) such that Val(f) = C(S, S).
Now, suppose there is a sequence s = v0v1v2 · · · vkvk+1 = t of vertices such that

• for each i, vivi+1 ∈ E or vi+1vi ∈ E. In the former case, we call it a forward edge and in the latter, a backward
edge.

• if vivi+1 is a forward edge, then f(vivi+1) < C(vi, vi+1).
• if vi+1vi is a backward edge, then f(vi+1, vi) > 0.

We call such a sequence an f -augmenting path.
Suppose for a moment that such a path exists. Then, let

δ = min
(
{C(e)− f(e) : e is a forward edge in P} ∪ {f(e) : e is a backward edge in P}

)
By definition, δ > 0. Define a new function f ′ : E → R by

f ′(e) =


f(e), e ̸∈ P,

f(e) + δ, e ∈ P is a forward edge,
f(e)− δ, e ∈ P is a forward edge.

It is not too difficult to check that f ′ is a flow as well. Further,

Val(f ′) = Val(f) + δ > Val(f).
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Therefore, if f is a maximum flow, there is no f -augmenting path.
Now, let f be a maximum flow. For each vertex v, we say that a path from s to v is f -augmenting if the earlier
definition holds, except that the final vertex is v instead of t.
Let

S = {v : there is an f -augmenting path from s to v}.

Clearly, s ∈ S. Since f is a maximal flow, t ̸∈ S. Therefore, (S, S) is a cut.
Suppose e = uv is an edge with u ∈ S and v ̸∈ S. If f(e) < C(e), then v ∈ S as well due to the existence of a path
su1 · · ·ukuv (since u is f -augmenting), leading to a contradiction. So, f(e) = C(e).
On the other hand, if e = vu is an edge with u ∈ S and v ̸∈ S and f(e) > 0, v ∈ S, again leading to a contradiction.
So, f(e) = 0.
However, we then have

Val(f) = f(S, S) = C(S, S),

completing the proof. ■

The above proof is easily modified to an algorithm in the case where C is integral.

Corollary 3.11. Suppose N is an integral network. That is, C(e) ∈ N0 for all e ∈ E(D). Then, there is an integral
maximum flow f on N (a flow which has maximum value and only takes integral values).

Proof. Begin with the zero flow f0. Given fk, choose an fk-augmenting path, and increase the value of the flow by
δ to get fk+1. If there exists no fk-augmenting path, then we must have attained the maximum flow possible since
we must have saturated some cut. Further, due to the integral nature of the network and the flow at each step, δ is a
positive integer, so this process terminates after a finite number of time steps. ■

3.2.3. Applications

Here, we give two applications of flow.

Consider a bipartite graph G = (X,Y,E). Define the network N = (D, s, t, C) as follows:
• s and t are ‘new’ vertices (not in X ∪ Y ),
• D = (X ∪ Y,ED), where

ED = { # »uv : uv ∈ E}︸ ︷︷ ︸
E1

∪{ # »su : u ∈ X}︸ ︷︷ ︸
E2

∪{ #»
vt : v ∈ Y }︸ ︷︷ ︸

E3

,

• the capacity function is defined by

C(e) =

{
1, e ∈ E1

∞, otherwise.

If∞ is problematic to think about, we can just choose a quantity that is greater thanC(X,Y ) (no flow can have
value greater than this anyway).

If there is a matchingM of sizem on G, then there is a flow fM of valuem that is 1 on all edges inM, and the flow
in each edge of E2 ∪ E3 is chosen such that Kirchhoff’s law is satisfied.
Conversely, if f is a maximum integral flow of value m, we can get a matchingM with m edges by considering
exactly those edges in E1 that have flow 1 in them.
Therefore, to find a maximum matching on a bipartite graph, we may merely find a maximum flow in the corre-
sponding network N .

For the second application, we give a result of Schrijver’s.



MA 5109: Topics in Graph Theory 53 / 66 Amit Rajaraman

Suppose A is a m × n {0, 1}-matrix that has k 1s in each row and r 1s in each column (this implies that mk = nr).
Let k′ ≤ k, r′ ≤ r such that α := k′/k = r′/r.
Then, one can change some of the 1s in A to 0s such that in the resulting array A′, there are k′ 1s in each row and r′

1s in each column.

To prove this, assign a bipartite graph G = (X,Y,E) to A as follows. X is the rows of A, Y is the columns of A, and
xy ∈ E(G) (with x ∈ X , y ∈ Y ) iff Axy = 1. We have that d(x) = k and d(y) = r for all x ∈ X , y ∈ Y .
Craft a network N using G exactly as we did above in the first application, with

C(e) =


1, e = xy for x ∈ X, y ∈ Y,

k, e = sx for x ∈ X,

r, e = yt for y ∈ Y.

Clearly, the flow f that saturates the capacity of every single edge is a maximum flow. Consider another capacity
function C ′ by

C ′(e) =


1, e = xy for x ∈ X, y ∈ Y,

k′, e = sx for x ∈ X,

r′, e = yt for y ∈ Y.

Note that f ′ = αf is a maximum flow in N ′ = (D, s, t, C ′). Since N ′ is integral, there is an integral max flow f ′′ in
it. Note that for each e of the form sx, f ′(e) = k′ = C ′(e), so we must have f ′′(e) = k′ as well. Similarly, f ′′(e) = r′

for every edge of the form yt. Changing a 1 in A to a 0 iff f ′′(e) = 0 gives the required.

