Countability and Separation Axioms

Def A space X is said to have a countable basis at XEX if there is a countable collection B of neighbourhoods of x such that any neighbourhood of x contains an element of B. A space that has a countable basis at each of its points is said to be first countable.

First countable

For example, any metrizable space is first countable — consider $\{B_{d}(x, Y_{n}) : n \in \mathbb{N}\}\$

Theo. Let X be a topological space.

- (4.1) a) Let $A \subseteq X$. If there is a sequence of points in A that converges to $x \in X$, then $x \in \overline{A}$. The converse holds if X is first countable.
 - b) Let $f X \rightarrow Y$ be continuous. If (x_n) be a sequence of points in X that converges to x, then $f(x_n) \rightarrow f(x)$. The converse holds if X is first countable.
 - Proof Recall that we have proved the above for metrizable X by considering $B_{d}(x, Y_n)$. Here, just consider $B_n = U_1 \cap \cdots \cap U_n$ instead, where $\{U_n\}$ forms a countable basis at x. The proof is relatively straightforward - let $x_n \in B_n \cap A$ for each n. For (b), show that $f(\overline{A}) \subseteq \overline{f(A)}$.
- Def A topological space X is said to be second countable if it has a countable basis (for the topology).

Second countable <u>Prop</u>. Any second countable space is first countable. (4.2)

```
The proof is direct.
```

For example, R is second countable — consider { (a,b) : a,b E Q }. Similarly, Rⁿ is second countable as well. R^W under the product topology is second countable as well. { TT Un : Un= (a,b) for a, b E Q for finitely many n and R otherwise} here N = Why is this set countable?

→ Show that R^W under the uniform topology is not second countable.

<u>Hint</u>- Show that the subspace containing sequences of Os and Is has the discrete topology so does not have a counteb basis. Use this to prove the required.

Theo: A subspace of a first (resp. second) countable space is first (second) (4.3) countable and a countable product of first (resp second) countable spaces is first (second) countable.

Proof We prove the above for the second countable case. If X has a countable basis B, then {BNA: BEB} is a countable basis for ASX as a subspace. If X; has countable basis B; then {TTU; : UiEB; for finitely many i and U;=X; otherwise} forms a countable basis of TT; X;.

Recall that a subset A of a space X is dense in X iff $\overline{A} = X$.

Theo Let X be a second countable space.

(4.4) (a) Every open covering of X contains a countable subcover. (b) X has a countable dense subset.

- <u>Proof.</u> (a) Let A be an open covering of X. Let $B = \{B_n : n \in \mathbb{N}\}$ be a countable basis of X. For each n, if possible, choose an $A_n \supseteq B_n$. Let A' be the collection of these A_n . It is clearly countable. Further, it covers X. Given $x \in X$, let $A \in A$ such that $x \in A$ and $B_n \supseteq A$ be a basis element. Then $x \in A_n$, proving the claim.
 - (b) For each B_n, let x_n ∈ B_n. Let D = {x_n : n∈N}. Then D is a countable dense subset since any basis element of X (and so any open set) intersects D.

Def A space for which every open cover contains a counteble subcover Lindelöf is called a Lindelöf space. space A space having a countable dense subset is said to be separable. Separable space

Lecture 23 - 24/03/21 Separation Axioms

Obviously, any compact set is Lindelöf.

 \rightarrow Show that \mathbb{R}_{1} satisfies all countability axioms except the second.

The product of two Lindelöf spaces need not be Lindelöf.

 \rightarrow Show that RL is Lindelöf but $R_{L} \times R_{L}$ is not.

Hint: Consider Re \ {(x, -x). xERe}.

A subspace of a Lindelöf space need not be Lindelöf either

 \rightarrow Consider the ordered square $I_0^2 = [0, i]^2$ (under the dictionary order). Show that I_0^2 is compact (and Lindelöf) but the subspace $A = I_0 \times (0, i)$ is not Lindelöf.

