Functions

Det-

Let $f: E \rightarrow Y$ be a function where (x, dx) , (y, dy) are metric spaces with $E \subseteq X$ and $p \in E'$. Then $lim_{x\to p} f(x) = q$ if for each $E>0$, $\exists 6>0$ such that $0 < d_x(x, p) < \delta \implies d_y(f(x), q) < \epsilon$ and $x \in E$ λ_{eff} at the λ_{eff} and λ_{eff}

The closer x gets to p, the closer f(x) gets to
$$
\lim_{y\to p} f(y)
$$
.
For any $x = 1$, $f'(x) = 2$, $p = th_{2S}$, $\lim_{x\to p} f'(x) \leq 6$

for example, if $H(x) = x^2$ on R, then $|x| \le E^{2} \Rightarrow f(x) < E$ for any $E>0$. This implies $\lim_{x\to 0} f(x) = 0$. Note that pEE'.

If $f: \mathbb{R} \rightarrow \mathbb{R}$, we write $\lim_{x \to \infty} f(x) = \infty$ if for any $E>0$, $\exists M>0$ Def. such that Limit

$$
x \ge m \Rightarrow |f(x)_{-\alpha}| < \epsilon.
$$

We can also define the limit of f sequentially as: Theo. Let $f: E \rightarrow Y$ be a function where (x, dx) , (y, dy) are metric spaces with $E \subseteq X$ and $p \in E'$. Then $lim_{x\rightarrow p} f(x) = q$ iff for any sequence $(p_n)_{n\in\mathbb{N}}$ in E such that $p_n \neq p$ and $(p_n)_{n\in\mathbb{N}}$ $(f(\rho_n))_{n \in \mathbb{N}} \rightarrow q$. Let $(p_n)_{n\in\mathbb{N}}$ satisfy the given conditions Then $\lim_{x\to p} f(x) = q$ iff for any ∞ , \exists 5>0 s.t. \bigcap < $d_x(x,p)$ < $E \Rightarrow d_y(f(x), q)$ < E .

Then if
$$
p_n \rightarrow p
$$
, $\exists n_e \in \mathbb{N}$ st. $0 \leq d_x(p_n, p) \leq 6$ for all $n > n_e$
\n $\Rightarrow 0 \leq d_y(f(p_n), q) \leq 6$ at $n > n_e \Rightarrow (f(p_n)) \rightarrow q$.

Conversely, let f(pn) + q for all such sequences (pn) nEN. I^p $\lim_{x\to p} f(x) = q$, then $\exists z_0 > 0$ such that for all $\delta > 0$ sit there exists $x \in E$ with $D \le d_x(x, p) \le E$ such that $d_y(f(x), q) \ge E_q$. (the regation of the statement) Let x_n be such a choice of x for $S = \frac{1}{n}$ for each nEM. Then $x_0 \rightarrow p$. However, $f(x_0)$ does not converge to q. This is a contradiction, and therefore $\lim_{x\to p} f(x) = q$.

 $Ex.$ Show that $\lim_{x\to 0}$ sin $(\frac{1}{x})$ does not exist.

Think of two sequences that converge to **D** but have different functional limits.

Let
$$
f: E \rightarrow Y
$$
 and $g: E \rightarrow Y$. Then
\n $\lim_{x\rightarrow p} (f+g)(x) = \lim_{x\rightarrow p} f(x) + \lim_{x\rightarrow p} g(x)$
\n $2. \lim_{x\rightarrow p} (f+g)(x) = \lim_{x\rightarrow p} f(x) \cdot \lim_{x\rightarrow p} g(x)$
\n $3. \lim_{x\rightarrow p} (\frac{f}{g})(x) = \frac{\lim_{x\rightarrow p} f(x)}{\lim_{x\rightarrow p} g(x)} \text{ if both sides are well-defined.}$
\nThese are easy to prove using the corresponding results for sequences.
\nLet (x,d_x) and (y,d_y) be metric spaces with $E \subseteq x$. $f: E \rightarrow y$ is

 $Def.$ 1 continuity said to be continuous at a point pEE if for any E70, there exists 8>0 such that $x \in E$ and $dx(x, p) < S \implies dy(f(x), f(p)) < E$.

The closer x gets to p, the closer $f(x)$ gets to $f(p)$. Note that PEE here (not E' like in the definition of a limit) Theo Suppose $f: E \rightarrow V$ and $p \in E \cdot |F| p$ is not a limit point of E, then f is continuous at p.