3.2.4. Algorithms for �nding max-�ow

Now, how do we actually determine a max-flow?
A basic idea comes from the proof of Corollary 3.11.
To do so, let us rephrase the definition of an augmenting path into terms closer to that of Dijkstra’s algorithm. Given
a network N = (D, s, t, C) and a flow f on it, define the auxiliary residual graph Df on the vertex set of D such that
e = (u, v) ∈ E(Df ) iff

• uv is an edge in D and cf (e) = C(e)− f(e) > 0 or
• vu is an edge in D and cf (e) = f(e) > 0.

If we find a path in this residual graph, then we get an augmenting path to the flow f (if one exists), and the
corresponding value of δ by which we augment the flow is just equal to the maximum value of cf (e) along edges e
in this path.
Algorithm 2: Ford and Fulkerson’s Algorithm
1 for e ∈ E(G) do
2 f(e)← 0

3 while there exists an s-t path P in Gf do
4 cf (P )← mine∈P cf (e)
5 foreach e = uv ∈ P do
6 if e is a forward edge then
7 f(uv)← f(uv) + cf (P )
8 else
9 f(vu)← f(vu)− cf (P )

10 return f

There are two important things to note:
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• The choice of the path at each step affects how many augmentations we perform.
To illustrate this, consider the graph on {s, u, v, t}with edges su, sv, uv, ut, vt and capacities 210, 210, 1, 210, 210
respectively. If we pick the augmenting paths sut and svt in the beginning, we immediately arrive at the max-
flow value. However, if we pick the path from s to t containing uv at each step, we take a very large amount of
time (211 time steps) to converge since the flow only increases by 1 each augmentation.

• In the case where capacities are irrational and we choose an arbitrary path at each step, we need not even
converge to the max-flow value. If the capacities are integral (or rational), this process terminates as seen in
the proof of Corollary 3.11.

This algorithm (for an integral network) takes O(FmaxE), where Fmax is the value of a max-flow in the graph.

Henceforth, we abuse notation and denote by E (resp. V ) the size of the set E (resp. V ).

The first of the two points above leads to the Edmonds-Karp algorithm. It is nearly the same as the Ford and
Fulkerson algorithm, except that at each step we choose the shortest path from s to t in Gf .
Further, it resolves the second issue as well, with the algorithm working even in the irrational scenario.

Theorem 3.12. The Edmonds-Karp algorithm for finding a max-flow runs in O(V E2).

Note in particular that the runtime is independent of the value of the max-flow.
Proof. Since each augmentation takes O(E) time, it suffices to show that the number of augmentations is O(V E).
First, we claim that the distance δf (s, v) between s, v in the residual graph Gf monotonically increases for all v ∈ V .
That is, if f ′ is obtained by augmenting f using a shortest path in the residual graph, δf (s, v) ≤ δf ′(s, v).
For now, suppose the claim is true. Suppose we have a flow f and corresponding residual graph Gf . If P is a
shortest s-t augmenting path, define the critical capacity cf (P ) of P as in Algorithm 2. Also call an edge e critical if
cf (P ) = cf (e). We shall show that every edge e = uv inD becomes critical in an implementation of Edmonds-Karp
at most |V |/2 times. This implies that there are at most |E||V |/2 augmentations, thus completing the proof.
Suppose that in some augmentation, e = uv is critical for the first time. Then, δf (s, v) = δf (s, u) + 1 since we are
using a shortest path. Further, after the augmentation, the edge uv disappears. To become critical again, it has to
reappear, and this only happens after vu appears in a subsequent augmenting path for a flow f ′. But by our earlier
claim,

δf ′(s, u) = δf ′(s, v) + 1 ≥ δf (s, v) + 1 = δf (s, u) + 2,

thus proving our second claim since δf ′(s, u) ≤ |V | − 1, so any edge becomes critical at most (|V | − 1)/2 times.

It remains to prove our first claim. Suppose it is not true. Then, there is a first instance and a vertex v such that f is
augmented to f ′ but δf ′(s, v) < δf (s, v). Pick such a v with minimal δf ′(s, v).
Let P be a shortest path in Gf ′ from s to v, and let the penultimate vertex in it (before v) be u. Then, δf ′(s, v) =
δf ′(s, u) + 1. By the choice of v, δf ′(s, u) ≥ δf (s, u).
Now, suppose that uv ∈ E(Gf ). Then,

δf (s, v) ≤ δf (s, u) + 1 ≤ δf ′(s, u) + 1 = δf ′(s, v),

contradicting our assumption. Therefore, uv ̸∈ E(Gf ). However, uv ∈ E(Gf ′). This implies that an s-t augmenting
path P inGf includes the edge vu. Since Edmonds-Karp uses shortest paths, this implies that δf (s, u) = δf (s, v)+1,
so

δf (s, v) = δf (s, u)− 1 ≤ δf ′(s, u)− 1 = δf ′(s, v)− 2,

contradicting our assumption once more and concluding the proof. ■

Next, we give a more recent result on finding perfect matchings in regular bipartite graphs. Let G = (X,Y,E) be
d-regular with |V | = n = 2|X|. Theorem 3.2 says that G has a perfect matching. The Edmonds-Karp algorithm
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together with the first application in Section 3.2.3 gives a O(n3d) algorithm.
We give a far more efficient randomized algorithm due to [GKK11] with expected runtime O(n log n).
First, what are randomized algorithms? They utilize sources of randomness, and either