- <u>Def</u>. Suppose that one point sets are closed in X. Then X is said to be regular if for each xEX and closed B disjoint from x, there exist disjoint open sets containing Regular x and B.
- Normal The space is said to be normal if for disjoint closed A,B, there exist disjoint open sets containing A and B.

Observe that any normal space is regular and any regular space is Hausdorff.

Lemma. Let one-point sets be closed in X. (4.5) a) X is regular iff given x∈X and a nbd. U of x, there exists a neighbourhood V of x such that V⊆U. b) X is normal iff given a closed A⊆X and open U⊇A, there is an open set V⊇A with V⊆U.

Proof

- a) (Forward) Let B=XVU be closed. There exist disjoint open V and W containing x and B. Then V∩B=Ø. Therefore, V⊂U (Backword) Let xEX and B disjoint from {x} be closed. Let U=X\B. Let V be a nbd. of x such that V⊆U. There V and X\V are disjoint open sets containing x and B respectively. Therefore, X is regular. The argument for (b) is nearly identical, taking A instead of {x}.
- Theo. A subspace of a regular space is regular. A product of regular spaces is (4.6) regular.
- Proof. Let X be regular and $Y \subseteq X$. One-point sets are closed in Y. Let $x \in Y$ and B a closed subset of Y disjoint from $\{x\}$. Then $\overline{B} \cap Y = B$. Therefore, $x \notin \overline{B}$. Using regularity, let U, V be disjoint open sets containing x and \overline{B} . Then $(U \cap Y)$ and $(V \cap Y)$ are disjoint open sets of Y containing x and B.

Let
$$(X_{\alpha})$$
 be a family of regular spaces and $X = \Pi_{\alpha} X_{\alpha}$.
X is Hausdorff, so singletons are closed in X. Let $x \in X$ and U be a
neighbourhood of x . Let $\Pi_{\alpha} \cup_{\alpha}$ be a basis element containing x and
contained in U. For each α , let V_{α} be a node of x_{α} such that
 $\overline{V_{\alpha}} \subseteq \bigcup_{\alpha}$. If $\bigcup_{\alpha} = X_{\alpha}$, choose $\bigvee_{\alpha} = X_{\alpha}$. Then $V = \Pi_{\alpha} \bigvee_{\alpha}$ is a neighbourhood
of x in X. Since $\overline{V} = \Pi_{\alpha} \overline{V_{\alpha}}, x \in \overline{V} \subseteq U$, so X is regular.

-> Show that IR1 is normal.

(4.7) Any second countable regular space is normal

Let X be regular with countable basis B. Let A and B be disjoint closed subsets of X. Each xEA has a nod. U disjoint from B. Choose a nod. V of x such that $\overline{V} \subseteq U$. Then, choose an element of B containing x and contained in V.

This gives a countable covering (U_n) of A by open sets whose closures do not intersect B. Similarly choose a countable covering (V_n) of B. UU_n and UV_n are open sets containing A and B, but need not be disjoint. For each n, let

 $U'_{n} = U_{n} \setminus \bigcup_{i=1}^{n} \overline{V_{i}}$ and $V'_{n} = V_{n} \setminus \bigcup_{i=1}^{n} \overline{U_{i}}$.

Each Ui and Vi is open. Also, (U_n) covers A because for any $x \in A$, $x \in U_n$ for some n but $x \notin \overline{V_i}$ for $1 \le i \le n$. The open sets

U'= UUn' and V'= UVn' are disjoint. It is easy to show that U' and V' are disjoint. (4.8) Theo. Any metrizable space is normal. Proof. Let X be metrizable with metric d. Let A, B be disjoint closed subset of X. For each a.E.A, choose E_a such that $B_d(a, E_a) \cap B = \emptyset$. Choose E_b similarly. Then, let U= U $B_d(a, E_{a/2})$ and $V = \bigcup B_d(b, E_{b/2})$. $a \in A$ It is easy to show that these are disjoint (they are clearly open and contain A, B), completing the proof.

Theo- Any compact Hausdorff space is normal. (4.9)

Left as exercise.