Proof: If p is not a limit point of E,
$$
360
$$
 s.t. $EMB_x(p, q) = \{p\}$.

\nThen for any $E>0$, $\Delta_x(x, p) < \delta_0 \Rightarrow \Delta_y(L(x, f(q)) < E)$

\n $x = p$

For example, the function $f: \{1\} \rightarrow \mathbb{R}$ where $f(1) = 0$ is centinuous at $\{1\}$. Note that the limit is not defined; it only exists if pEE', which is exactly not the case here.

Theo. let (x, d_x) and (y, d_y) be metric spaces with $E \subseteq x$ and $f_i \sqsubseteq y$. f is continuous at pEE iff for any (princes in E, pn->P implies $f(\rho_n) \rightarrow f(\rho)$. Note that here, P_n can be equal to P . proof is very similar to the earlier one (for the limit) so The we omit it.

Then Let f: E→Y. If pEE'DE, then f is continuous at p iff
$$
\lim_{x\to p} f(x) = f(p)
$$
.

This follows directly from the definition.

Let us look at continuity on R now: Let f: R
$$
\rightarrow
$$
R. f is continuous
at p if given $E>0$, as>0 such that
 $f((\rho - \delta, \rho + \delta)) \subseteq (f(\rho) - \epsilon, f(\rho) + \epsilon)$
 \downarrow
 $\{f(B_x(\rho, \delta)) \subseteq B_y(f(\rho), \epsilon)\}$
So for example, $f\{\begin{array}{ccc} x(x-1), & x \in \mathbb{Q} & \text{is continuous only at } \{0,1\} \\ 0, & x \notin \mathbb{Q} & \text{if } \mathbb$

The D Let $(X, d_X), (Y, d_Y)$ and (Z, d_Z) be metric spaces with $E \subseteq X$. If we have If $f: E \rightarrow Y$ and $g: f(E) \rightarrow Z$ are continuous at p and $f(p)$ for some pEE. Then gof: E->Z is continuers at p.

This is obvious using the sequential criterion for continuity.

Let $f, g: x \rightarrow R$ be continuous at p. Then $(f \pm g)$, (fg) , and (fg) are continues at p. $\begin{pmatrix} \mathbf{i}f & \mathbf{g}(\mathbf{x}) & \mathbf{j} & \mathbf{k} \\ \mathbf{y} & \mathbf{k} & \mathbf{k} \\ \mathbf{y} & \mathbf{k} & \mathbf{k} \end{pmatrix}$ This can be proved using the above theorem.

The 1. Let
$$
f: x \rightarrow Y
$$
 given matrix spaces X and Y. f is continuous on X if and only if $f^{-1}(V)$ is open for every open Vsubseteq X.

 $l_3 \{v \in X : f(v) \in V_3^k\}$

Proof Let f be continuous on X and V be open in Y . Let $x \in f^{-1}(V)$. Since $f(x) \in V$, there exists ϵ > o s.t. $B_y(f(x), \epsilon) \subseteq V$. As f is continuous there exists $s>0$ st $y \in B_x(x,s) \implies f(y) \in B_y(f(x),s)$. This implies $f(B_x(x, s)) \subseteq B_y(f(x), s) \subseteq V$, that is, $B_x(x, s) \subseteq f'(v)$ for some 8 > 0. This just says that $f'(v)$ is open.

Conversely, suppose $f^{-1}(y)$ is open in X for every open $V\subseteq Y$. Let $x \in X$ and $E>0$. We must find a $\Delta > 0$ st. $f(B_x(x, s)) \subseteq B_y(f(x), \epsilon)$ As $B_y(Lf(x), \epsilon)$ is open, $f^{-1}(B_y(Lf(x), \epsilon))$ is open. As x belongs to this set, the result follows.

Corollary $f:x\rightarrow Y$ is continuous on X if and only if $f^{-1}(V)$ is closed for every $closed \vee \subseteq Y$.

This is easy to show using the fact that $f^{-1}(V^c) = (f^{-1}(V))^c$.

