Page 1 26 August 2020 09:32 Seguences Def. Let (x,d) be a metric space. A sequence in X is a mop $f: N \rightarrow X$. We typically denote sequence as $\{a_1, a_2, ...\}$, $\{a_n\}_{n\in\mathbb{N}}$ or $(a_n)_{n\in\mathbb{N}}$ $\mathcal{D}_{e}f$ A squence (On) nEN in (x,d) is convergent j^e Ja EX such that for all E>D, IngEN such that $n \geq n_p \Rightarrow \partial(a_n, a_n) < E$ Equivalently, $a_n \in B(a, \epsilon)$ $\forall n \geq n_0$ In this case, we say that $(a_n)_{n\in\mathbb{N}}$ converges to a and write $a_n \rightarrow a$. If (an) new use denote the point it converges to by lim an For example, $\left(\frac{1}{n}\right)_{n \in \mathbb{N}}$ converges to 0 in R. If a sequence (an)_{nEN} converges, its limit is unique. Theo. $Proof.$

Page 2 09 September 2020 09:45 Theo. A convergent sequence is bounded. $(\mu$ (p_n) new is convergent, then ${f_{\text{Pn}}: \text{n}\in\mathbb{N}}$ is bounded.) $Root.$ Thes. Let $E \subseteq X$ and a be a limit point of E . Then there exists a sequence $(an)_{n\in\mathbb{N}}$ in E such that $a_n \rightarrow a$ in X. Proot We have aff'. For each nEN, let $a_n \in B(a, \frac{1}{n})$ $\Pi E \setminus \{a\} \neq \emptyset$. We daim that $a_n \rightarrow \infty$ in X. Indeed, given any EDO, In.EN such that $\frac{1}{n_0} < \varepsilon$. Then $\forall n \ge n_0$, $d(a_{n},a) < \varepsilon$. Let $(5n)_{n\in\mathbb{N}}$ and $(t_n)_{n\in\mathbb{N}}$ be convergent in R such that $s_n\rightarrow s$ and $t_n\rightarrow t$. Theo. If $YnEN, S_n \leq t_n$, then $s \leq t$. .
Suppose s>t. Choose some E such that $0\leq \epsilon \leq \frac{s-t}{2}$. Then let $n_1, n_2 \in \mathbb{N}$ Proof such that $\forall n \geq n_1$, $|s_n-s| < \epsilon$ and $\forall n \geq n_2$, $|t_n-t| < \epsilon$. Choose $\Pi_{p} = max(n_1, n_2)$. Then $t_{n_a} < t + \frac{s-t}{2} = \frac{s+t}{2}$ and $s_{n_a} > s - \frac{s-t}{2} = \frac{s+t}{2} \Rightarrow s_{n_a} > t_{n_a}$. This is a contradiction. Therefore, $s \leq t$. Corollary Let $(a_n)_{n\in\mathbb{N}}$, $(b_n)_{n\in\mathbb{N}}$, $(c_n)_{n\in\mathbb{N}}$ be convergent in R such that for all $n\in\mathbb{N}$, $\alpha_n\leq b_n\leq c_n$. If $\lim_{n\to\infty}a_n=\lim_{n\to\infty}c_n$, then they are also equal to $lim_{n \to \infty} b_n$.

Page 3

09 September 2020 10:02

Let $(a_n)_{n\in\mathbb{N}}$ and (bo) new be convergent in R. Theo. Then $1. a_n + b_n \rightarrow a + b$ 2. $a_{ab} \rightarrow ab$ $\frac{a}{\sqrt{a}}$ $\left(\frac{a}{b}\right)$ \rightarrow $\left(\frac{a}{b}\right)$ if $a_n \neq 0$ in and $a \neq 0$. $P_{\text{top}}P$ 1. is left as an exercise. Sketch. 2. $|s_n t_n - st| \leq |s_n||t_n - t| + |t||s_n - s|$ Use the boundedness of (sn)_{nEN}. 3. can be proved similar to 2. For each nEN, let x_{n} = (α_{n1} , α_{n2} , ..., α_{nk}) E R^{k} under the d_{2} metric. Theo. Then $x_n \to x = (\alpha_1, \alpha_2, ..., \alpha_k)$ in R^k if and only if $\alpha_n \to \alpha_i$ for each i. $Proof.$ Let $x_n \rightarrow x$ $\Rightarrow \forall \epsilon > 0$, $\exists n_e \in \mathbb{N}$ s.t. $n \ge n_e$ \Rightarrow d₂ (x_n, x) < E $\Rightarrow \sum_{i=1}^{n} (x_{ni} - x_i)^2 < E^2 \Rightarrow |d_{ni} - x_i| < E$ V valid i and $n > n$. The converse is similar. Theo. Let (an)_{nem} be a sequence in metric space (x,d). Consider a sequence of natural numbers $(n_k)_{k\in\mathbb{N}}$ st $n_i < n_j$ for $i < j$. Then the sequence $(a_{n_k})_{k\in\mathbb{N}}$ is said to be a subsequence of $(a_n)_{n \in \mathbb{N}}$. The limit of a subsequence is called a subsequential limit.

