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�1. Randomized algorithms and derandomization

1.1. Lecture 1: Matrix multiplication

We begin with a question.
Problem. Given three n× nmatrices A,B,C, decide whether AB = C.
One naïve way to do this is to compute AB and check if it is identical to C. The naïve implementation of this runs
in O(n3), while the best known implementation at the time runs in about O(n2.373...).
Can we do the required in O(n2) time, perhaps in a random fashion (with some probability of failure)?

Consider the following algorithm to start with. For each row in C, choose an entry randomly and verify that it
matches the corresponding entry in AB. In a similar spirit, a second algorithm is to choose n entries of C randomly
and verify.

If AB = C, it is clear that no matter how we choose to test, we shall return that the two are indeed equal. The
probability we would like to minimize is

Pr[the algorithm outputs yes | AB ̸= C].

Of course, this probability depends on A,B,C. This probability is over the randomness inherent in the algorithm,
not in some choosing of A,B,C.

When AB and C differ at only one entry, the earlier proposed algorithm has a success probability of 1/n (so the
quantity mentioned above is 1 − 1/n). This is very bad, as it means that to reduce the failure probability to some
constant, we would need to repeat this n times.

An algorithm that does the job is as follows.
Randomly choose r ∈ {0, 1}n. Compute ABr and Cr, and verify that the two are equal. This is an O(n2) algorithm,
since multiplying a matrix with a vector takes O(n2) and we perform this operation thrice, in addition to an O(n)
verification step at the end.

We claim that the failure probability of this algorithm is at most 1/2.
The failure probability can be rephrased as follows. Let x, y ∈ R1×n. What is Pr[xr = yr | x ̸= y]? The earlier failure
probability is at most equal to this, with equality attained (in a sense) when the two matrices differ at exactly one
row.
This in turn is equivalent to the following. Let z ∈ R1×n. What is Pr[zr = 0 | z ̸= 0]? Suppose that zi ̸= 0 for some i.
For any choice of the remaining n− 1 bits, at most one of the two options for the ith bit can result in zr = 0.
Let us do this slightly more formally. Assume wlog that zn ̸= 0. Then,

Pr
[
z1r1 + · · ·+ znrn = 0 | zn ̸= 0

]
= Pr

[
rn = −z1r1 + · · ·+ zn−1rn−1

zn
| zn ̸= 0

]
≤ max

r1,...,rn−1

Pr

[
rn = −z1r1 + · · ·+ zn−1rn−1

zn
| zn ̸= 0, r1, . . . , rn−1

]
which is plainly at most 1/2 – we cannot have that both 0 and 1 are equal to the quantity of interest!
Remark. If we instead choose r from {0, 1, . . . , q − 1}n instead, the failure probability now goes down at most 1/q.
There is a tradeoff at play here between the reduction in the failure probability and the increase in the number of
random bits (it goes from n to O(n log q)).
Question. Can we reduce the number of random bits in this algorithm? Can we make it deterministic?
To answer the question of determinism, suppose the algorithm designer chooses k vectors r(1), . . . , r(k) ∈ Rn and
tests whether ABr(i) = Cr(i). This will fail if k < n. Indeed, an adversarial input is a z that is nonzero but with
zr(i) = 0 for 1 ≤ i ≤ k.
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The determinism here is in the sense that the vectors are chosen before the inputs are provided.

On the other hand, we can reduce the number of random bits used. In fact, we can go to aboutO(log n) random bits.
The goal of derandomization is to use a smaller number of randombits (perhaps by conditioning together previously
independent bits), without losing the power of the earlier independent bits.
Let

A(x) = a0 + a1x+ · · ·+ adx
d

be a nonzero polynomial of degree d. Choose x randomly from {0, 1, . . . , q − 1}. It is not difficult to see that

Pr
x∼{0,1,...,q−1}

[
A(x) = 0

]
≤ d

q
.

Inspired by this, we can reduce randomness as follows. Choose x randomly from {0, 1, . . . , 2n − 1}, and set r =
(1, x, x2, . . . , xn−1). Then,

Pr[z1r1 + z2r2 + · · ·+ znrn = 0] = Pr
[
z1 + z2x+ z2x

2 + · · ·+ znx
n
]
≤ n− 1

2n− 1
≤ 1

2
.

There are some other issues that enter the picture here, namely the bit complexity now that xn−1 has O(n) bits. One
easy fix for this is to perform all operations modulo some prime.

1.2. Lectures 3�4: Pairwise independence

1.2.1. Lecture 3

Let X1, . . . , Xn be random variables such that for any distinct i, j, Xi, Xj are independent:

Pr[Xi = α,Xj = β] = Pr[Xi = α] Pr[Xj = β].

This is referred to as pairwise independence. Analogously, we can define k-wise independence, which requires that any
subset of at most k random variables is independent.

Example 1. Let random variables X1, X2 take values in {0, 1} uniformly, and let X3 = X1 ⊕X2. This set of
random variables is pairwise independent, but not completely independent!

Given a cut (S, S) of a graph, denote
∂S = {(u, v) : u ∈ S, v ̸∈ S}.

Consider an algorithm that chooses a uniformly random cut S of the vertex set V (which corresponds to indepen-
dently choosing each vertex with probability 1/2). Then,

E[|∂S|] =
∑
e∈E

Pr[e ∈ ∂S] =
∑

{u,v}∈E

Pr[u ∈ S, v ̸∈ S] + Pr[u ̸∈ S, v ∈ S] = |E|/2.