 E^{χ} let $GL(n, \mathbb{R}) = \{ A \in M_{n \times n}(\mathbb{R}) : \text{det } A \neq 0 \}$ and $SL(n, \mathbb{R}) = \{ A \in M_{n \times n}(\mathbb{R}) :$ $det A = 13$. Show that $GL(n,R)$ and SL(n, R) are open and closed (but not compact) respectively in M_{nxn} (R), the set of nxn matrices in
R with the distance defined by the corresponding distance in Rⁿ². Further show that GL(n, R) is disconnected.

Def. Let
$$
f: X \rightarrow \mathbb{R}^n
$$
 where X is a metric space. f is said to be bounded
bounded if there exists some M>0 st: $d(f(x), 0) \le M$ for all xex.
 \downarrow
often written as $|f(x)|$

Theo: Let X be a compact metric space and Y be a metric space. If
$$
f: X \rightarrow Y
$$
 is compact.

\nContruous image of a compact set is compact.

\nFortruous integer of a compact set is compact.

\nFor $f: X \rightarrow Y$ and $f: X \rightarrow Y$ are an open cover of $f: X$. That is, $X \subseteq f^{-1}(\bigcup_{x \in A} V_{\alpha}) = \underset{x \text{ only } ?}{\underset{x \text{ only } ?}}{\underset{x \text{ only } ?}{\underset{x \text{ only } ?}}{\underset{x \text{ only } ?}{\underset{x \text{ only } ?}}{\underset{x \text{ only } ?}{\underset{x \text{ only } ?}}{\underset{x \text{ only } ?}{\underset{x \text{ only } ?}}{\underset{x \text{ only } ?}{\underset{x \text{ only } ?}}{\underset{x \text{ only } ?}}{\underset{x \text{ only } ?}}{\underset{x$

$$
\subseteq V_{\alpha_1} \cup \cdots \cup V_{\alpha_n}
$$
\n
$$
\subseteq V_{\alpha_1} \cup \cdots \cup V_{\alpha_n}
$$
\n
$$
\downarrow \qquad f(\{x: f(x) \in V_{\alpha}\}) \subseteq V_{\alpha}
$$

Theo: Let f:X->R be continuous and X be compact. Then there exist $p,q \in X$ such that $f(p) = \sup_{x \in X} f(x)$ and $f(q) = \sup_{x \in X} f(x)$. (f attains its supremum and infirmum)

This is obvious as $f(x)$ is compact and thus closed and bounded. Boundedness implies existence of sup/inf and closedness implies that it is in $f(X)$.

Lemma. Let f:X >> V be continuous and X be connected. Then $f(x)$ is connected. Preal. Suppose $f(x)$ is disconnected. Then there exist open $U, V \subseteq Y$ with $UN = \cancel{p}$ such that $f(x) = UUV$. Then since $X = f^{-1}(f(X)) = f^{-1}(U \cup V) = f^{-1}(U) \cup f^{-1}(V)$ which are disjoint (w) (y) open sets (as f is continuous), which is a contradiction.

Theo [Intermediate Value Theorem] Intermediate Value Theorem $f(a) < c < F(b)$, there exists $p \in [a,b]$ such that $F(p) = c$. Proof As [a, b] is connected and compact, f ([a, b]) is connected and compact. That is, $f([a,b])$ is a closed and bounded interval. \Rightarrow [f(a), $f(b)$] \subset f([a₁b]). The result follows.

Corollary. If $f[a,b] \rightarrow R$ is caritringues with $f(a) < 0$ and $f(b) > 0$, there exists $CE[a,b]$ such that $f(c) = 0$.

Let f: x->Y where X,Y are metric spaces. We say f is uniform \mathcal{P} continuous on X if for every $\epsilon > 0$, $\exists \delta > 0$ st for all $x, y \in X$, Uniform **Continuity** $d_{x}(x,y) < 8 \implies d_{y}(f(x), f(y)) < 8$.

(This differs from continuity because 8 is independent of x and y) In continuity, while each $\delta_x > 0$, we do not know if $(inf \delta_x) > 0$.

For example, if $f:[0,1]\rightarrow\mathbb{R}$ is given by $f(x)=x^2$, then given any $E>0$, choose $\delta = \frac{\epsilon}{2}$.

Ex. Show that $f: (0,1) \rightarrow \mathbb{R}$ given by $f(x) = \frac{1}{x}$ is not uniform continuous. Consider $|f(x)-f(y_2)|$.