Page 4

09 September 2020 10:21

Prove that if a sequence is convergent, any subsequence is Ex convergent to the same limit. A natural extension to the above is what sequences have convergent subsequences? For example $(-1,1,-1,1,\cdots)$ is not convergent but has a convergent subsequence (1,2,3, ...) has no convergent subsequence. Theo. 1. Let $(a_n)_{n\in\mathbb{N}}$ be a sequence in a compact metric space (x,d) . Then it has a convergent subsequence. 2. Any bounded sequence in R^k has a convergent subsequence. Proof. 1. Consider $E = \{a_{1}, a_{2}, \dots \} \subseteq X$ as a set. If E is finite, then $\exists n_1 < n_2 < ...$ such that $a_{n_1} = a_{n_2} =$. Then the sequence $(a_{n_k})_{k\in\mathbb{N}}$ is convergent. Otherwise, let E be an infinite subset of the compact space (x,d) \Rightarrow E has a limit point a in X (by the Bolzano-Weierstrass Th.) Then for each kEN, let $a_{n_{\kappa}} \in \mathbb{E} \cap B(a_{\kappa} \frac{1}{\kappa}) \setminus \{a\}$ where $n_1 < n_2 < \cdots$ This is possible since each neighbourhood of a contains infinitely elements of E. Then $(a_{n_{k}})_{k\in\mathbb{N}}$ is convergent. 2. Any bounded sequence in IR^K is cantained in a closed and bounded interval, which is compact. By part 1., the sequence must then have a convergent subsequence. Note that the converse is not true, consider $(1, 2, 1, 3, 1, 4, 1, 5, \cdots)$

Page 7 16 September 2020 10:14 3. Let $x_n = n^{1/n} - 1 \ge 0$. Then $n = (1+x_n)^2 \ge \frac{n(n-1)}{2} \times n^2$ (Same idea as 2) $\Rightarrow 0 \leq x_n \leq \sqrt{\frac{2}{n-1}} \Rightarrow \lim_{n \to \infty} x_n = 1.$ Let KEN such that ksd. $4.$ $For n>2k$, $(1+p)^n \geq {^nC_k} p^k = p^k (n \cdot (n-1) \cdot \cdots \cdot (n-k+1))$ $\geq \rho^{k}$. $\left(\frac{n}{2}\right)^{k}$ $\Rightarrow \frac{n^{\alpha}}{(1+p)^n} \leq n^{\alpha-k} \cdot 2^k \cdot \frac{2}{p^k}$ Then use (1) fo get $\lim_{n \to \infty} \frac{n^{\alpha}}{(1+p)^n} = 0$. 5. Set $d=0$ and $p = \left(\frac{1}{|x|}-1\right)$ in (4). lim sup and lim inf We define the extended real number line by \overline{R} = $R \cup \{\infty, -\infty\}$ where

Page 8 16 September 2020 10:29 Def. Let Connew be a sequence. 1. We write $a_n \rightarrow \infty$ if for all $\alpha > 0$, there exists no EN such that a_0 and a_1 $\rightarrow a_2$. 2. We write $a_n \rightarrow -\infty$ if $-a_n \rightarrow \infty$. Det let (sn) new be a sequence of reals and let $E = \{ x \in \overline{R} : x = \lim_{k \to \infty} S_{n_k} \}$ for some subsequence $(S_{n_k})_{k \in \mathbb{N}}$ of $(S_n)_{n \in \mathbb{N}}\}$ $\begin{pmatrix} 1f & S_{n_{R}} \rightarrow \infty, & \omega e & \text{take its } \lim \text{ as } \infty \\ 1f & S_{n_{R}} \rightarrow -\infty, & \omega e & \text{take its } \lim \text{ as } -\infty \end{pmatrix}$ We then define $\limsup_{n\to\infty}$ on = sup E and $\liminf_{n\to\infty} s_n = \inf E$. For example, if $s_n = (-1)^n (1 + \frac{1}{n})$, $E = \{1, -1\}$ so $\limsup_{n \to \infty} s_n = 1$ and $\lim_{n \to \infty} \inf_{n \geq 0} s_n = -1$. Let $a_n = \frac{1}{n}$ if n is odd and n if n is even. Then $E = \{0, \infty\}$ so the limsup is so and the limin^f is 0. What if $(s_n)_{n\in\mathbb{N}}$ is convergent? Then since any subsequence converges to the limit, the lim, limsup, and liminf are equal. What about the converse?