In particular, this gives (in expectation) a 1/2-approximation of a max-cut.1

Now, note that this algorithm does not require independence of all the |V | vertex-choosings, it suffices to have pair-
wise independence! This begs the question, howdowe generate n pairwise independentwhile using a small number
of actual random bits?
Bouncing off the idea in the previous example, we can take k random bitsX1, . . . , Xk, and generate 2k − 1 pairwise
independent random bits by considering⊕i∈S Xi for each non-empty S ⊆ [k] (why are these pairwise indepen-
dent?).
Consequently, we can generate n pairwise random bits using just O(log(n)) random bits.

1Using Markov’s inequality, it gives a 1/2-approximation with probability at least 1/2.
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Remark. Since we have just log n random bits, we can cycle through all the possible choices for the bits, since there are
only n choices! This gives a deterministic polynomial time 1/2-approximation algorithm for the max-cut problem.
Instead of looking at all the O(2n) cuts, it is enough to look at O(n) cuts.
Interestingly, this does not even look at the structure of the graph!

Proposition 1.1. To generate n pairwise independent random bits, we require Ω(log n) independent random bits.

Proof. Suppose that given k independent random bits Y1, . . . , Yk, we can come up with n pairwise independent
random bits X1, . . . , Xn. Let fi : {0, 1}k → {0, 1} for 1 ≤ i ≤ n be defined by Xi = fi(Y1, . . . , Yk). Also, denote
f−1
i (1) = {x ∈ {0, 1}k : fi(x) = 1}.
The basic constraint that Pr[Xi = 1] = 1/2 means that |f−1

i (1)| = 2k−1 and the pairwise independence constraint
gives that for distinct i, j, |f−1

i (1) ∩ f−1
j (1)| = 2k−2. Let M be the n× 2k matrix such that Mij = fi(j) (in the sense

of the binary expansion of j).
The previous constraints then just say that MM⊤ = 2k−2(I + J), where J is the all ones matrix.
Note that the n × n matrix 2k−2(I + J) is of rank n. It follows that rank(M) = rank(MM⊤) = n, so 2k ≥ n and we
are done! ■

Alternatively, after getting M , one may observe that if we replace 0 with −1, then the rows of M are orthogonal,
which again gives the required.
Now, what happens if we want to generate pairwise independent functions instead of just bits? Can we do better?
In particular, can we generate pairwise independent random variables X1, . . . , Xn that uniformly take values in Fq ,
where q is a prime power?

One simple construction is similar to the earlier one – take k := log n random values y1, . . . , yk from Fp, and consider∑
i∈S yi for each non-empty S ⊆ [k]. This takes log n · log |F| random bits.

A better construction for n = q is as follows – randomly choose a0, a1 ∈ F, and let the required random variables be
{a1z + a0 : z ∈ Fq}. This takes just log n+ log |F| bits! We leave the details of checking this to the reader.

1.2.2. Lecture 4

In the above construction for generating q pairwise independent random variables uniform in Fq , if we set q = 2r,
then this in fact generates q pairwise independent random bits log q times, using only 2 log q independent random
bits!
The naïve method to do this would involve generating q pairwise independent random bits log q times, which takes
(log q)2 bits.

Further, we can generalize the construction to n of the form qr by considering {a0 +
∑r

i=1 aixi : xi ∈ Fq}, where the
ai are iid drawn from Fq .
This idea can further be generalized to k-wise independence as well, taking a degree-(k−1) polynomial {∑k−1

i=0 aix
i :

x ∈ Fq} instead. Why are these k-wise independent? Fix distinct x1, x2, . . . , xk ∈ Fq and α1, . . . , αk ∈ F. Is it true
that

Pr

∑
j

ajx
j
i = αi for all i

 =
1

qk
?

Indeed, there is a unique solution (a0, . . . , ak−1) to this since the matrix corresponding to the system of equations is
a Vandermonde matrix, which has nonzero determinant (even over Fq).
Exercise 1.1. Show that a Vandermonde matrix is invertible.
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Solution

Suppose instead that there is a nonzero vector v such thatMv = 0, whereM is our k × k Vandermonde matrix
of interest. This gives a nonzero polynomial of degree at most k − 1 with k roots, which is not possible.

1.3. Lectures 4�5: Counting distinct elements in a stream

1.3.1. Lecture 4 (continued)

Pseudorandomness has various applications in streaming algorithms. We generally have storage space that is far
smaller than the input. We also have only one “pass” at the input and cannot look at older input. We can however
run multiple copies of the same algorithm as we get the input, and in this case this can give better results.
Problem. Suppose we are getting a stream of items a1, . . . , am in [n]. Count the number of distinct elements that
appear.
A realistic example of the above is trying to find the number of unique visitors to a website.
One trivial way to do this is to store an array of size n of all the elements seen so far (or perhapsmarking the elements
which have been seen). This requires O(n) space.
Can we go to O(log n) space, perhaps slightly giving up precision?

Let h be a function that maps each element in [n] to [0, 1] (the continuous interval) uniformly randomly. That is,
each h(i) is independently uniformly randomly distributed in [0, 1]. We start with a variable m set at∞. For a new
a in the stream, we set m← min(m,h(a)). Finally, output 1/m− 1.
The randomvariablem is essentially theminimumof k randomvariables iid drawn from [0, 1], where k is the number
of unique elements. Then, E[m] = 1/(k + 1).