1600:	Let $f: x \rightarrow y$ be continuous. If X is compact, then f is uniformly continuous.
160:	For each $p \in X$ and $E > 0$, there exists $S(p) > 0$ set:
$f(B_x(p, \delta(p))) \in B_y$ ($f(p), \epsilon/2$)	
161:	Consider $\{B_x(p, \delta(p))\} \in B_y$ ($f(p), \epsilon/2$)
162:	As x is compact. Let there be $p_1, ..., p_n$ set:
163:	$x - \bigcup_{i=1}^{n} B_x(p_i, \delta(p_i))$
164:	$S = \min_{1 \leq i \leq n} \left(\frac{s(p_i)}{2}\right) > 0$.
165:	A_x(x,y) < 6 \Rightarrow A_y (f(x), f(y)) < 6.
166:	168.
167:	168.
168:	169.
169:	169.
160:	169.
161:	169.
162:	169.
163:	169.
164:	169.
165:	169.
169:	169.
161:	161.
162:	169.
163:	

$$
\underbrace{\text{Def.}}_{\text{limit on}} \quad \text{Let } f: (a,b) \rightarrow \mathbb{R}. \text{ Then for any } x \in [a,b)
$$
\n
$$
f(x^+) = \lim_{t \to x^+} f(t) = q \quad \text{if} \quad \text{for any } \in \mathbb{R}^D.
$$
\n
$$
\text{there exists } \text{S} > 0 \quad \text{s.t.}
$$

on

$$
x < t < x + \delta
$$
 \Rightarrow $|\hat{f}(t) - q| < \epsilon$.

Equivalently, if $(t_n)_{n\in\mathbb{N}}$ is a sequence in (x,b) such that $t_n \rightarrow x$, then $f(t_n) \rightarrow q$.

Similarly, for any
$$
x \in [a,b]
$$
,
\n $f(x^{-}) = \lim_{t \to x^{-}} f(t) = q$ if for any $\in \infty$,
\nthere exists $\int 5>0$ s.t.
\n $x-5 < t < x \implies |f(t) - q| < \varepsilon$.

Equivalently, if $(t_n)_{n\in\mathbb{N}}$ is a sequence in (a, x) such that $t_n \rightarrow x$, then $f(t_n) \rightarrow q$.

Clearly, if
$$
f: \mathbb{R} \rightarrow \mathbb{R}
$$
 is continuous at p. then
\n $f(p) = \lim_{t \to p} f(t) = f(t^+) = f(t^-)$

Let f:
$$
(a, b) \rightarrow \mathbb{R}
$$
 be discontinuous at $p \in (a, b)$. Then either
\n(a) $\lim_{t \to p^{+}} f(t)$ or $\lim_{t \to p^{-}}$
\n(b) they exist and $\lim_{t \to p^{+}} f(t) \neq \lim_{t \to p^{-}}$
\n(c) $\lim_{t \to p^{+}} f(t) = \lim_{t \to p^{-}}$
\n(d) $f(t) = \lim_{t \to p^{+}} f(t) \neq f(p)$

If I satisfies (a), then the discontinuity at p is called a second kind discontinuity.

Eg.
$$
\frac{f(x)}{x} = \begin{cases} \sin(\frac{1}{x}), & x \neq 0 \\ 0, & x = 0 \end{cases}
$$

If I satisfies (b), then the discontinuity at p is called a first kind discontinuity or a jump discontinuity.

Eg.
$$
f(x) = \begin{cases} \frac{x}{|x|}, & x \neq 0 \\ 0, & x = 0 \end{cases}
$$

If f satisfies (c), then the discontinuity at p is called a removable discontinuity.

$$
E_3
$$
. $f(x) = \begin{cases} |x|, & x \neq 0 \\ 1, & x = 0 \end{cases}$ (the discontinuity can be "remoud")

Theo. If I is a monotone function, then it only has discontinuities of the first kind. Further, the number of discontinuities is atmost countable.

Proof. Suppose that f: [a,b] -R is monotone increasing.
For any $x \in [a,b]$, $f(x^+) = \inf \{f(t) : x < t \leq b\}$ this follows due
 $y \in (a, b)$, $f(y^+) = sy$ $\{f(t) : a \leq t \leq y\}$ nature of f.

