Connectedness and Compactness

Lecture 18 - 05/03/2021

Def let X be a topological space. A separation of X is a pair U,V of disjoint non-empty open subsets of \times whose union is \times . \times is said to be corrected if it does not have a separation.

Page	A space X is connected iff the only subsets of X that are both open
(3.1) and closed ("copen") are \emptyset and x.	
If 0, V is a separation, U is clear.	
14.0, V is a separation, U is clear.	
15.10	
16.11	
17.12	
18.13	
19.14	
10.15	
11.16	
12.17	
13.18	
10.19	
11.10	
12.11	
13.12	
14.13	
15.14	
16.15	
17.11	
18.12	
19.13	
10.14	
11.15	
11.16	
12.17	
13.18	
14.19	
15.10	
16.11	
17.10	
18.11	
19.11	
10.12	
11.13	
12.14	
13.15	
14.16	
15.17 </td	

For example, any topological space with the indiscrete topology is connected. -> Show that \bigoplus is not connected.

Lemma. If the sets C,D form a separation of X and Y is a connected (3.4) subspace of Y , $Y \subseteq C$ or $Y \subseteq D$.

If not, we can write
$$
Y = (Y \cap c) \cup (Y \cap D)
$$

Isopen in Y

A union of connected spaces is connected if their intersection Lemma. (3.5) is non-empty.

 $Proof.$ Let (A_{α}) be a family of connected subspaces of X and $p \in A_{\alpha}$. We cloim that $Y = \bigcup_{\alpha} A_{\alpha}$ is connected. Suppose C_JD is a separation of Y and wlog that PEC. Since A_{α} is connected and pec, $A_{\alpha} \in C$. Therefore, $Y = \bigcup_{\alpha} A_{\alpha} \subseteq C$, contradicting the non-emptiness of D. \Box

They let A be a connected subspace of X IP
$$
A \subseteq B \subseteq \overline{A}
$$
, B is also
(3b) connected.

Che can add any of the limit points without destroying connectedness)

Proof Suppose c, D is a separation of B. Assume wlog that $A \subseteq C$. Then $B\subseteq\overline{A}\subseteq\overline{C}$. But $\overline{C}\cap D=\emptyset$, yielding a contradiction and proving the claim.

Theo. The image of a connected space under a continuous map is connected. (3.1) and f is surjective Proof Let $f: x \rightarrow y$ be continuous where X is connected, suppose $C.D$ is a separation of Y. Since f is continuous, $f^{-1}(c)$ and $f^{-1}(D)$ are also open and they form a separation of X, resulting in a contradiction.

Theo. A finite Cartesion product of connected spaces is connected. (3.8) (under either the box or product topo., they are equal) Proof it suffices to show that if X and Y are connected $X \times Y$ is connected. (Use the fact that $(x_1 \times \cdots \times x_{n-1}) \times x_n$ is homeomorphic to $(x_1 \times \cdots \times x_{n-1}) \times x_n$ Fix xxy E XxY. Xx {y} is connected lit is homeomorphic to x) and so is $\{x\} \times$ The result follows on using Theo 3.5 .

Show that R^w under the box topology is disconnected.

Hirt: Let A= { (an) · (an) is bounded I and $B = \{ (bn) : (bn) \text{ is unbounded} \}.$

Show that R^{co} under the product topology is connected. Hint: Show that R^{oo}, the set of sequences eventually O, is connected and that R^{ω} = $\overline{R^{\infty}}$. $R^{\infty} = \bigcup_{n \in \mathbb{N}} \tilde{R}^{n}$ by after first n co-ordinates.

Theo An arbitrary product of connected spaces is connected in the product (3.9) topology.
(the proof is nearly identical to that for R^a above)

A simply ordered set L having more than one element is called a Def Linear continuum if

> . L has the least upper bound property. • if $x < y$ in L, there exists z in L such that $x < z < y$.

Clearly. R is a linear cantinuum.