1.3.2. Lecture 5

Before moving on, let us verify that E[m] = 1/(k + 1)? We have that for x ∈ [0, 1],
Pr[m ≥ x] = Pr[h(i) ≥ x for all i] = (1− x)k.

Therefore,
E[m] =

∫ 1

0

x · k(1− x)k−1 dx =

∫ 1

0

n(xk−1 − xk) dx =
1

k + 1
.

Now, we still have to store all n outputs of h, so this has not really introduced any lower storage space. Choose a field
F with |F| = N ≥ n. We shall choose h(i) from F (or rather, [N ]) such that they are pairwise independent. Recall
that we had seen how to do this in Lectures 3 and 4. This construction only requires us to store the a and b from the
algorithm, and we can compute h(i) = ai+ bwhenever needed. This also lowers the space requirement to O(log n).
We shall now output (N/m)− 1 instead of (1/m)− 1.
We want to show that (N/m)− 1 is “close” to k with high probability. That is, let us try to bound

Pr

[
(1− ϵ)

N

k
≤ m ≤ (1 + ϵ)

N

k

]
from below.
Define

Yi,λ = 1h(i)>λ =

{
1, if h(i) > λ

0, otherwise.
Also define

Yλ =
∑
i∈S

Yi,λ,

where S is the set of the k distinct elements that are seen. Then, we want to find

Pr
[
Y(1−ϵ) N

k+1
= 0 and Y(1+ϵ) N

k+1
̸= 0
]
.
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Indeed, m is at least the lower bound iff no element in the stream is mapped to something less than it, and at most
the upper bound iff at least one element is mapped to something less than it. Now,

E[Yλ] =
∑
i∈S

E[Yi,λ] ≈ kλ/N.

Then, using Markov’s inequality,
Pr[Yλ ≥ 1] ≤ E[Yi] =

kλ

N

and as a result,
Pr[Y(1−ϵ)N

k
= 0] = Pr

[
m ≥ (1− ϵ)

N

k

]
≥ ϵ.

Observe that thus far, we have not used any sort of independence.

Lemma 1.2. If X1, . . . , Xn are pairwise independent real-valued random variables,

Var

∑
i

Xi

 =
∑
i

Var[Xi].

Proof. We have

Var

∑
i

Xi

 = E


∑

i

Xi − E[Xi]

2


= E

∑
i

(Xi − E[Xi])
2 + 2

∑
i<j

(Xi − E[Xi])(Xj − E[Xj ])


=
∑
i

E
[
(Xi − E[Xi])

2
]
+ 2

∑
i<j

E
[
(Xi − E[Xi])(Xj − E[Xj ])

]
=
∑
i

Var[Xi] + 2
∑
i<j

E[Xi − E[Xi]]E[Xj − E[Xj ]]. (Xi, Xj are independent)

■

Now, set U = (1 + ϵ)N/k, so we have E[YU ] = 1 + ϵ. By the above lemma,

Var[YU ] = kVar[Yi,U ] = k · U
N

(
1− U

N

)
= (1 + ϵ)

(
1− 1 + ϵ

k

)
.

Therefore, using Chebyshev’s inequality,

Pr[YU ̸= 0] ≥ 1− Pr
[
|YU − (1 + ϵ)| ≥ (1 + ϵ)

]
≥ 1−

(1 + ϵ)
(
1− 1+ϵ

k

)
(1 + ϵ)2

≥ 1− 1

1 + ϵ
=

ϵ

1 + ϵ
.

Finally,

Pr
[
Y(1−ϵ)N

k
= 0 and Y(1+ϵ)N

k
̸= 0
]
≥ 1−

(
Pr
[
Y(1−ϵ)N

k
̸= 0
]
+ Pr

[
Y(1+ϵ)N

k
̸= 0
])

≥ ϵ+
ϵ

1 + ϵ
− 1.
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1.4. Lectures 20�22: Bipartite matching

1.4.1. Lecture 20

The problem we shall study now is that of finding a perfect matching in a bipartite graph G = (X,X,E). That is,
we have two copies of a set X with all edges between the two copies.
This is a problem as old as computer science itself, and quite recently an almost-linear time algorithm for the above
has been found [? ]
We shall give an algebraic algorithm due to Mulmuley, Vazirani, Vazirani [MVV87]. It is rather simple, and is also
parallelizable. Consider the biadjacency matrix AG of G, with rows and columns indexed by X and (AG)uv = 1 if uv
is an edge and 0 otherwise. Note that theX used to index the rows and columns are different (choose which one is
used for rows arbitrarily).
Recall the determinant

det(M) =
∑
σ∈Sn

sign(π)

n∏
i=1

Mi,σ(i)

and permanent
perm(M) =

∑
σ∈Sn

n∏
i=1

Mi,σ(i).

Suppose that the vertex sets X in our bipartite graph are [n].
Note that any perfect matching essentially corresponds to a permutation of [n] such that there is an edge between i
and σ(i) for every i ∈ [n], that is, (AG)i,σ(i) = 1 for all i. Due to this, we can also assign a sign to any perfect matching.

Clearly, the number of perfect matchings is then just perm(AG). On the other hand,

det(AG) =
∑

M is a perfect matching
sign(M).

Therefore, ifG does not have a perfect matching, det(AG) = 0. The converse is clearly not true as seen byK2,2, which
has biadjacency matrix (

1 1
1 1

)
.