Lecture 24 - 26/03/21 Urysonn Lemme and Completely Regular Spaces

Then: [Urysohn Lemma]
(4.10) Let A,B be disjoint closed subsets of X. If X is normal, then for a closed interval [a,b] in the real line, there exists a continuous map f: X→ [a,b] such that f(x) = a for every aCA and f(x) = b for every bCB.
Poof Clearly, it suffices to take [a,b] = [0,1].
Let P= & ∩ [0,1]. For each pCP, we define open Up such that if p<q, Up ⊆ Uq.
Arrange P as an infinite sequence (pn) and for convenience, let p=0 and p₂ = 1. Let U₁ = X × B Because A is closed and A ⊆ U₁, we may choose (by normality) an open Uo such that A⊆ U₀ ⊆ U₀ ⊆ U₁.
In general, let P_n = {p_k · 1≤k ≤ n} and suppose Open Up is defined for pCP_n such that p < q ⇒ Up ⊆ Uq.

Let r = Pn+1 · Since Pn+1 is finite, it has a simple ordering < (derived from the Usual ordering). Let pi and pj be the immediate predecessor and successor respectively in Pn+1 (Why do these exist?) Now, choose Ur as an open set such that Upi ⊆ Ur ⊆ Ur ⊆ Up; such a Ur exists by using normality on the sets Up; and X\Upj. → This defines Up for pEP such that p<q ⇒ Up ⊆ Uq. Extend this to define Up for all pEQ as Up = Ø if p<0 and

 $U_p = X \quad iF \quad p > 1$

Given
$$x \in X$$
, let $Q(x) = Ip \in Q : x \in Up I$.
Observe that $Q(x)$ is bounded below $(hq, say, -1)$
 $\rightarrow Let f(x) = inf $Q(x) = inf \{p \in Q : x \in Up \}$.
We claim that f is the desired function.
Note that $f(x) \in [D,1]$ for any $x \in X (uhy?)$. (*)
For any $x \in A \subseteq U_0$, $f(x) = D$.
For any $x \in A \subseteq U_0$, $f(x) = D$.
For any $x \in B$, $x \notin p$ for any $p \leq 1$ $(U_1 = X \setminus B)$. By $(*)$, $f(x) = 1$.
It remains to show that f is containvous.
Observe that
 $if x \in U_r$, $f(x) \geq r$
This follows from the denseness of rationals.
Let $X \in X$ and (c,d) be in R containing $f(x_0)$.
Choose rationals p,q such that $c .
Let $U = Uq \setminus Up$.
Then,
 $-f(x_0) < q \Rightarrow x \in Uq$ $\int \Rightarrow x_0 \in U$
 $\cdot Let x \in U$. Then $f(x) \in Uq \subset Uq \Rightarrow f(x) \leq q < d$
 $f(x) \notin Up \supseteq Up \Rightarrow f(x) \geq p > c$
 $\Rightarrow f(x_0) \in U \subseteq (c,d)$, so f is containvous by TheD 2-1 (iv).$$

Observe that the converse holds too — we may take $U = f^{-1}([0, \frac{1}{2}))$ and $V = f^{-1}((\frac{1}{2}, 1])$

- Def A space X is completely regular if One-point sets are closed in X and for each $x_0 \in X$ and closed A $\not \ni x_0$, there is a continuous function $f: X \rightarrow [0,1]$ such that $f(x_0) = 1$ and $f(A) = \{0\}^3$.
 - By the Urysohn Lemma, normality implies complete regularity

The axioms are labelled as T₁: for any x,y, there are open U,V such that xEU∌y and y € V ∌ x. T₂: Hausdorff T₃: Regular T_{3½}: Completely regular T₄: Normal

These A subspace of a completely regular space is completely regular. (4.11) A product of completely regular spaces is completely regular.