Theo If L is a linear continuum, then L, intervals in L, and rays in L, are connected (3.0)

Theo. [Intermediate Value Theorem]

- (311) Let $f: X \rightarrow Y$ be continuous, where X is a connected space and Y is an ordered set under the ordered topology. If a bEX and rEY such that $F(a) < r < f(b)$, there exists $c \in X$ such that $f(c) = r$.
- Proof. Suppose otherwise. Then $f(x) \cap (-\infty, r)$ and $f(x) \cap (r, \infty)$ form a separation of $f(x)$. However, the image under f of x is connected. resulting in a contradiction.

Lecture 19-10/03/21 Path Connectedness

Def. Given points x,y of the space x, a path from x to y is a continuous function $f: [a,b] \rightarrow X$ such that $f(a) = x$ and $f(b) = \mu$ (for some closed interval [a, b] $\subseteq \mathbb{R}$). A space X is path-connected if there is a path between any two points in X .

Theo. Any path-connected space is connected. (3.12)

Proof. Suppose otherwise. Let X be path-connected and f: [a,b] -> X be a path in X. Let X. AUB be a separation of X. Since $[a,b]$ is connected and f is continuous, $f([a,b]) \subseteq A$ or $f([a,b]) \subseteq B$, contradicting path-connectedness (across A, B). **O** The converse is not true.

Consider

$$
S = \left\{ x \times \sin\left(\frac{1}{x}\right) \; : \; 0 < x \leq 1 \right\},
$$

known as the topologist's sine curve. Then \overline{S} = S \cup ($\{o\}$ x [-1, 1]). We claim that \overline{S} is not path-connected. Let continuous $f : [a,c] \rightarrow \overline{S}$ beginning at the origin and ending at some point in S. The set

 $\{t \in [0, c] \cdot f(t) \in \{0\} \times [t-1, 1]\}$ is closed (due to continuity), so it has a largest element b. Then the restriction $f: Lb, c \rightarrow S$ is a path such that $f(b) \in \{0\}$ x [-1,1] and $f((a, c)) \subseteq S$.

Wlog, let $[b,c]$ be $[0,1]$ and $f(t) = (x(t), y(t))$. Then $x(0) = 0$ and for $t > 0$, $x(t) > 0$ and $y(t) = \sin(\frac{1}{x(t)})$.

For each n , choose a $0 < u < x$ ($\forall n$) such that $y(u) = (-1)^n$. Using the NT (Theo 3.11), there is a $0 < t_n < Y_n$ such that $x(t_n) = 0$. However, then, $t_n \rightarrow 0$ but $y(t_n) = (-1)^n$ does not converge, contradicting the continuity of y and proving the claim. Show that S (and thus 5) is connected, dispreving the converse of Theo 3.12

Def. Given X, define an equivalence relation as x uy if there exists a connected subspace of x containing both x and y. The resulting equivalence classes are called the components or connected components of X . Component

(Check that it is an equivalence relation)

The components of X are connected disjoint subspaces of X whose Thes. (3.13) union is X such that any non-empty connected subspace of X intersects exactly one of them.

> Proof left as exercise. To show that a component C is connected, fix $x \in C$ and for each y EC, let Cy CC be a connected subspace containing Cy. ¹s by the second part Then $x \in \bigcap C_{y} \neq \emptyset$, so $\bigcup C_{y} = C$ is connected. \Box

Similar to connected components, we can define the path components $of X.$ $(x \sim y)$ if there is a path from x to y) Path Component (transitivity can be shown using the pasting lemma)