Similarly, the determinant is 0 if any two vertices have the same neighbour set.
How do we change something to make the converse hold true (with high probability)? The idea is rather simple,
and involves changing by biadjacency matrix by replacing each element with a random integer from {1, 2, . . . , 2n}.
Call this new (random) matrix MG. We claim that in this new setting, det(MG) ̸= 0with probability at least 1/2.
Indeed, consider the determinant polynomial in n2 variables, which is

det


x11 x12 · · · x1n

x21 x22 · · · x2n

... ... . . . ...
xn1 xn2 · · · xnn

 .

Note that this is a degree n polynomial.

Lemma 1.3 (Polynomial Identity Lemma). Let p be a polynomial in m variables of degree d. Then,

Pr
α∼{1,2,...,2d}m

[p(α) ̸= 0] ≥ 1

2
.
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Wehave already seen a proof of this back in Lecture 18 (in the casewhere coefficients are rational), whereweworked
with Fp instead. Indeed, something being nonzero modulo p implies nonzeroness in R.
An alternative proof is by induction on the number of variables.

Using this lemma in our setting, we see that det(MG) = 0 with probability at most 1/2, so we are done. Further,
we can use this algorithm to actually find a perfect matching. For i ∈ [n], assuming that the perfect matching has
the edge 1i, check if the remaining part of the graph has a perfect matching. If yes, find a perfect matching on it
(recursively). Otherwise, increment i.

Now, can we come up with a parallel algorithm for constructing a perfect matching? Assuming we have polynomi-
ally many machines that run independently, is it possible to determine a perfect matching rapidly, say in constant or
logarithmic time?

In the simple case where we have a unique perfect matching, this is quite simple by runningmmanymachines paral-
lelly, each computing a determinant of the graph excepting the vertices in an edge e. If for a given e the determinant
is nonzero, the edge must be in the matching.
The algorithm we shall see has its idea centered around the above observation.

Suppose that we can assign weights to the edges w : E → Z such that the minimum weight perfect matching is
unique, where the weight of a matching M is

w(M) =
∑
e∈M

w(e).

We then alter the biadjacency matrix AG so that the edge e’s entry is 2w(e) instead of 1. Then,

det(AG) =
∑

perfect matchingsM
sign(M)2w(M).

Note that due to the uniqueness, the above determinant is nonzero! It cannot be cancelled by any sum of higher
weight matchings (Why?). After that, for each edge, decrement the weight by one and see if the minimum weight
has now decreased. If it has, this edge must be part of the minimum weight perfect matching.
All that remains is to find a weight assignment such that there is a unique minimum weight perfect matching. It
turns out that a randomweight assignment does the trick. This is not immediately clear, because if we assignweights
in {1, 2, . . . , n2}, say, then despite there being possibly exponentially many matchings, the minimum weight one is
unique.

1.4.2. Lecture 21

Lemma 1.4 (Isolation Lemma, [MVV87]). Let E be a set of m elements and S ⊆ 2E an arbitrary family of subsets
of E. Independently and uniformly randomly assign to each element of E a weight in {1, 2, . . . , N}. Then,

Pr
[
S has a minimum weight set] ≥ 1− m

N
,

where the weight of a set is the sum of the weights of the elements in it.

We get the desideratum in the context of matchings on setting E to be the set of edges and S to be the collection of
perfect matchings.
Proof. Let E = {e1, . . . , em}. Split S into two parts S0,S1, where S0 = {T ∈ S : e1 ∈ T} and S1 = S \ S0. Let us look
at the event E that there is a minimum weight set that contains e1 and a minimum weight set that does not contain
e1. This means that the minimum weight set in S0,S1 are equal.
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What happens if we fix the weights of all elements other than e1? The minimumweight in S1 is determined, and the
minimum weight in S′ is just equal to some fixed quantity plus the weight of e1. In particular, there is at most one
value of w(e1) such that the two minimum weights are equal. Therefore, Pr[E] ≤ 1/N . In general, taking the union
bound, we have

Pr[there exist two min wt sets] = Pr

 ⋃
i∈[m]

there exist min wt sets containing ei and not containing ei

 ≤ m

N
.

■

Later, ***** proved that the above is in fact true with (1− 1
N

)m instead. Note that the above is true if we replace the
set weights are drawn from with any set of size N , so perturbing about logN bits ensures a unique solution.

The isolation lemma has several surprising applications, for example that UNIQUE-SAT2 is NP-hard.

We next look at derandomization. We cannot derandomize the isolation lemma in all its generality, but we can for
specific families that have some structure.
For example, this is very easy for spanning trees and it suffices to assign distinct weights to all edges. Our main goal
is that of derandomizing bipartite perfect matching. We will only be able to derandomize it to O(log2 n) random bits
unfortunately, which is equivalent to giving nO(logn) weight assignments with the assurance that one of them gives
a unique minimum weight matching.

The high-level view of the proof is the following.
The weight construction is done in log n rounds. We start off with some huge (exponentially large) family of perfect
matchings. We then come up with some weight function such that the set of perfect matchings of minimum weight
is comparatively smaller. We then come upwith another weight function (with about log n bits) to break ties among
these minimum weight perfect matchings and make the set even smaller. Further, we ensure that the older non-
minimum weight matchings do not suddenly enter this family by appending the bits of the new weight function to
the bits of the previous weight function. Each of these bit sequences we append are log n bits, and because there are
log n rounds we end at log2 n bits in all.
As before, let the edges be e1, . . . , em.
For starters, observe that if w(ei) = 2i for all i, then all subsets have distinct weights.
Let M1,M2 be two minimum weight perfect matchings. Observe that M1 ∪M2 is a union of cycles (and possibly
isolated edges contained in bothM1,M2). Further, each cycle inM1 ∪M2 has zero “alternating weight”. This is the
difference of the sum of all “odd” edges in the cycle and the sum of all “even” edges in the cycle. If we instead had
that the M1 sum was greater than the M2 sum, we could switch out the edges in the cycle in M1 for edges in the
cycle in M2 to get a matching of weight strictly less than that of M1, yielding a contradiction.