• the output is a random variable (that need not always be correct),
• the output is definitely correct, but the runtime is a random variable,

or some combination of the two.
The algorithm we describe is of the second variety.
Create the corresponding network forG, adding source and sink vertices s and t. Beginning with the 0 flow, we find
an augmenting path by performing the following on the residual graph. Beginning from vertex s, if we are at vertex
u, then choose an arbitrary outneighbour v of u and move to it. This algorithm gives a flow of value n,11 and thus a
perfect matching in the graph, with expected runtime O(n log n).
Remark. The expected runtime for the algorithm is independent of the degree d of the graph. While the expected time
is of the order of O(n log n), it is possible for the algorithm to take much longer to terminate. One way to deal with
this is that if the algorithm does not terminate in, say, ⌈10n log n⌉ steps, restart the algorithm.
Now, let us give a proof of the runtime.
Proof. Suppose we have found a flow of value k < n. We shall determine the expected number of steps to reach a
flow of size k + 1.
Suppose without loss of generality that our size k matching M has edges from XM to YM, each of size k. Let
XU = X \XM and YU = Y \ YM.
Observe that the only edges from Y to X in the residual graph come from theM-edges.
Also note that the time to reach the size k + 1 matching is just the length of the augmenting path (up to some
multiplicative constant). Further, the length of an augmenting path is

≤ 2 + 1 + 2× (the number of backward edges in the walk).

Therefore, it suffices to bound the expected number of backward edges in a randomwalk from s to t in this residual
graph.
For each v ∈ XM ∪ YM, denote byM(v) the vertex in XM ∪ YM that it has aM-edge to.
Denote by b(v) the expected number of backward edges in a random walk starting at some v and terminating at t.
We wish to determine b(s).
We have

b(s) =
1

n− k

∑
x∈XU

b(x).

For each x ∈ XU ,
b(x) =

1

d

∑
y∈N(x)

b(y).

For each y ∈ YU , b(y) = 0 and for each y ∈ YM,

b(y) = 1 + b(M(y)).

Finally, for x ∈ XM,
b(x) =

1

d− 1

∑
y:xy∈E\M

b(y).

11If any loops are formed during the creation of this augmenting path, delete them afterwards.
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So, if x ∈ XM,

d · b(x) =
∑

y:xy∈E\M

b(y) + b(x)

=

 ∑
y:xy∈E\M

b(y)

+ b(M(x))− 1

=

 ∑
y:xy∈E

b(y)

− 1

and if x ∈ XU ,
d · b(x) =

∑
xy∈E

b(y)

Summing over all x ∈ X ,

d
∑
x∈X

b(x) =
∑
xy∈E

b(y)− |XM|

=
∑
xy∈E

b(y)− k

= d
∑
y∈Y

b(y)− k

= d
∑

y∈YM

b(y)− k

=

d
∑

y∈YM

(1 + b(M(y)))

− k

= (d− 1)k + d
∑

x∈XM

b(x)

d
∑

x∈XU

b(x) = (d− 1)k.

Therefore,
b(s) =

1

n− k

∑
x∈XU

b(x) =
k(d− 1)

d(n− k)
<

n

n− k
− 1

and expected runtime of the algorithm is

O

n−1∑
k=0

(
n

n− k
− 1

) = O(n log n). ■

3.2.5. Baranyai's Theorem

In this section, we give another application of flow due to Zsolt Baranyai. The problem is as follows.

Suppose n > k ≥ 2 are integers. Can we partition ([n]k ) into subcollections A1, . . . ,AM such that each of
the sets within each Ai is itself a partition of [n].

For example, consider the scenario where k = 2. If n is odd, the above is clearly impossible. So, let n = 2m. The
problem is then essentially equivalent to partitioning E(K2m) into perfect matchings. This isn’t too hard to do, and
answers the problem affirmatively in this case.
Note that in genereal, we must have k | n.
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Theorem 3.13 (Baranyai’s Theorem). If k | n, there exists a partition of ([n]k ) into subfamilies A1, . . . ,AM with
|Ai| = m, and the sets of each Ai partition [n].

Above, we have
M =

(
n
k

)
n/k

=

(
n− 1

k − 1

)
andm =

n

k
.

Proof. We prove this by induction. Suppose we have families A1,AM , each of size m satisfying the required.
Suppose that n is deleted from every set that it appears in. It is easy to retrieve the original {Ai} since exactly one
set from each Ai has size k − 1 now, namely that from which n was deleted.
Now, suppose that both n and n − 1 are deleted from every set they appear in. Now, it is slightly more non-trivial.
How would we retrieve Ai (or another valid solution)?

• Any set from the Ai of size k − 2 gets both n− 1 and n.
• Each set of size k − 1 gets either n or n− 1. The question is: which of the size k − 1 sets do we assign n, n− 1

to? Note that each set of size k − 1 appears exactly twice on scanning across all the Ai. So, we just assign n to
one of these two subsets and n− 1 to the other. Why is this a valid solution?

Suppose now that we delete all occurrences of ℓ+1, ℓ+2, . . . , n for some ℓ. The resulting tampered collection is such
that

1. |Ai| = M .
2. Each Ai consists of sets that constitute a partition of [ℓ].
3. Each set in a Ai has size at most k, and there may be multiple instances of ∅.

These tampered collections {Ai} are also such that for any S ⊆ [ℓ], S appears (n−|S|
k−ℓ

) times. We wish to choose a
Bi ∈ Ai for each i ∈ [M ] as the set into which ℓ+ 1 should be added, and the above conditions are satisfied for the
new collection {A∗

i } of sets, where A∗
i = Ai \ {Bi} ∪ {Bi ∪ {ℓ+ 1}}. That is, each susbet T ⊆ [ℓ+ 1] appears exactly(

n−ℓ−1
k−|T |

) times across the sets of {A∗
i }.