- Theo. The path components of X are path-connected disjoint subspaces of X (3.14) whose union is X such that any non-empty path-connected subspace of X intersects exactly one of them.
- Corollage Any connected component of X is closed. $(3|5)$
	- (Use the fact that the closure of a connected space is closed)
	- It follows that if there are finitely many components, each component is also open.
	- It need not be true that path-connected components are closed, however. Consider the topplogist's sine curve 5. Then S is open in 5 Cand not closed) and $\overline{s}_{1} s$ is closed (and not open).
	- A space X is said to be locally connected at $x \in X$ if for every Def reighbourhood U of x , there is a connected neighbourhood $V \subseteq U$ of Locally Connected We similarly define local path-connectedness.
- A space x is locally connected iff for any open $U \subseteq X$, each $Ther$ (3.16) component of U is open in X. Let \times be locally connected. U be open in X, and C be a component Proof. of U Let $x \in C$. There is then a neighbourhood $V \subseteq U$ of x that is connected it follows that $V \subseteq C$ and therefore, C is open. On the other hand suppose that the components of open sets in X are open Let x EX and U a neighbourhood of x We can take the component of U containing x , completing the proof О

Theo. A space X is locally path-connected iff for any open $U \subseteq X$, each (3.17) path component of U is open.

The proof is nearly identical to the previous one.

Lecture 20 - 10/03/21

Theo. If X is a topological space, each path component of X lies in a (3.18) component of X. Moreover, if X is locally path-connected, the components and path components are the same. Proof The first part is direct since any path component is connected Let C be a component, xEC, and P.2x be a path component. Let x be locally path-connected. Suppose PEC. Let Q be the union of all path components other than P that intersect c. Then $C \approx P \cup Q$. Because X is locally path connected, each path component of x is open in x. In particular, P and Q are open. This contrations the connectedness of C, proving the claim. Is they form a separation of C Det. A collection A of subsets of X is said to be a covering if X : Uneu A An open covering is a covering where every subset is Cover

Compact Open. X is said to be compact if any open cover contains a finite subcover.

If Y is a subspace of X and A is a collection of subsets of X , A is said to cover Y if $Y \subseteq \bigcup_{A \in A} A$.

Theo. Let Y be a subspace of X. Theo Y is compact iff every covering of Y by (3.19) sets open in X contains a finite subcollection covering y.

Theo. Any closed subspace of a compact space is compact. (3.20)

Hint Consider the open cover $A \cup \{x \setminus y\}$

Theo	Every compact subspace of a Hausdorff space is closed.	
(3.21)	Part:	Let X be Hausdorff and Y a compact subspace. Let X, E X.V.
For each y EY, choose neighborhoods U _y of x, and Y _y of y such that U _y \cap Y _y = Ø		
Since Y is compact, there exist y, ..., y _n such that $Y \subseteq \bigcup_{1 \leq i \leq n} Y_{ij} = V$.		

But
$$
Y \cap U \subseteq V \cap U = \emptyset
$$
, where
 $U = \bigcap_{1 \le i \le n} U_{\{j\}}$ is a neighborhood of x_0 .

<u>Lemma</u>. If Y is a compact subspace of the Hausdorff space x , and $x_0 \in x \setminus y$, there (3.22) are disjoint open sets U and V of X such that $x_0 \in U$ and $Y \subseteq V$.

Lecture 21 - 12/03/21 More on Compact Spaces

Theo. The image of a compact space under a continuous map is compact. (3.23) Theo Let $f: x \rightarrow y$ be bijective and continuous. If x is compact and y is (3.24) Hausdorff, f is a homeomorphism. (Show that f is a closed map)