Lemma 1.5. Let E′ ⊆ E be the union of all minimum weight perfect matchings. Then, each cycle in G = (V,E′) is
has zero alternating weight.

Corollary 1.6. If w is a weight assignment such that a cycle C has nonzero alternating weight, then the union of
minimum weight perfect weight matchings (with respect to w) does not contain C.
The above corollary is the key idea. For a suitable weight assignment on a cycle, we can get rid of at least one edge
in the cycle, and this ensures that all matchings containing that edge are rid of. Our goal then is to maximize the
number of edge-disjoint cycles in the graph.
Given a cycle C and a weight assignment w, let AW(C) be the alternating weight of C under w.

2This is SAT, except that we know that if there is a satisfying assignment, it is unique.
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Proposition 1.7. Let C1, . . . , Ck be an arbitrary collection of cycles. Then, for some j ∈ {1, 2, . . . ,m2k}, the weight
function defined by w(ei) = 2i (mod j) for each i assigns a nonzero alternating weight to every cycle Cr.

Proof. We would like to show that for some j, j is not a factor of AW(C1)AW(C1) · · ·AW(Ck). This product is at
most 2m2k. Recalling that the lcm of the first n numbers is greater than 2n for sufficiently large n, we have that 2m2k

is less than the lcm of [m2k], so there is some number in [m2k] that does not divide 2m2k. ■

Note that the list of weight assignments we give as above does not rqeuire knowledge of which cycles we are working
with. That is, if we have polynomially many cycles, we can give a polynomially large list of weight assignments with
the guarantee that one of these assignments removes all the cycles.

1.4.3. Lecture 22

Now, we have exponentially many cycles that we must remove somehow, but each step seems to only remove poly-
nomially many cycles. To take care of this, we can change our perspective by looking at the number of edges removed
in each step instead.

Lemma 1.8. In a graph with m edges and n vertices, there exist at least Ω
(

m−n
log(m−n)

)
edge-disjoint cycles.

The idea of the proof is that any graph with n vertices andm edges has a cycle withO(log(m−n)) edges. Removing
this cycle and then repeating until there are no cycles remaining gives the desired claim. This allows us to be done
in O(log2 n).
An alternate approach uses the following lemma.

Lemma 1.9. A graph with no cycles of length at most 4 log n has average degree at most 5/2.

We have a third approach more efficient than the above two, however, which again returns to the idea of removing
cycles.

Lemma 1.10 (Teo, Koh). A graphGwith no cycles of length at most r has are at most n4 cycles of length at most 2r.

In justO(log n) rounds, we can remove all cycles! We start by removing all cycles of length at most 3, then we remove
all cycles of length at most 6, then at most 12, and so on. The above lemma tells us that each step is efficient.
Proof of Lemma 1.10. Observe that for any two vertices, there is at most one path between them of length ≤ (r/2).
For each cycle, fix 4 equidistant vertices on the cycle, and associate the cycle with the tuple (u1, u2, u3, u4). The key
of the argument is that by the observation, no two cycles have the same tuple!
More precisely, suppose that two distinct cycles have the same tuple (u1, u2, u3, u4). Note that between the two
cycles, at least one of the intervals (ui, ui+1) must have different edges (otherwise, they would be the same cycle).
This yields a contradiction to our observation. ■

Now, all that remains is to prove Lemma 1.5. Recall Hall’s theorem, which states that for a bipartite graph G =
(X,Y,E), if |N(S)| ≥ |S| for every S ⊆ X , thenG has a perfect matching. In particular, this can be used to prove that
a (non-empty) regular bipartite graph has a perfect matching. This in turn implies that a d-regular bipartite graph
can be decomposed into the union of d edge-disjoint perfect matchings. This holds true for multigraphs as well.
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Proof of Lemma 1.5. Say there are k minimumweigt perfect matchings, each of weight λ. As in the lemma statement,
let E′ be the union of all minimum weight perfect matchings. Let H be the multigraph equal to the disjoint union
of all minimumweight perfect matchings. Note thatH is a k-regular bipartite (multi)graph. The total weight of the
edges inH is equal to kλ. Suppose thatH has a cycle C of nonzero alternating weight. In C, remove the alternating
set of edges of larger weight, and add the complimentary alternating set of edges to get a new graph H ′. Note that
H ′ remains k-regular so can be decomposed into k perfect matchings, and the total weight of edges in H ′ is strictly
less than kλ. This implies that some matching among these k has weight less than λ, yielding a contradiction. ■

�2. Expander graphs and applications

2.1. Lectures 6�7: Magical graphs and two applications

2.1.1. Lecture 6

Expander graphs are interesting because they are “pseudorandom” – they behave like random objects.
We recall the subject of error correcting codes, pioneered by Shannon in 1948. It studies the idea of introducing
“redundancy” when transmitting messages so that the messages are understandable even in the presence of errors.
Definition 2.1. A code C is a subset of {0, 1}n. The elements of a code are called codewords.