We can then apply the inductive hypothesis to build up to the original collection of partitions of [n]. If we are able
to do this, then since the hypothesis is satisfied for the case where ℓ = 0 (so Ai just has m copies of ∅), the proof is
complete.
This is where graph theory enters the picture. Consider the bipartite graph (X,Y,E), where

X = {Ai}Mi=1, Y = {S ∈ 2[ℓ] : |S| ≤ k},

and Ai is adjacent to S ⊆ [ℓ] if S ∈ Ai.
Note that the degree of any set S is equal to ( n−ℓ

k−|S|
). The idea of choosing one set for each Ai lends itself to a flow

analogue. Put in a source s and sink t, similar to what we’ve done in the past, and get a directed graph G. To get a
network N , for any Ai ∈ X and S ∈ Y , we set the capacity as

C(s,Ai) = 1 and C(Ai, S) = 1.

If we have T = S ∪ {ℓ+ 1}, we want T to appear ( n−ℓ−1
k−|S|−1

) times. So, we set

C(S, t) =

(
n− ℓ− 1

k − |S| − 1

)
=

k − |S|
n− ℓ

(
n− ℓ

k − |S|

)
.

Consider the following flow f . Set f(S,Ai) = 1 for each i, f(S, t) = C(S, t) for each S, and to make it a flow,

f(Ai, S) =
k − |S|
n− ℓ

.
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It is clear Kirchhoff’s law is satisfied at the subsets S, and at the Ai, we have∑
S

f(Ai, S) =
k

n− ℓ
· n
k
− 1

n− ℓ

∑
S∈Ai

|S|

=
n

n− ℓ
− ℓ

n− ℓ
= 1.(since Ai forms a partition)

Further, this is a max-flow! By Corollary 3.11, there must exist an integral max-flow g on this graph, such that
g(s,Ai) = 1, g(S, t) = ( n−ℓ−1

k−|S|−1

), and g(Ai, S) ∈ {0, 1}.
If for each Ai, S such that g(Ai, S) = 1, we add in ℓ+ 1.
To conclude, we need to verify that for each T ⊆ [ℓ+ 1], T appears exactly (n−ℓ−1

k−|T |
). If ℓ+ 1 ∈ T , then this follows by

design. Otherwise, T appeared ( n−ℓ
k−|T |

) times originally. Since ( n−ℓ−1
k−|T |−1

) of these copies were altered to include ℓ+1,
the number of copies of T is now exactly(

n− ℓ

k − |T |

)
−
(

n− ℓ− 1

k − |T | − 1

)
=

(
n− ℓ− 1

k − |T |

)
,

completing the proof. ■

3.2.6. Menger's Theorem

Next, we discuss a result regarding connectivity.

Definition 3.11. A graph G is said to be k-connected if on the deletion of any < k vertices from G, and any vertices
u, v, there exists a path from u to v in the remaining graph. A 1-connected graph is said to be connected.
The connectivity κ(G) of G is the largest integer r such that G is r-connected.
Given vertices u and v, a set of independent u-v paths is a collection of paths from u to v such that any vertex other
than u and v is in at most one of these paths.
Given vertices u and v, a set of edge-independent u-v paths is a collection of paths from u to v such that any edge is
in at most one of these paths.

Menger’s Theorem deals with the last of the above definitions.

Theorem 3.14 (Menger’s Theorem). Suppose s and t are distinct vertices in a graph G. The minimum number of
vertices whose deletion removes all paths from s and t is equal to the maximum number of independent s-t paths.

It is clear that the minimum number of vertices that needs to be deleted to remove all paths is at least the maximum
number of independent s-t paths (otherwise, one of these paths would necessarily survive).
It remains to show the other direction. The min-max nature of the above result is somewhat reminiscent of flow, and
this indeed gives a quite simple proof. Before moving to this however, let us give a more elementary proof that does
not invoke flow.
Proof 1 of Menger’s Theorem. Suppose that the other direction does not hold. Consider a graph with k as the mini-
mum number of vertices needed to be deleted to destroy all s-t paths, but the maximum number of independent s-t
paths is < k. Choose k to be the minimal possible number such that the previous statement is true (for some graph
and some vertices s, t). Further, let G be a graph having the minimum number of edges satisfying the statement for
this particular k.

Suppose that there exists x such that sx and xt are in E(G). Then, observe that in G \ {x}, there must exist at most
k − 2 independent s-t independent paths. Also, in G \ {x}, we must delete at least k − 1 vertices to kill all s-t paths.
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In particular, G \ {x} is a counterexample with k − 1, contradicting the minimality of k. As a result, no vertex is
adjacent to both s and t.

Let W ⊆ V (G) be a minimal s-t separator. That is, W is the minimal set such that G \ W has no s-t paths. By
definition, |W | = k. Suppose that Cs and Ct are the connected components inG \W containing s and t respectively.
Consider the graph G′ with vertex set (V (G) \ Cs) ∪ {s′} (for some new vertex s′), with edges s′w for all w ∈ W .
Observe that since W is a minimal separator, there are at least |W | edges in G between Cs and W . Therefore, if
|Cs| > 1,G′ has (strictly) fewer edges thanG. In particular, there are k independent s′-t paths inG′. Let these paths
Pi be of the form s′wi · · · t for i ∈ [k], where wi ∈W .
These describe independent paths from wi to t for each 1 ≤ i ≤ k. Similarly, if |Ct| > 1, one can conclude that there
are disjoint paths P ′′

i from s to wi in G, for i ∈ [k].
Concatenating the paths from s to wi and wi to t, we get k independent paths from s to t, contradicting our assump-
tion.