 $f(x^{+})$ exists as $\{f(t): x < t \leq b\}$ is lower-bounded by $f(x)$. $f(y^{-})$ exists Similarly. (=aliscontinuities of the second kind cannot occur) Further, for any $x \in (a,b)$, we have $f(x^{-}) \leq f(x) \leq f(x^{+})$. (= removable discontinuities)

Now, let x be a point of discontinuity of f. Then $f(x) < f(x^+)$. Choose $r(x) \in \bigoplus$ such that $f(x^{-}) < r(x) < f(x^{+})$. $r: E \rightarrow Q$ is one-one. $(x_1 < x_2 \Rightarrow r(x_1) < r(x_2)$) Uset of discontinuities.

As $r(E)$ is countable, E must be countable. $(Subset of \bigoplus)$

Differentiability

Def:	Let $f: [a,b] \rightarrow \mathbb{R}$, f is said to be differentiable at $x \in (a,b)$ if $f(x) = \frac{f(t) - f(x)}{t - x}$ exists.
f is differentiable at a if $\lim_{t \to a^{+}} \frac{f(t) - f(a)}{t - a}$ exists.	
f is differentiable at a if $\lim_{t \to a^{+}} \frac{f(t) - f(a)}{t - a}$ exists.	
f is differentiable at b if $\lim_{t \to b^{-}} \frac{f(t) - f(b)}{t - b}$ exists.	
$\frac{f(h_0)}{h_0} = \frac{f(h_0 + h_1)}{h_0} = \frac{f(h_0$	

Def let (x,d) be a metric space and $f: x \rightarrow \mathbb{R}$. We say f has a · local maximum at p if \exists S>O st. $f(x) \leq f(p)$ for all $x \in Bx(p, \delta)$. local maximum · local minimum at p if \exists s>0 s.t. $f(x) \geq f(p)$ for all $x \in B_{x}(p, \delta)$. local minimum

Theo let $f: [a,b] \to \mathbb{R}$ be a function with local maximum/minimum at $x \in (a,b)$. If f is differentiable at x , then $f'(x) = 0$.

Proof Suppose local maximum $38>0$ sit $x-8 < y < x+8 \implies f(y) \le f(x)$ For $x \leq k \leq x+ \delta$, $f(t) - f(x) \leq 0 \Rightarrow \lim_{t \to x^+} f(t) - f(x) \leq 0 \Rightarrow f'(x) \leq 0.$ Similarly, we have $f'(x) \ge 0$. $\Rightarrow f'(x) \in O$. $(same + thing on x-6 < t < x)$

Then let
$$
f, g: [a, b] \rightarrow \mathbb{R}
$$
 be continuous on $[a, b]$ and differentiable on (a, b) . Then

\n
$$
\exists x \in (a, b) \quad s \cdot t
$$
\n
$$
(\oint (b) - \oint (a)) g'(x) = (g(b) - g(a)) f'(x)
$$

Define h:
$$
[a, b] \rightarrow \mathbb{R}
$$
 by
h(t) = $(f(b) - f(a))g(t) - (g(b) - g(a))f(t)$

Then

Proof.

$$
h(a) = h(b) = f(b)g(b) - g(b) f(a).
$$
\n
$$
h \text{ is continuous on } [a,b] \text{ and differentiable on } (a,b).
$$
\n
$$
b(b) \text{ claim } h'(x) = 0 \text{ for some } x \in (a,b).
$$
\n
$$
|f h \text{ is constant, we are done.}
$$
\n
$$
0 \text{therefore } g
$$
\n
$$
0. \quad |f \text{ let } (a,b) \text{ set } h(t) > h(a).
$$
\n
$$
\Rightarrow \exists x \in (a,b), h(x) = \sup_{y \in [a,b]} h(y) \quad \text{(as } h \text{ is continuous on } y \in [a,b])
$$
\n
$$
\text{for there, } x \neq a \text{ and } x \neq b \text{ (why?)}
$$
\n
$$
\Rightarrow h \text{ has a local maximum at } x, \text{ that is, } h'(x) = 0.
$$
\n
$$
b. Similarly, if \exists t \in (a,b) \text{ s.t. } h(t) < h(a), h \text{ has a local minimum at some } x \in (a,b).
$$
\n
$$
\text{This completes the proof.}
$$

$$
\frac{Cocolay \cdot let f: [a,b] \rightarrow \mathbb{R} be continuous on [a,b] and differentiable on
$$
\n
$$
(a,b) \cdot \text{Then}
$$
\n
$$
\exists x \in (a,b) \quad s \cdot t
$$
\n
$$
f'(x) = \frac{f(b) - f(a)}{b-a}.
$$

Corollary Let
$$
f: [a,b] \rightarrow \mathbb{R}
$$
.