Definition 2.2. Given x, y ∈ {0, 1}n, the Hamming distance dH(x, y) between x and y is |{i ∈ [n] : xi ̸= yi}| and the
relative distance ∆(x, y) between x and y is dH(x, y)/n. The distance dH(C) of a code C is minx,y∈C

x̸=y
dH(x, y).

The idea of this is that given a word in {0, 1}k, we translate it bijectively into a codeword in {0, 1}n and transmit it.
Upon receiving the message, we decode the received word in some way to get a word.
One simple way is to decode a received word as the codeword closest to it, in the sense of the Hamming distance.
This scheme allows the correction of errors if the received word is at Hamming distance less than (1/2)dH(C) from
the transmitted word.
Definition 2.3. The rate of a code is defined by

Rate(C) = log |C|
n

.

We also define the relative distance
δ(C) = dH(C)

n
.

One question that should immediately come tomind is: given a relative distance, what is theminimum rate required
to achieve it? In less formal terms, what is the minimum amount of redundancy needed? We state it more formally.
Problem. Given constants δ0, r0 ∈ (0, 1), when canwe construct codes {Cn}n∈N such that δ(Cn)→ δ0 andRate(Cn)→
r0?
This also presents another follow-up question: if codes of the above form exist, do there exist efficient encoding and
decoding algorithms for the code? We do not look at this
Consider another question.
Problem. Suppose we have an algorithm A with “one-sided error”. This means that if x is in the language L of
interest, A(x) is yes with probability 1, but if x is not in the language L, A(x) is no with probability 15

16 .
How would one go about making the error probability very small, without using too many random bits?
One simple idea which we have discusses is to repeat the experiment a large number of times and output no if we
get a no at any point. Indeed, if we repeat it ℓ times, the error probability goes down to ≤ (1/16)ℓ.
However, the fault with this is that if the algorithm uses k independent random bits (say), then repeating it ℓ times
requires ℓk independent random bits! Could we make it ℓ+ k? It turns out that this is possible.



CS 761 : Derandomization and Pseudorandomness 13 / 40 Amit Rajaraman

The two questions we have described seem incredibly different, but the answers to both are yes, with the ideas be-
hind both involving “expander graphs”. Before getting to this, we define something else.

Definition 2.4 (Magical graphs). A bipartite graph G = (L ⊔R,E) is said to be (n,m, d)-magical, m ≥ (3n/4), if
1. |L| = n, |R| = m,
2. for any v ∈ L, deg(v) = d, and
3. for every subset S ⊆ Lwith |S| ≤ n/10d, |Γ(S)| ≥ (5d/8)|S|.

Above, Γ(S) denotes the neighbourhood of S.
Typically, n and m are of similar orders and d is a constant. This says that any “small” subset expands a lot – the
neighbours of the vertices in the subset do not coincide too much. Ideally, with no intersection between neighbour-
hoods, we would have |Γ(S)| = d|S|, and we are demanding about half of this.
First, we shall see why magical graphs exist. Following this, we connect them to the questions we looked at earlier.

Theorem 2.5. For d ≥ 24 and sufficiently large n, (n,m, d)-magical graphs exist.

Proof. For each vertex in L, choose its d neighbours randomly. Let S ⊆ L with |S| = s ≤ n/10d and T = R with
|T | = (5d/8)s,

Pr
[
Γ(S) ⊆ T

]
≤
(
|T |
m

)ds

≤
(
5ds

8m

)ds

.
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This is for a fixed S, T however. Using the union bound,

Pr
[
∃S, T as above such that Γ(S) ⊆ T

]
≤
∑
S,T

(
5ds

8m

)ds

≤
n/10d∑
s=1

(
n

s

)(
m

5ds/8

)(
5ds

8m

)ds

≤
n/10d∑
s=1

(
ne

s

)s(
8me

5ds

)5ds/8(
5ds

8m

)ds
((

n

k

)
≥ (ne/k)k

)

=

n/10d∑
s=1

(
ne

s

)s

e5ds/8
(
5ds

8m

)3ds/8

≤
n/10d∑
s=1

(
ne

s

)s

e5ds/8
(
5ds

6n

)3ds/8

(m ≥ 3n/4)

=

n/10d∑
s=1

(
s

n

)s(3d/8−1)

es(5d/8+1)
(
5d/6

)3ds/8
≤

n/10d∑
s=1

(10d)−s(3d/8−1)es(5d/8+1)
(
5d/6

)3ds/8
(s/n ≤ 1/10d)

≤
∞∑
s=1

(10d)−s(3d/8−1)es(5d/8+1)
(
5d/6

)3ds/8
=

α

1− α
,

where α = (10d)1−(3d/8)e(5d/8)+1(5d/6)3d/8. The above is less than 1 when α < 1/2. To check for what values of d
this is true,

logα =

(
1− 3d

8

)
(log 10 + log d) + 1 +

5d

8
+

3d

8

(
log(5/6) + log d

)
= log d+ d

(
5

8
− 3

8
log(10) +

3

8
log(5/6)

)
+ (1 + log 10)

dlogα

dd
≈ 1

d
− 0.306,

which is negative for 1/d < 0.306 (or equivalently, d ≥ 5). Since α is decreasing in d for d ≥ 24, it suffices to check
that α < 1/2 when d = 24. Indeed, it is easily verified that α ≈ 0.413 < 1/2 in this case, completing the proof. ■

Now, let us look at reduction of randomness using magical graphs.
Let A be an algorithm that uses k random bits with error probability < 1/16. Take n = 2k, and let G = (L ⊔ R,E)
be a (n, n, d)-magical graph. Choose a random vertex v ∈ L, and take all d neighbours u1, . . . , ud of v. Each ui can
be thought of as a k bit string. For i = 1, . . . , d, runAwith ui as the choice of random bits. Observe that we are only
using k random bits here, namely in the choice of v.