Therefore, we may assume that if W is any s-t separator of minimum size, either s or t is adjacent to every w ∈ W .
Let sx1 · · ·xℓt be a shortest s-t path. Note that ℓ ≥ 2 by our first observation. Consider the graph H = G \ {x1, x2}.
SinceH has fewer edges thanG, there is a set U of size k−1 such that U separates s and t (inH). LetW1 = U ∪{x1}
andW2 = U ∪ {x2}. It is easy to see that |W1| = |W2| = k, and both these sets separate s and t.
Since t is not adjacent to x1, s is adjacent to all vertices in W1. Similarly, since s is not adjacent to x2, t is adjacent
to all vertices in W2. However, if k > 1, this implies that |U | > 0 and every vertex of U is adjacent to both s and t,
leading to a contradiction. For k ≤ 1, the result is obvious, completing the proof. ■

The above is quite tedious, and the following flow argument is far simpler.

Before moving to it, we need a vertex variant of the Ford and Fulkerson theorem, wherein we have capacities on
vertices instead of edges. Everything remains the same, except that the capacity constraint now is that the total in-
coming (or equivalently, outgoing) flow at any vertex is at most the capacity of that vertex.
A cut now is a subset S of V \ {s, t} such that there is no positive valued flow from s to t onD \ S. The capacity of a
cut is just the sum of capacities of vertices in the cut.

These networks are equivalent to our usual networks, which is easily seen by constructing a graph as follows. Given
a network (with vertex capacities), we first split each vertex v into two vertices v+ and v−, replacing each edge uv
with u+v− and also adding the edge v−v+ for each edge. We have arbitrarily large capacity for any edges of the
former type, and the capacity on the edge C(x−, x+) is C(x). The new source and sink vertices are s− and t+ respec-
tively. It is not too difficult to show that any flow in the original (vertex capacity) network is equivalent to a flow
in the new (edge capacity) network. Further, the value of themax-flows andmin-cuts are the same in both networks.

Proof 2 of Menger’s Theorem. Given the graphGwith specified vertices s and t, replace each edge uvwith two directed
edges uv and vu to get a directed graph. Set the capacity of each vertex other than s and t as 1 (and that of s and
t arbitrarily large). In this case, the max-flow value is equal to the number of independent paths, and the min-cut
capacity is equal to the size of a minimum s-t separator, completing the proof. ■

A similar proof also leads to the following edge-version of Menger’s Theorem.

Theorem 3.15 (Menger’s Theorem). Suppose s and t are distinct vertices in a graph G. The minimum number of
edges whose deletion removes all paths from s and t is equal to the maximum number of edge-independent s-t
paths.

We also get the following corollary quite simply from Menger’s.
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Corollary 3.16. If G is k-connected, then there exist k independent paths between any distinct vertices s and t.

3.2.7. Dilworth's Theorem

To conclude our discussion about flows, we discuss a result related to posets.

Definition 3.12 (Poset). A (finite) poset is a pair (P, <), where P is a (finite) set and < is a partial order on P .
A chain in a poset is a sequence (x1, . . . , xr) of elements in P such that xi < xi+1 for all i ∈ [r − 1].
An anti-chain A in a poset is a set {y1, . . . , yr} of elements in P such that for i ̸= j, yi ̸< yj and yj ̸< yj . That is, no
two elements of A are comparable.

Observe that if A is an antichain and C is a chain in P , then |A ∩ C| ≤ 1 (Why?).
Consequently, if C1, . . . , Cm is a partition of P into chains, then for any antichain A in P , |A| ≤ m. In particular,

size of largest anti-chain ≤ size of smallest chain decomposition.

Theorem 3.17 (Dilworth’s Theorem). In a poset P , the size of a largest antichain is equal to the size of a smallest
chain decomposition.

Proof. We prove this by induction on |P|.
If |P| = 0, the claim is trivial.
Suppose the size of a largest antichain in P is m. Let C be a maximal chain in P . That is, for any x ̸∈ C, {x} ∪ C is
not a chain.
Consider the posetP ′ = P \C. If the size of a largest antichain inP ′ ism−1, then by induction, P ′ = C1⊔· · ·⊔Cm−1

for chains (Ci), so P = C ⊔ C1 ⊔ · · · ⊔ Cm−1 and we are done.
Therefore, we may assume that the size of a largest antichain A in P ′ is also m. Let A = {a1, . . . , am}.
Consider the lower shadow

S− = {x ∈ P : x ≤ ai for some i}
and the upper shadow

S+ = {x ∈ P : x ≥ ai for some i}
Since A is a largest antichain, P = S− ∪ S+ and A = S− ∩ S+.
Note that both of these shadows are strict subsets of P . Using the inductive hypothesis, let

S− =

m⋃
i=1

Ci and S− =

m⋃
i=1

C ′
i

for chains (Ci) and (C ′
i), where ai ∈ Ci, C

′
i. If we show that ai is the maximum element of Ci and minimum element

of C ′
i, we are done.

Suppose instead that ai is not maximal Ci. Then, there is some x ∈ Ci such that ai < x. Since x ∈ S−, x < aj
(why can’t it be equal?), which would imply that ai < aj , giving a contradiction. The other direction holds similarly
simply too, completing the proof. ■

Dilworth’s Theorem turns out to be a surprisingly useful result. For example, one may prove Hall’s Marriage Theo-
rem using Dilworth’s as follows.
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Proof. Let G = (X,Y,E) be a bipartite graph satisfying Hall’s condition with |X| ≤ |Y |. Define the poset with
P = X ⊔ Y , and y < x iff xy ∈ E(G) (where y ∈ Y and x ∈ X).
Note that X and Y are antichains, so the size of a largest antichain is at least |Y |. Suppose S ⊆ X and T ⊆ Y are
such that S ⊔ T is an antichain. In particular, S ∪ T is independent inG. However, since |N(S)| ≥ |S|, we must have
N(S) ⊆ (Y \ T ). Consequently, |S|+ |T | ≤ |N(S)|+ |T | ≤ |Y |. Therefore, Y is a maximum antichain.
Using Dilworth’s, there exists a chain decomposition of the poset into |Y | chains. Note that each chain either cor-
responds to an edge in G or is a singleton in Y . In particular, every element of X is in an edge (and the edges are
disjoint), completing the proof. ■

�4. Ramsey Theory

The namesake of Ramsey theory is the British logician Frank Plumpton Ramsey. An infinite form of one of the results
was published in a paper on mathematical logic, and was later rediscovered by Erdős and Szekeres.