(Go to next page)

Lecture 25-31/03/21 The Unysohn Metrization Theorem and Tychonoff's Theorem Theo. [Urysohn Metrization Theorem]

- (4.12) A regular second countable space X is metrizable
- Proof. We shall embed X in a metrizable space Y
 - Let Y = R^w under the product topology. We have already seen that Y is metrizable under the metric

$$D(x,y) = \sup_{i} \left\{ \frac{\min\{|x_i-y_i|, 1\}}{i} \right\}$$

(The proof can also be carried out by taking Y as IR^W under the uniform topology) We will in fact embed X in [0,1]^W.

- -> Claim 1 There exists a countable collection of continuous functions $f_n: X \rightarrow [0,1]$ such that for any $\chi_0 \in X$ and nbd. U of χ_0 , there is some n such that $f_n(\chi_0) \neq 0$ and $f(\chi)=0$ for $\chi \in X \setminus U$.
 - Let (B_n) be a countable basis for x. For each pair n,m with $B_n \subseteq B_m$, use Theo 3.43 to get a continuous function $g_{n,m}: X \rightarrow [0,1]$ such that $g_{n,m}(B_n) = 513$ and $g_{n,m}(X \setminus B_m) = \{0\}$.
 - Then given any xoEX and neighbourhood U of Xo, we can choose a basis element B_m with xoEB_m \subseteq U. By regularity and Lemma 3.38, we can let B_n be a basis element with $x_o \in B_n \subseteq \overline{B_n} \subseteq \overline{B_m}$. $(g_{n,m})$ then satisfies our requirements.
- \rightarrow For this (f_n) , define $F: X \rightarrow Y$ by $F(x) = (f_1(x), f_2(x), f_3(x), \cdots)$
 - · Because Y has the product topology and each for is continuous, F is continuous.
 - For $x \neq y$, there is some index n such that $f_n(x) \neq 0$ and $f_n(y) = 0$. So, $F(x) \neq F(y)$ and F is injective.
 - We must show that F is a homeomorphism of X to f(x). We have already shown that it is a continuous bijection. Let U be open in X. Let z_o ∈ F(u) and x_o∈X with F(x_o) = z_o. Let N be such that f_N(x_o) = 0 and f_N(×\U) = {0}.
 Let V = 1T_N⁻¹((0,∞)) ⊆ R^W. Let W = VNF(x) be open in F(x). Now, T_N(z_o) = f_N(x_o) > 0, so z_o ∈ W. Further, WNF(x∪) = Ø, so W ⊆ F(U). Therefore, F(U) is open and F is a homeomorphism.

Theo. [Embedding Theorem]

(4.13) Let X be a space in which one-point sets are closed. Let $(f_{\alpha})_{\alpha \in J}$ be a family of continuous function $X \to \mathbb{R}$ such that for any $X_{\circ} \in X$ and nbd. U of X_{\circ} , there is $\alpha \in J$ such that $f_{\alpha}(X_{\circ}) > D$ and $f_{\alpha}(X \setminus U) = \{0\}$. Then $F : X \to \mathbb{R}^{J}$ defined by $(F(X))_{\alpha} = f_{\alpha}(X)$ is an embedding of X in \mathbb{R}^{J} .

A family of continuous functions that satisfies the hypothesis of the above theorem is said to separate points from closed sets. For a space in which one-point sets are closed, this is seen to be equivalent to X being completely regular.

(Ordlany. A space X is completely regular iff it is homeomorphic to [0,1] for (4.14) some J.

Theo. [Tietze Extension Theorem] Let X be normal and A be closed in X.

- (a) Any continuous map $A \rightarrow [a,b] \subseteq \mathbb{R}$ may be extended to a continuous map $X \rightarrow [a,b]$.
- (b) Any continuous map A-R may be extended to a continuous X-R.
- The Tietze Extension Theorem can be used to prove the Urysohn Lemma. (but its proof uses the Urysohn Lemma)

Theorem [Tychonoff's Theorem] (4.15) An arbitrary product of compact spaces is compact.

> Let $(X_{\alpha})_{\alpha \in J}$ be compact and $X = \prod_{\alpha} X_{\alpha}$. We first prove a couple of lemmas.