Why does the error probability go down?
Let B ⊆ {0, 1}k be the set of “bad” inputs for algorithm A. We know that |B| ≤ n/16. What is the probability of
failure when we run it d times as described above? The algorithm fails iff every ui is in B.
We claim that there are less than n/10d such vertices v with every neighbour in B. Suppose instead that there are is
a set S with n/10d vertices with all neighbours in B. Then,

n

16
> |B| ≥ Γ(S) ≥ 5d

8
|S| ≥ n

16
,
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which is a contradiction.
Therefore, the probability of failure is at most 1/10d.
We can make d very large (up to a limit forced by n = 2k), so the probability of failure can be made very small.
Using the same number of random bits, we have managed to significantly decrease the error probability.
The issue now however is that the above scheme requires the construction of exponentially large magical graphs.
We require a very efficient algorithm (polynomial in log n) to sample the neighbours of a random vertex in amagical
graph.

2.1.2. Lecture 7

Lemma 2.6. Given a (n,m, d)-magical graph, for any S ⊆ L of size at most n/10d, there exists v ∈ Γ(S) such that v
has a unique neighbour in S.
Proof. Suppose instead that no such v exists. Then,

d|S| = |e(Γ(S), S)| ≥ 2|Γ(S)| ≥ 2 · 5d
8
|S|,

a contradiction. ■

Consider some (n,m = 3n/4, d)-magical graph, and letM be them×n adjacency matrix of the graph, whereMij is
1 iff there is an edge between the ith vertex on the right and the jth vertex on the left, and 0 otherwise.

Definition 2.7. A code C ⊆ {0, 1}n is said to be a linear code if it is a subspace when viewed as a subset of the vector
space Fn

2 .

This is equivalent to saying that if x, y ∈ C, then x+ y ∈ C. Observe that the distance of a linear code is equal to the
minimum weight of its codeword.

Consider the code defined by
C = {x : Mx = 0},

the null space of M (over F2). In coding theory lingo, one would say that M is the parity check matrix of C.
Evidently,

|C| = 2n−rank(M) andRate(C) =
n− rank(M)

n
≥ n−m

n
≥ 1

4
.

We claim that dH(C) > n/10d, so the relative distance is at least 1/10d. Suppose instead that there is some x ∈ C
such that wt(x) ≤ n/10d. Let S ⊆ [n] be the subset of L such that v ∈ S iff xv ̸= 0. By Lemma 2.6, there exists some
u ∈ R such thatMuv = 1 for precisely one v ∈ S. However, this implies that (Mx)u =

∑
v Muvxv = 1.

2.2. Lectures 7, 8, 10: Testing connectivity of undirected graphs

2.2.1. Lecture 7 (continued)

Problem. Given a graph G and two vertices s, t ∈ V (G), determine if there is a path between s and t.
To test connectivity of a graph, we can just test the above by iterating through all t ∈ V (G). We work in the setting
where running time is not an issue (as long as it is polynomial), but we have space constraints.

One way to do this, of course, is through a depth-first/breadth-first search. This requiresΩ(n) space however, which
is more than we can afford.
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Recall that there is a path between s, t iff ((I + A)n)st ̸= 0. Indeed, (Ai)st gives the number of length i walks from
s to t, and (I + A)n is just some weighted of sum of the Ai. Can we compute (I + A)n is O(log2 n) space, say? We
remark that here, space means that the size of the input and output tapes are “large”, but we cannot alter the input
tape and once we write something to the output tape, we cannot change it; we have an intermediate tape of “small”
size which is what we use for computation.
The answer is yes, but we do not say why.

Consider the following algorithm, that is also O(log2 n) space.

Algorithm 1: Checking connectivity of two vertices in an undirected graph
Input: An graph G, and vertices s, t ∈ V (G)
Output: Connectivity of s, t

1 isPath(s, t, k = 2ℓ)
// Outputs whether there is a path between s and t of length at most k

2 if ℓ = 0 then
3 return yes iff s, t are adjacent
4 foreach v ∈ V (G) do
5 return yes iff isPath(s, v, 2ℓ−1) and isPath(s, v, 2ℓ−1)

6 return isPath(s, t, n)

Observe that the depth of this recursion tree is O(log n). In each recursion call, we use O(log n) space. As a result,
we use O(log2 n) space in all.

All the algorithms we have presented thus far work in the setting of directed graphs as well.
Canwe check connectivity inO(log n) space? We present a randomized algorithm due to Reingold [Rei08] that does
so. The algorithm is as follows.

Algorithm 2: Checking connectivity of two vertices in an undirected graph
Input: An graph G, and vertices s, t ∈ V (G)
Output: Connectivity of s, t

1 v ← s
2 Uniformly randomly choose a neighbour u of v
3 if u = t then
4 return yes
5 else
6 v ← u
7 go to line 2

Suppose thatG is connected. For the sake of simplicity, suppose that the graph is d-regular. If it is not, add self-loops
to make it so. Also, after doing this, add another self-loop at each vertex.
We claim that

Pr
[
t is seen in O(n3 log n) steps

]
≥ 1

2
.