4.1. Introduction and the Erd®s-Szkeres Theorem

To begin, we give the following folklore proposition.
Among any 6 people, eithere there are 3who aremutual acquaintances of each other or 3who aremutual
non-acquaintances of each other (being an acquaintance is a symmetric relation).

This was in fact also discovered by a Hungarian sociologist later. The proof is very simple and just boils down to
showing that a graph on 6 vertices has either a size 3 clique or a size 3 independent set.
Equivalently, if we colour each edge of K6 blue or red, there is a monochromatic triangle.
This can be proved as follows. Pick any vertex v. By the pigeonhole principle, three of its neighbours u1, u2, u3 are
such that vu1, vu2, vu3 are of the same colour, say red. If one of the edges uiuj is red as well, we are done. If not,
u1u2u3 is a monochromatic blue triangle, so we are done.
It is also not difficult to see that 6 is tight (there exists a red-blue colouring of the edges ofK5 without a monochro-
matic triangle).

This leads to the following more general question.
Suppose s, t ∈ N at least 2. What is the minimum N (if one exists) such that if each edge of KN are
coloured red or blue, there is either a red Ks or a blueKt.

Theorem 4.1. Given s, t ∈ N at least 2, there exists a quantity R(s, t) ∈ N such that for all n ≥ R(s, t), any red-blue
colouring of E(Kn) admits a red Ks or a blueKt.

It is obvious that R(s, t) = R(t, s).
Proof. We prove this by induction on (s, t).
If s = 2, it is easy to see that R(2, t) = t (similarly, R(s, 2) = s).
Let v be an arbitrary vertex. Since v has degree n− 1, either it has R1 red neighbours or R2 blue neighbours for any
R1, R2 such that R1 +R2 = n (we shall fix R1 and R2 later). Suppose x has R1 red neighbours. If R1 ≥ R(s− 1, t),
then we are done by induction. Similarly, if R2 ≥ R(s, t− 1), we are done. So, set R = R(s, t− 1) +R(s− 1, t). ■

Corollary 4.2. We have
R(s, t) ≤

(
s+ t− 2

s− 1

)
.
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Proof. LettingN(s, t) =
(
s+t−2
s−1

), note thatR(2, t) = N(2, t). It may be checked thatN(s, t) = N(s−1, t)+N(s, t−1),
and we are done by the preceding theorem. ■

More generally, we have the following definition.

Definition 4.1. For integers s1, . . . , sr, the Ramsey number R(s1, s2, . . . , sr) is the minimum n such that for every
r-colouring of E(Kn) using [r], there is an i-monochromatic clique of size si for some i.

We have the following.

Theorem 4.3. For r ∈ N s1, . . . , sr ∈ N, R(s1, . . . , sr) is well-defined and moreover,

R(s1, . . . , sr) ≤ R(s1 − 1, s2, . . . , sr) +R(s1, s2 − 1, s3, . . . , sr) + · · ·+R(s1, . . . , sr−1, sr − 1).

The proof of the above is a straightforward generalization of the induction in Theorem 4.1.
Another generalization is that to a hypergraph, in which edges are formed not by pairs of vertices, but instead sets
of vertices. The complete r-hypergraph on n vertices Kr

n is that where the edge set is ([n]r ). Then, if we colour each
edge of this graph red or blue

R(r)(s, t) = min{n : there is a red Kr
s or a blueKr

t }.

Of course, we can get a generalization combining both the hypergraph aspect and the multicolour aspect.

Theorem 4.4. R(r)(s, t) is well-defined and further,

R(r)(s, t) ≤ R(r−1)(R(r)(s− 1, t), R(r)(s, t− 1)) + 1.

The proof of the above is not too difficult.
Consider the diagonal case where s = t. We showed above that R(3, 3) = 6. It may also be shown that R(4, 4) = 18.
Beeyond, this we do not know any diagonal Ramsey numbers. By Corollary 4.2,

R(s, s) ≤
(
2s− 2

s− 1

)
.

Recall Stirling’s formula
n! ∼

√
2πn

(
n

e

)n

.

It may be checked that (
2s− 2

s− 1

)
∼ c · 4

n

√
n

for some constant c > 0.
Finding the exact Ramsey number is incredibly difficult. In the words of Erdős,

Suppose aliens invade the earth and threaten to obliterate it in a year’s time unless human beings can
find the Ramsey number for red five and blue five. We could marshal the world’s best minds and fastest
computers, and within a year we could probably calculate the value. If the aliens demanded the Ramsey
number for red six and blue six, however, we would have no choice but to launch a preemptive attack.
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This begs two questions:
• Is there a better upper bound for R(s, s) than this exponential one?
• What about a lower bound on R(s, s)?

The second of the above questions asks us to give a red-blue colouring ofE(Kn) such that there is nomonochromatic
Ks.
The best known bound for a long time was quadratic, and Turán believed that the Ramsey number itself might be
quadratic.

Blowing this bound out of the water however, Erdős gave the first (documented) example of the probabilistic
method.

Theorem 4.5. We have
R(s, s) > 2s/2.