Lemme [Tube Lemme] Let X and Y be spaces with Y compact. Suppose x. EX (3.25) and $N \supseteq \{x_0\} \times Y$ is an open subset of $X \times Y$. Then, there is a neighbourhood w of x_0 in X such that $W \times Y \subseteq N$. bube about x.xy. Tube Lemma Pradt. Let us cover $x_{o}x$ with the basis elements Uxy (for the topology of $X*Y$) lying in N . Sunce $\{x_{o}\}\times Y$ is compact, there is a finite subcover $U_1 \times V_1$, \cdots , $U_n \times V_n$ We may assume that $x_0 \in U_i$ for each i (Why?). Let $W = \bigcap_{1 \leq i \leq n} U_i$. Then w is open in x and contains x_{ω} . It is easily shown that $W \times Y$ is covered by the $(U_1 \times V_1)$. Since each $U_i * V_i \subseteq N$, $W * Y \subseteq N$. Theo. The product of finitely many compact spaces is compact. (3.26) (It is in fact twe for arbitrary products, which we shall see later in Tychonoff's Theorers Proof it suffices to show the result for two spaces. Let x, y be compact and A an open subcover of XxY For each $x_0 \in X$, $\{x_0\} \times Y$ can be covered by finitely many A_1 , .., $A_m \in A$. Then $\{x_{o}\}_x,y\subseteq A_1\cup\cdots\cup A_m\cdot N_s$ so N contains a tube WxY containing $\{x_{o}\}\times Y$. WxY is covered by the Ai $(1\leq i\leq m)$. That is, for each $x \in X$, there is a reighbourhood W_x of x such that W_{χ} x Y can be covered by finitely many elements. The collection of all W_x forms an open cover of X , so it has a finite subcover W_1, W_2, \dots, W_k . Then, $X \times Y \subseteq (W_1 \times Y) \cup (W_2 \times Y) \cup \cdots \cup (W_k \times Y)$. Each is covered by finitely many elements from A, so XxY can as well.

Def. A collection C of subsets of X is said to have the finite intersection property if for any finite $\{C_1, C_2, ..., C_k\} \subseteq \mathcal{L}$, $C_1 \cap C_2 \cap \cdots \cap C_k \neq \emptyset$.

Finite Intersection Property

Theo. Let X be a topological space X is compact iff for every collection (3.27) $\mathcal C$ of closed subsets of X with the finite intersection property, the intersection n_{cer} C is non-empty.

Proof Forward direction

Suppose otherwise. Then $A = \{ x \setminus C : C \in E \}$ is an open cover so has a finite subcover $A_1, ..., A_m$. But then, $(X \setminus A_1) \cap \cdots \cap (X \setminus A_m) = \emptyset$, contradicting the finite intersection property and proving the result.

Backward direction.

Let A be an open cover and $C = \{ X \setminus A : A \in A \}$. Suppose A does not have a finite subcover. Then C has the finite intersection property so $\bigcap_{c\in e} c_c \neq \emptyset$. This contradicts A being a cover, proving the result.

Let us look at what the compact subspaces of the real line.

Theo Let X be a simply ordered set having the least upper bound property. (3.28) In the order topology, each closed and banded interval of X is compact.

Proof-Let a <b and A be an open cover of $[a,b]$ in the subspace topology (which is the same as the order topology since [a,b] is compact]. Claim 1. If $x \in [a, b)$. there exists $y > x$ in $[a, b]$ such that $[x, y]$ can be covered by atmost two elements of A.

- \rightarrow If x has an immediate successor, let γ be this element. Then $[2y] = \{x, y\}$, so the claim is obvious.
- Otherwise, choose AEA containing x. Since A is open, it contains an intervel of the form [x,c). We can then let y be any element of (x, c) .

Now, let C be the set of all points y > a such that [a, y] can be covered by finitely many elements of A. (We want to show that bEC.) By the claim, $C \neq \emptyset$. Let c be the least upper bound of C. $Claim 2. cEC.$ Choose AEA containing c. A contains an interval of the form (d, c]. If c does not have an immediate predecessor (even otherwise, it is similarly shown) Let zEC such that zE(d,c) (why does such a z exist?). Then $[a,z]$ can be covered by finitely many elements A_{1} , B_{k} of A, so it follows that $\{A_{1},...,A_{k}\}\cup\{A\}$ is a finite subset of A covering [a,c], proving the result.

Finally, let us prove that b=c. Suppose otherwise Then there exists y E (c, b] such that [c, y] can be covered by atmost two elements. This implies that [a,y] can be covered by finitely many elements, controducting the fact that c is an upper bound of C, proving the result.

 \Box

Corollary Any closed and bounded intervel in R is compact. La wint. Euclidean metric (3.29)

Lecture 21 - 17/03/21 Local Compactness

Theo.

A subspace A of Rⁿ iff it is closed and bounded in the Euclidean (3.30) metrie or square metric p. It suffices to consider the metric p (Why?). Proof

Suppose $A \subseteq R^n$ is compact.