Page 9

16 September 2020 10:50

Lerma Let (Sn) new be a sequence of reals such that $t > \lim_{n \to \infty} s_n$ There then exists n_oCM such that $s_n < t$ for all $n \ge n_o$. Proof: If there exists no no, then there are infinitely many n such that
sn zt. If this set is unbounded, then $\rightarrow \infty$. Otherwise, there is a subsequence with limit zt. This is a contradiction to the fact that the lim sup is the supremum of the set of subsequential limits. Def. A sequence $(a_n)_{n\in\mathbb{N}}$ of reals is said to be monotonically increasing if $a_n \le a_{n+1}$ then. monotonically decreasing if $a_n \ge a_{n+1}$ $\forall n \in \mathbb{N}$. Theo. A monotonically increasing bounded sequence converges to its supremum $(as a set).$ (Left as exercise) Let (sn)_{nEN} be a sequence of reals. Then **Theo** $\lim_{n\to\infty} \sup_{n \to \infty} s_n = \inf_{n\to\infty} \sup_{s\not= s} \{ s_m : m \ge n \}$ $\lim_{n\to\infty} \frac{1}{n}$ Sn \leq Sup $\inf_{n\to\infty} \{ s_m : m \geq n \}$ (This follows directly from the lemma two above) Note that the above implies t < limsup $s_n \Rightarrow t$ < sup { s_n :m2n} tn \Rightarrow t< sn for infinitely many n.

Page 10 18 September 2020 09:54 Series Let $(a_n)_{n\in\mathbb{N}}$ be a sequence of reals. Def. We say $\sum_{n=1}^{\infty} a_n$ converges if $(\sum_{k=1}^{n} a_k)_{n\in\mathbb{N}}$ converges. We then say For example, if $|x| < 1$, then defining $S_n = 1 + x + \cdots + x^n = \frac{1-x^n}{1-x}$,
We see that $\sum_{n=1}^{\infty} x^n = \frac{1}{1-x}$. Theo: $\sum_{n=1}^{\infty} a_n$ converges if and only if for any $E>0$, there exists $n_0 \in \mathbb{N}$
such that $|\sum_{k=0}^{\infty} a_n| < E$ for all $n_1 n \ge n_0$. Prod. Letting $s_n = \sum_{k=1}^{n} a_n$, we see that the sum converges iff (sn)_{nGN}
is Cauchy, which is equivalent to the given condition. If \sum_{α} does not converge, we say that it diverges. Theo. I. If $|a_n| \leq c_n$ $\forall n \geq n_0$ and $\sum c_n$ converges, then $\sum a_n$ converges. 2. If $a_n \geq d_n \geq 0$ and $\sum d_n$ diverges, then $\sum a_n$ diverges.