Proof. Fix some n and colour each edge ofKn blue or red with probability 1/2 each. For a fixed S ⊆ V (Kn) of size s,

Pr[S is monochromatic] = 2

2(
s
2)
.

So,

Pr[there is some monochromaticKs] = Pr

 ⋃
|S|=s

{S is monochromatic}


≤
(
n

s

)
· 2

2(
s
2)
.

So, if (
n
s

)
2(

s
2)

<
1

2
,

n is a lower bound for R(s, s). Simplifying the above, we have(
n
s

)
2(

s
2)
≤ ns

s!2s(s−1)/2

≤
(

n

2(s−1)/2

)s

· 1
s!
.

If n = 2s/2, the above is (
√
2)s/s! < 1/2 if s ≥ 3, completing the proof. ■

Further note that as s grows, since (
√
2)s = o(s!), if n = 2s/2, the probability of there not existing a monochromatic

Ks in a random colouring of E(Kn) goes to 0.
So, we now have

2s/2 < R(s, s) < 4s.

For a very long time, 4s was the best known upper bound. In 2008, David Conlon showed in [Con09] that

R(s+ 1, s+ 1) ≤
(
2s

s

)
· 1

sO(log s/ log log s)
.

In 2020, Ashwin Sah improved this in [Sah20] to

R(s+ 1, s+ 1) ≤
(
2s

s

)
· 1

sO(log s)
.
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There is also a geometric motivation for Ramsey Theory.
A configuration of points on the plane is said to be in general position if no three of them are collinear. Esther Klein
(later Esther Szekeres) noticed the following.

1. Given any 5 points in general position, 4 of them are the vertices of a convex quadrilateral.
2. Given any 9 points in general position, 5 of them are the vertices of a convex pentagon.

This leads to the following question.

Given n ∈ N, is there a (finite) N(n) such that any N(n) points in general position have the vertices of a
convex n-gon?

Theorem 4.6 (Erdős-Szekeres Theorem). Given any n, there exists a finite ES(n) such that any ES(n) vertices in
general position admit the vertices of a convex n-gon. Furthermore,

ES(n) ≤
(
2n− 4

n− 2

)
+ 1.

The reader might notice that the above is quite similar to the earlier Ramsey number bound!

Proof 1 showing finiteness in the Erdős-Szekeres Theorem, due to M. Tarsi. This proof hinges on the observation that if a
(finite) set X of points is such that every 4 points of X form a convex quadrilateral, then all the points of X form a
convex polygon. We do not prove this.
Now,we claim thatN(n) = R(4)(n, 5)works as anupper bound toES(n). LetX be our set ofN points (forN > N(n))
in general position. Colour each 4-tuple of the points of the setX red or blue depending onwhether or not the points
form a convex quadrilateral. SinceR(4)(n, 5) is finite, either there is a set Y ⊆ X of n points such that all the 4-tuples
of Y are red, or there is a size 5 set Z ⊆ X such that all 4-tuples of Z are blue.
In the former case, the vertices of Y form a convex n-gon by the observation in the first paragraph. Further, the latter
case cannot occur, due to the observation of Klein’s we had given earlier. ■

This bound is terrible.
Proof 2 due to Erdős-Szekeres. Suppose that the points in general position are pi = (xi, yi) for 1 ≤ i ≤ N and also that
x1 < x2 < . . . < xN (the second may be assumed by rotating the plane appropriately).
Call a set C = {pi1 , . . . , pik} a k-cup if i1 < · · · < ik and the slope of the segments pijpij+1

is non-decreasing. Simi-
larly, call a set C = {pi1 , . . . , pik} a k-cap if i1 < · · · < ik and the slope of the segments pijpij+1

is non-increasing.
Clearly, a k-cup or k-cap form a convex k-gon.

The main result proved by Erdős-Szekeres is that for N > ϕ(k, ℓ), any set of the assumed form above admits either
a k-cup or an ℓ-cap, where

ϕ(k, ℓ) =

(
k + ℓ− 4

k − 2

)
.

We prove this by induction on k + ℓ. If k = 2 or ℓ = 2, the result is trivial. Let X be a set of size ϕ(k, ℓ) + 1, and
suppose that X contains neither a k-cup nor an ℓ-cap. Let L be the set of last points of (k − 1)-cups. In particular,
X \ L has neither (k − 1)-cups nor ℓ-caps. Consequently, |X \ L| ≤ ϕ(k − 1, ℓ), so

L ≥ 1 + ϕ(k, ℓ)− ϕ(k − 1, ℓ) = ϕ(k, ℓ− 1) + 1.

Therefore, L contains either a k-cup or an (ℓ− 1)-cap. In the former case, we are done. So, suppose that L contains
an (ℓ− 1)-cap {pi1 , . . . , piℓ−1

}. pi1 is the last point of a (k − 1)-cup, so let the previous point in this cup be q.
If the slope of qpi1 is greater than the slope of pi1pi2 , then qpi1pi2 · · · piℓ−1

forms an ℓ-cap. Otherwise, the earlier
(k − 1)-cup together with pi1 forms a k-cup, completing the proof. ■
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The bound of ϕ(k, ℓ) + 1 is tight for the k-cup ℓ-cap problem. That is, there are point configurations of size ϕ(k, ℓ)
points that have neither k-cups nor ℓ-caps.
This is proved by induction on k+ ℓ. If k = 2 or ℓ = 2, then ϕ(k, ℓ) = 1. Our counterexample set S will be of the form

S = {(i, yi) : 1 ≤ i ≤ ϕ(k, ℓ)}.