-Since IRⁿ is Hauselorff, A is closed.

- Consider the collection of open sets $\{B_{\rho}(\mathbf{O},m) : m \in \mathbb{N}\}\$, which forms a covering of A. Since it has a finite subcover, it follows that

 $A \subseteq B_p(O,n)$ for some $n \in \mathbb{N}$ and A is bounded Suppose $A \subseteq R^n$ is closed and bounded. Suppose $P(x,y)$ < M for $x,y \in A$. Fix some $x_0 \in A$. Then A is a subset of $\pi_{i=1}^n$ $(x_0)_i - M_i(x_0)_i + M_i$, which is compact (finite product of compact sets) Since A is closed in this subspace, it is compact.

Def. If X is a space, xEX is said to be an isolated point of X if {x} is open in X. Isolated Point

Theo. Let X be a non-empty compact Hausdorff space. If X has no isolated (3-31) points, it is uncountable non-empty Proof. \rightarrow We show that given any open $U \subseteq X$ and $x \in X$, there is a non-empty open $V \subseteq U$ such that $x \notin \overline{V}$. Choose a $y \in U$ different from x (Why does such a y exist?). Let W_1 and W_2 be disjoint neighbourhoods of x and y. V= W2 nu is the required set $-\alpha \notin \overline{v}$ because $x \in W$ and $W_1 \cap V = \emptyset$. \rightarrow We show that given any $f: M \rightarrow X$, is not surjectue. Let x_n = $f(n)$. Let $\sqrt{2} \times$ be an open set such that $x \in \overline{\sqrt{1}}$ Colosing $U = X$. In general, given non-empty open V_{n-1} , let $V_n \subseteq V_{n-1}$ be a non-empty open set such that $x_n \notin \overline{\nu}_n$. Then $\overline{V}_1 \supseteq V_2 \supseteq \cdots \supseteq V_n \supseteq \cdots.$ Let $V = \overline{\bigcap} V_n$. Observe that the above collection of subsets has the finite intersection property. Therefore V is non-empty and closed let $x \in V$. Then $x \neq x_n$ for any n, completing the proof. $\epsilon \overrightarrow{v}$, $\epsilon \overrightarrow{v}$, \Box

A space X is said to be locally compact at x if there is some compact Def. subspace C of X that contains a neighbourhood of x . Locally Compact If X is locally compact at each $x \in X$. X is said to be locally compact.

Observe that any compact space is locally compact (taking $C = X$).

A slightly more non-trivial example is that R is locally compact-

If X is Hewsdorff and B forms a basis, then X is locally compact iff for all $x \in x$, there is $B \in B$ such that $x \in B$ and \overline{B} is compact.

- Show that \bigoplus is not locally compact.

Theo. Let X be a space X is locally compact and Hausdorff iff there is (3.32) a space Y such that 1. X is a subspace of Y. One-Point Compactification $2. \ \ \forall \times \times$ is a singleton. 3. Y is compact and Housdorff. Further, if Y and y' are two spaces satisfying the above, they are homeomorphic with a homeomorphism whose restriction to X is the identity map.

 $\frac{Proof}{1000}$ we first check uruquiness up to homeomorphism. Let $h: Y \rightarrow Y'$ such that h(x)=x for x EX and the single point pEY is mapped to the single point $P^{'E}Y^{'}$, h is clearly bijective.

Let U be open in y.

- . If $p \notin U$, $h(U)$ = U is clearly open. $(X$ is open in Y or Y' since $\{p\}$ and $\{p'\}$ are closed)
- · Suppose pEU. Since C= Y \U is closed in Y, it is compact in Y. Further, it is a compact subspace of X. Since X is a subspace of Y', C is a compact subspace of Y'. Because Y' is Hausdorff, C is closed in Y' so $h(U) = Y' \setminus C$ is open in Y' .

Therefore, h is epen. Similarly, h is also continuous so it is a homeomorphism.