Claim 1. Let X be a set and A a collection of subsets having the finite intersection property. Then there is a \mathcal{D} such that $\mathcal{A} \subseteq \mathcal{D} \subseteq 2^{\times}$, \mathcal{D} has the finite intersection property, and no F with $\mathcal{P} \subsetneq \mathcal{F} \subseteq 2^{\times}$ has the finite intersection property.

Proof We use Zom's Lemma to prove this.

Lo Given a strictly partially ordered set A in which every simply ordered subset has an upper bound, A has a maximal element.

The strict poset we consider is a set of collections of subsets of X. Let

 $C = \{B \subseteq 2^{\times} : A \subseteq B \text{ and } B \text{ has the finite intersection property}\}$ with the strict partial order strict inclusion \subsetneq . We want to show that C has a maximal element P. Let $B \subseteq C$ be a simply ordered subset. It suffices to show that $C = \bigcup B \in C$ BEB

and is an upper bound of B (which is obvious) It is clear that $A \subseteq C$. Let $C_1, C_2, ..., C_n \in C$. For each i, choose $B_i \in B$ such that $C_i \in B_i$. $\{B_i \ . \ i \leq i \leq n^3\}$ is simply ordered by proper inclusion and is finite, so has a maximal element B_k . Then $C_1, C_2, ..., C_n \in B_k$. Since B_k has the finite intersection property, $\bigcap_{1 \leq i \leq n} C_i \neq \emptyset$, so C has the finite intersection property. Using Zom's Lemma completes the proof.

Lecture 26 - 31/03/21 Completing the proof of Tychonoff's Theorem Claim 2. Let X be a set and $D \subseteq 2^{\times}$ be as defined in the previous claim. a) If B is a finite intersection of elements of D, BED. b) If A is a subset of X that intersects every element of D, AED. Proof a) Let B equal the intersection of finitely many elements in P and $\mathcal{E} = \mathcal{P} \cup \{B\}$. We show that \mathcal{E} has the finite intersection property, so E= P. Take finitely many elements of E. - If none of them is B, their intersection is clearly nonempty. -> IF B is one of them, we can expand B as a finite intersection to get that the overall intersection is non-empty. Wheth as exercise (idea similar to a) We now come to the main proof of Tychonoff's Theorem. Let A be a collection of subsets of X having the finite intersection property. We show that $\prod_{A \in \mathcal{A}} \overline{A} \neq \emptyset$ By Claim 1, choose $\mathcal{D} \supseteq \mathcal{A}$ as defined. It suffices to show that $\bigcap_{D \subset D} \overline{D} \neq \emptyset$. Consider for each XEJ $\mathcal{T}_{\alpha} = \{\Pi_{\alpha}(D) \cdot D \in \mathcal{P}\} \subseteq 2^{X_{\alpha}}$ Because P has the finite intersection property, so does $\mathcal{D}_{\mathcal{A}}$. By compactness, we may choose for each d, X2EX2 such that $X_{d} \in \bigcap_{\mathbf{D}_{d} \in \mathcal{D}_{d}} \overline{\mathcal{D}}_{d}$

Let $x = (x_{x_{2}})_{x \in 3} \in X$. If we show that $x \in \overline{D}$ for any $D \in P$, we are done. Let $D \in P$ and U_{β} be a node of $x_{\beta} \in X_{\beta}$. Since $x_{\beta} \in \overline{\mathrm{TT}_{\beta}(D)}$, we can choose $y \in D$ such that $\mathrm{TT}_{\beta}(y) \in U_{\beta} \cap \mathrm{TT}_{\beta}(D)$. Then, $y \in \mathrm{TT}_{\beta}^{-1}(U_{\beta}) \cap D$. From (b) of Chaim 2, every subbasis element containing x belongs to P. By (a) of Chaim 2, every basis element containing x belongs to P. and intersects every element of P. Therefore, $x \in \overline{D}$ for all $D \in P$.