Page 11
\n1100.
$$
\sum_{n=1}^{\infty} \frac{1}{n^r} \text{ converges for } \frac{1}{n} \ge 0 \text{ iff } p > 1.
$$
\n11100.
$$
\sum_{n=1}^{\infty} \frac{1}{n^r} \le 1 + \frac{1}{2^r} + \frac{1}{2^r} + \frac{1}{4^r} + \frac{1}{4^r} + \frac{1}{4^r} + \frac{1}{4^r} + \frac{1}{4^r} + \cdots
$$
\n
$$
= 1 + \frac{1}{2^{r-1}} + \frac{1}{4^{r-1}} + \cdots \text{ which converges as } p > 1.
$$
\nFor p=1,
\n
$$
\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2^r} + \frac{1}{4} + \cdots
$$
\n
$$
\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2^r} + \frac{1}{3} + \frac{1}{4} + \cdots
$$
\n
$$
\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2^r} + \frac{1}{3} + \frac{1}{4} + \cdots
$$
\n
$$
\sum_{n=1}^{\infty} \frac{1}{n} = \frac{1}{2} + \frac{1}{2} \cdot \left(\frac{1}{4} + \frac{1}{4}\right) + \left(\frac{1}{8} + \frac{1}{8} + \frac{1}{8}\right) + \cdots
$$
\n
$$
\sum_{n=1}^{\infty} \frac{1}{n} = \frac{1}{2} + \frac{1}{2} \cdot \left(\frac{1}{4} + \frac{1}{4}\right) + \left(\frac{1}{8} + \frac{1}{8} + \frac{1}{8}\right) + \cdots
$$
\n
$$
\sum_{n=1}^{\infty} \frac{1}{n} = 0 \text{ for all } n \text{ and } \left(\sum_{k=1}^{\infty} a_k \right)_{n \in \mathbb{N}}
$$
\n
$$
\sum_{n=1}^{\infty} \frac{1}{n} = 0 \text{ for all } n \text{ and } \left(\sum_{k=1}^{\infty} a_k \right)_{n \in \mathbb{N}}
$$
\n
$$
\sum_{n=
$$

Page 12 18 September 2020 10:18 $Ex.$ Show that $\sum_{n=2}^{\infty} \frac{1}{n \cdot (log_2 n)^p}$ converges if $p > 1$. [Root Test] $The 0.1$ For $a_n \in \mathbb{R}$, let α im $\sup |a_n|$ /n. If α <1, then $\sum_{n=1}^{\infty} a_n$ converges and if α >1, then $\sum_{n=1}^{\infty} a_n$ diverges. $Proof:$ Suppose $\alpha < 1$. Let β . $d < \beta < 1$. $\limsup |a_n|^{V_n} < \beta$ \Rightarrow $\exists n_{\rho}$ such that $\forall n \ge n_{\rho}$, $|a_{n}|^{1/n} < \beta$ \Rightarrow $|a_{n}| < \beta^{n}$. However, $\sum_{n=1}^{\infty} \beta^n$ converges which implies that $\sum_{n=1}^{\infty} a_n$ converges. If $\alpha > 1$, then there are infinitely nany n such that $|a_n|^{1/n} > 1$ $\Rightarrow |a_n| > 1$. This implies $\sum_{n=1}^{\infty} a_n$ diverges. Note that the root test is inconclusive if $\alpha = 1$. G consider $a_n = \frac{1}{n}$ and $b_n = \frac{1}{n^2}$. Theo. [Ratio Test] Let $\alpha = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$. If α <1, then $\sum a_n$ converges.
If there exists no such that $\left|\frac{a_{n+1}}{a_n}\right| \ge 1$ for all $n \ge n_0$, then $\sum a_n$ diverges. Proof Again chose β such that $\alpha < \beta < 1$. There then exists n_0 such that $\forall n \ge n_0$, $|a_{n+1}| < \beta |a_n|$ $\leq \beta^{n-n_{\mathsf{e}}+1} \left[\alpha_{n_{\mathsf{e}}} \right]$.

Page 13 18 September 2020 10:35 We define e as $e = 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \cdots$ this converges as $\frac{1}{n!} \leq \frac{1}{2^{n-1}}$ We then have that $e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n$. Proof
 $\left(1+\frac{1}{n}\right)^n = 1+1+\frac{1}{2!}\left(1-\frac{1}{n}\right)+\cdots+\frac{1}{n!}\left(1-\frac{1}{n}\right)\cdots\left(1-\frac{n-1}{n}\right) \leq 1+1+\frac{1}{2!}+\cdots+\frac{1}{n!}$ \Rightarrow lim sup $\left(1+\frac{1}{n}\right)^n \leq e$. Fixing some m, for any n zm
 $\left(1+\frac{1}{n}\right)^n \geq 1+1+\frac{1}{2!}\left(1-\frac{1}{n}\right) + \cdots + \frac{1}{m!}\left(1-\frac{1}{n}\right) \cdots \left(1-\frac{m-1}{n}\right)$ $\frac{1}{2!} + \frac{1}{m}$ $\left(1 + \frac{1}{n}\right)^n \geq 1 + 1 + \frac{1}{2!} + \cdots + \frac{1}{m!}$ $\forall m$ \Rightarrow $\lim_{n \to \infty}$ inf $\left(1 + \frac{1}{n}\right)^n \geq e$