-Suppose x is locally compact and Hausdorff Take some point co $\notin x$. Let Y = X U { co }. Give Y a topology as:

i) all sets U open in X are open in Y.

ii) all sets of the form YVC are open in Y, where C is a compact subspace of X.

Why is this a topology?

- \cdot \varnothing , \vee are open by i, in respectively.
- . U₁ N U₂ is open by i $(y \setminus C_1) \cap (y \setminus C_2) = y \setminus (C_1 \cup C_2)$ is open by ii $U_i \cap (Y \setminus C_i) = U_i \cap (X \setminus C_i)$ is open by i

\n- Similarly, on arbitrary union of open sets is open
\n- $$
\bigcup_{\alpha} \bigcup_{\alpha} \bigcup_{\alpha} \text{ is open by } i
$$
\n- $\bigcup_{\alpha} \big(Y \setminus C_{\alpha} \big) = Y \setminus \big(\bigcap_{\alpha} C_{\alpha} \big) = Y \setminus C$ is open by i
\n- $\bigcup_{\alpha} \bigcup_{\alpha} \bigcup_{\alpha} \bigcup_{\alpha} \big(Y \setminus C_{\beta} \big) = U \cup (Y \setminus C) = Y \setminus (C \setminus U)$ is open closed
\n- $C \cap (X \setminus U)$
\n

Next, let us show that X is a subspace of Y . Let U be open in Y . . If U is of type i, UNX is open in X.

• If U = y \C is of type ii, (Y \C) N X = X \C is open in X because C is closed in X.

(it is obviews that for any open \vee in x , there is an open $\bigcup_{\Delta y} f(y)$ st \vee = \cup \cap x)

Let A be an open covering of Y. A must contain some open set $(y \setminus c)$ of type in (or is not in any set of type i). Consider all the elements of A other than YVC and intersect them with $X.$ This forms an open cover of C . Because C is compact, finitely many of them cover C. The corresponding elements of A together with YVC form a finite subcover of Y. Therefore, Y is compact.

Let $x,y \in Y$ with $x \neq y$. If $x,y \in X$, then there are clearly disjoint open sets containing them. Otherwise, suppose $x \in X$ and $y = \infty$ Let C be a compact subspace of x containing a neighbourhood U of x. Then U and $Y \setminus C$ are disjoint neighbourhoods of x and y.

- let us now prove the converse. We claim that X is locally compact and Havsdorff. Denote by as the element of YXX. X is Hausdorff by Theo. 1.20 (c). Let $x \in X$. Let U, V be disjoint neighbourhoods of x and co. Then $(Y \setminus V)$ is closed in y , and thus compact, The required follows since $y \in (y \vee y)$. as a subspace of X $sine \quad y \vee y \subseteq x$.

Lecture 22 - 19/03/21

Def · If Y is a compact Hausdorff space and X is a proper subspace of Y whose closure equals y then Y is said to be a compactification of X. If YXX is a singleton, Y is called a one-point compactification. Compactification In Theo 3.32, if X is not compact. Y is its one-point compoctification or $\mathbb C$ - Show that the one-point compactification of R^2 is homeomorphic to S^2 . 1 U { as } is called the Riemann sphere or extended complex plane. If N is the north pole of S^2 , $S^2 \setminus \{N\} \simeq \mathbb{C}$. (by the stereographic projection) Theo Let X be a Hausdorff space. Then X is locally compact iff given (3.33) x \in X and a neighbourhood \cup of x, there exists a neighbourhood \vee of x such that \overline{v} is compact and $\overline{v} \subseteq v$ Proof The backward direction is obvious since $x \in V \subseteq V$ To prove the converse, let U apen and xEU. Let Y be the one-point compactification of X and C= Y \U. Then C is compact in y. Therefore, there exist open sets $\sqrt{3x}$ and $W \supseteq C$ with $\overline{V} \cap W = \emptyset$. But \overline{v} is compact in y (and thus x), and \overline{v} \cap $c = \phi \Rightarrow \overline{v} \subseteq U$ as required. \Box