If k = 2 or ℓ = 2, this is S = {(1, 0)}.
Let Y and Z be the counterexample sets for ϕ(k − 1, ℓ) and ϕ(k, ℓ − 1) respectively. Let Y (ε) = {(i, εyi) : 1 ≤ i ≤
ϕ(k − 1, ℓ)} and Z(ε) = {(ϕ(k − 1, ℓ) + i, y + εyi) : 1 ≤ i ≤ ϕ(k, ℓ− 1)}. Pick ε > 0 small enough and y large enough
that any line through two points of Y (ε) lies below the set Z(ε) and any line through two points of Z(ε) lies above
the set Y (ε).
S = Y (ε) ∪ Z(ε) provides a counterexample. For example, if S has a k-cup, there must be at least two points from
Z(ε) (since there is no (k − 1) cup in Y (ε)). However, the line joining these two points is above Y {(ε)} so cannot be
part of a k-cup.

4.2. In�nite Ramsey Theory

In this section, we present an infinite version of Ramsey’s Theorem. This was the original result given by Ramsey.

Theorem 4.7. Suppose V is an infinite set. Let c : V r → [k]. Then, there exists an infinite set A ⊆ V such that for all
(v1, . . . , vr) ∈ Ar, c(v1, . . . , vr) is the same. That is, A is monochromatic.

If V is finite, r = 2, c = 2, and c(v1, v2) = c(v2, v1), we are back to the usual Ramsey’s Theorem.
Proof. Weperform induction on r. The result is trivial for r = 1 by the pigeonhole principle. LetA0 = V and x1 ∈ A0.
Consider the induced k-colouring c∗ on (A0 \ {x1})r−1, where

c∗(v1, . . . , vr−1) = c(x1, v1, . . . , vr−1).

By induction, there exists an infinite A1 ⊆ A0 such that every (r − 1)-tuple of A1 gets the same colour α1.
Pick x2 ∈ A1, and consider the induced colouring of (r − 1) tuples of A1 \ {x2} to get A2 such that all (r − 1)-tuples
of A2 get the colour α2.
This leads to a sequence A0 ⊇ A1 ⊇ A2 ⊇ · · · , where for any (r − 1)-tuple (v1, . . . , vr−1) from Aj , (xj , v1, . . . , vr−1)
is coloured αj . However, αi ∈ [k], so some colour α occurs infinitely many times in the (αi) Let i1 < i2 < · · · with
αij = α for all j.
Then, the set {xi1 , xi2 , . . .} does the job. ■

The infinite version of Ramsey’s theorem implies the finite one. For this reduction, we prove the following.

Theorem 4.8. Suppose H = (V,E) is a hypergraph and V is an arbitrary set with all edge sizes finite. Let k ≥ 2 be
an integer and suppose that for all finite W ⊆ V , there is a colouring χW : W → [k] such that no edge e ⊆ W is
monochromatic (under χW ). Then, there exists χ : V → [k] such that no edge ofH is monochromatic under χ.

Proof 1. k-colorings are precisely the elements of [k]V . Give [k] the discrete topology (all sets are open/closed), and
give [k]V the product topology. By Tychonoff’s Theorem, [k]V is compact (since [k] is compact). For finite W ⊆ V ,
let

HW = {f ∈ [k]V : no e ⊆W is monochromatic under f}.
Observe thatHW ̸= ∅ (since χW ∈ HW ) and further,HW is closed in [k]V (sinceW is finite). IfW1,W2, . . . ,Wℓ are
finite, then

HW1
∩HW2

∩ · · · ∩ HWℓ
⊇ HW1∪···∪Wℓ

.
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Since theWi are finite, so is W1 ∪ · · · ∪Wℓ. It follows thatHW1 ∩ · · · ∩ HWℓ
is non-empty.

In particular, the collection {HW }W finite has the closed intersection property. This implies that ⋂|W |<∞HW is non-
empty. Any χ belonging to this set does the job, completing the proof. ■

Let us give another proof in a specific case.
Proof 2 when V = N. Suppose that for each n ∈ N, we have χn : [n]→ [k] such that no edge e ⊆ [n] is monochromatic
with respect to χn. We shall define χ∗ : N→ [k] such that no edge is monochromatic with respect to χ∗.
Let A0 = N. There exists some infinite set A1 ⊆ A0 such that χn(1) = α1 for all n ∈ A1. Set χ∗(1) = α1. In
general, there exists some infinite Aj ⊆ Aj−1 such that χn(j) = αj for all n ∈ Aj . Set χ∗(j) = αj . Consider an edge
e = {i1, . . . , ir} and suppose i1 < i2 < · · · < ir. Since χ∗ agrees with χn on [ir] for some n ≥ ir and χj has no
monochromatic edges, e is not monochromatic under χ∗ either. ■

The contrapositive of this result implies the finite Ramsey result.

Ramsey’s proof shows that given an infinite set A and (Ar) is [k]-colored, there is an infinite (countable!) subset
B ⊆ A such that (Br ) is monochromatic. Can we guarantee that |B| = |A|? It turns out that we cannot, due to a proof
by Sierpinski in 1932.
Let A = R and k = r = 2. It is known (assuming the axiom of choice) that any non-empty set has a well-order <∗

(every non-empty subset has a least element).
Colour xy red if (x < y ⇐⇒ x <∗ y) and blue otherwise. We claim that under this colouring, any monochromatic
infinite set is countable. The colouring is such that for a red set A, the two orders < and <∗ agree on A. That is, < is
a well-order on A. So, let a0 be the least element of A, and in general, ai+1 be the least element of A \ {a0, a1, . . . , ai}.
Pick a rational qi ∈ (ai, ai+1). Since the rationals are countable, a red monochromatic set is countable. If A is blue,
then <∗ and > agree on A so the same reasoning applies, thus proving that any monochromatic set is countable.
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