\ni. If $f'(x) \ge 0$ on (a,b) , then f is monotonically increasing.

\n2. If $f'(x) = 0$ on (a,b) , then f is constant.

\n3. If $f'(x) \le 0$ on (a,b) , then f is monotonically decreasing.

Theo.

Proof.

[Taylor's Theorem]

Taylor's Theorem

Suppose f: [a,b]
$$
\rightarrow \mathbb{R}
$$
 be a function such that $f^{(n-1)}$ is
continuous on [a,b] and differentiable on (a,b).
Then for $\alpha < \beta$ in [a,b], there exists $x \in (\alpha, \beta)$ s.t:
 $f(\beta) = f(\alpha) + (\beta \alpha) f^{(1)}(\alpha) + (\beta - \alpha)^2 + f^{(2)}(\alpha)$
 $+ \cdots + (\beta - \alpha)^{n-1} f^{(n-1)}(\alpha) + (\beta - \alpha)^n f^{(n)}(\alpha)$.

Let
\n
$$
\rho(t) = f(\kappa) + (t - \kappa) f^{(1)}(\alpha) + \cdots + \underbrace{(t - \kappa)}^{n-1} f^{(n-1)}(\alpha).
$$

Define M by
\n
$$
f(\beta) = p(\beta) + M(\beta - \alpha)^n
$$

\nDefine a by
\n $g(t) = f(t) - p(t) - M(t - \alpha)^n$
\nWe shall show that $M = f^{(n)}(\alpha)$ for some $x \in (a,b)$

We have
\n
$$
g^{(n)}(t) = f^{(n)}(t) - n! M
$$
 for any $t \in (a,b)$
\n \Rightarrow We shall show that $g^{(n)}(x) = 0$ for some $x \in (a,b)$.
\nAs $g(\alpha) = g(\beta) = 0$,
\n $\exists x_1 \in (\alpha, \beta) \Rightarrow t$. $g^{(1)}(x_1) = 0$. Also, $g^{(1)}(\alpha) = 0$.
\n $\Rightarrow \exists x_2 \in (d, x_1) \Rightarrow t$. $g^{(2)}(x_2) = 0$. $g^{(2)}(\alpha) = 0$.
\n \vdots
\n $\Rightarrow \exists x_n \in (\alpha, x_{n-1}) \Rightarrow t$. $g^{(n)}(x_n) = 0$. This completes the proof.
\n $(x_n \in (x, \beta))$

Theo. [Intermediate Value Theorem for differentiation]

Let $f:[a,b]\rightarrow \mathbb{R}$ be continuous on [a,b] and differentiable on (a,b) Intermediate Value for Differentiation SuppDse $f'(a) < \lambda < f'(b)$. Then $\exists x \in (a,b)$ s.t. $f'(x) = \lambda$.

Corollary. f' cannot have discontinuities of the first kind.

Define
$$
g(t) = f(t) - \lambda t
$$
.
\nWe must show $\exists x \in (a,b)$ $g'(x)=0$.
\ng is continuous on [a,b] and differentiable on (a,b).
\n $\Rightarrow g$ attains its infimum at some point $g\in [a,b]$.
\n $|f'(y-a)$, then $g(a) \leq g(t)$ $\forall t \in [a,b]$
\n $\Rightarrow g'(a) \geq \lambda \Rightarrow$ Contradiction.
\nIf $y=b$, then $g(b) \leq g(t)$ $\forall t \in [a,b]$
\n $\Rightarrow g'(b) \leq 0$
\n $\Rightarrow f'(b) \leq \lambda \Rightarrow$ Contradiction.
\n $\therefore g \in (a,b)$. As y is a local minimum, $g'(y) = 0$
\n $\Rightarrow f'(y) = \lambda$.

There is also a generalized version of the MVT: Theo Let $f: [a,b] \to \mathbb{R}^n$ be continuous on $[a,b]$ and differentiable on (a,b) . Then $\exists x \in (a,b)$ such that $|| f'(b) - f'(a) || \le (b-a) || f'(x) ||$

 $(Use MVT on \phi: [a,b] \rightarrow \mathbb{R}$ given $log \phi(t) = \zeta f(b) - f(a)$, $f(t) > 0$

Proof