This algorithm does not work for directed graphs. Indeed, consider the graph

s · · · t

where it takes exponential time for the probability of seeing t to go over 1/2.
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The transition matrix of the random walk is defined by

Mij =
1

d
e(i, j),

where e(i, j) is the number of edges between i and j.
Given the initial probability vector x(0) = 1s (x(0)

s = 1 and x
(0)
v = 0 for v ̸= s), the probability distribution of vertices

after t steps of the random walk is given by x(t) = M tx(0).
Consider the uniform probability vector u, where uv = 1/n for all v, and observe thatMu = u. u is called a stationary
distribution of the random walk.
We claim that u is the only stationary distribution of the walk (this assumes that G is connected – why?).

2.2.2. Lecture 8

Denote by p(t) the probability vector at time t, and p
(t)
i the probability that we are at vertex i at times t. By definition,

p
(t)
i =

1

d

∑
j↔i

p
(t−1)
j .

Now, we wish to analyze M t to show that p(t) is close to the stationary distribution for somewhat large t.
Because M is symmetric, we can write M = UDU⊤, where U is an orthogonal matrix of eigenvectors and D is a
diagonal matrix of the real eigenvalues. As a result,

p(t+1) = (UDU⊤)tp(0) = UDtU⊤p(0).

Therefore, what matters is Dt. Let the eigenvalues of M be λ1 ≥ λ2 ≥ · · · ≥ λn.
We trivially have that λ1 = 1 is an eigenvalue ofM with eigenvector being the stationary distribution u1 that we saw
last lecture. Observe that 1 is the largest eigenvalue (in absolute value) of M because for any vector x, λmaxi xi =
maxi(Mx)i ≤ maxi xi.
If |λj | < 1 for j > 1, then limt→∞ p(t) = u1 (all the other entries of Dt decay to 0).
To show fast convergence, we would like to show that the other eigenvalues are bounded away from 1.

Definition 2.8. Given a graph G, λ(G) = max{|λ2(G)|, |λn(G)|}. Equivalently,

λ(G) = max
x:⟨x,u1⟩=0

∥Mx∥
∥x∥

.

If G is obvious, we denote this as merely λ.

(1 − λ) is referred to as the spectral gap of the graph. We would like to show that the spectral gap of the graph is
“large”.
We have ∥∥∥p(t) − u1

∥∥∥ =
∥∥∥M t(p(0) − u1)

∥∥∥
Observe that because p(0) is a probability distribution, ⟨p(0), u1⟩ = 1/n = ⟨u1, u1⟩, so p(0) − u1 is orthogonal to u1.
As a result, ∥∥∥p(t) − u1

∥∥∥ ≤ λt
∥∥∥p(0) − u1

∥∥∥ .
Suppose wewant

∥∥∥p(t) − u1

∥∥∥ ≤ 1/n2. For our specific choice of p(0) concentrated on a single point, it is easily verified
that

∥∥∥p(0) − u1

∥∥∥ ≤ 1. Therefore, for t > logλ ϵ,
∥∥∥p(t) − u1

∥∥∥ ≤ 1/n2.
We have that the convergence time is

logλ ϵ = O

(
1

1− λ
log n

)
.
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We would like to bound the spectral gap from below, perhaps by an inverse polynomial.

It is true that
λ2 = max

x⊥u1

∥x∥=1

x⊤Mx

Indeed, if x = α2u2 + · · ·+ αnun with∑α2
i = 1,

x⊤Mx = λ2α
2
2 + · · ·+ λnα

2
n ≤ λ2.

We shall bound λ2 for every graph, and use it for H = G2, the multigraph with an edge from i to j if there was a
length 2 walk from i to j. The random walk matrix on H is just M2, so λ2(H) = λ(G)2. Now,

x⊤Mx =
∑
i

xi

∑
j∈Γ(i)

1

d
xj

=
∑

(i,i)∈E

x2
i

d
+

∑
(i,j)∈E

i̸=j

2xixj

d

=
∑

(i,i)∈E

x2
i

d
+

∑
(i,j)∈E

i̸=j

x2
i + x2

j − (xi − xj)
2

d

=
∑

(i,j)∈E

x2
i

d︸ ︷︷ ︸
1

+
∑

(i,j)∈E
i̸=j

(xi − xj)
2

d
.

We want to bound the second expression from below. Because ⟨x, u1⟩ = 0, there exist coordinates of both positive
and negative sign. Further, by the pigeonhole principle, there exists some coordinate i1 such that xi1 is of absolute
value at least 1/√n. Assume that the sign of this coordinate is positive. Let ik be a coordinate of negative sign, and
i1i2 · · · ik a path from i1 to ik. Then, using the Cauchy-Schwarz inequality,∑

(i,j)∈E
i ̸=j

(xi − xj)
2 =

∑
1≤j≤(n−1)

(xij+1 − xij )
2

≥ 1

n

 ∑
1≤j≤(n−1)

|xij+1 − xij |

2

≥ 1

n

 ∑
1≤j≤(n−1)

xij+1 − xij

2

≥ 1

n2
.

Therefore, the largest eigenvalue of any graph is at most 1− 1/nd2.

2.2.3. Lecture 10

By arguments discussed in Lecture 8, we know that the random walk on an expander graph mixes in O(log n) time.
This leads to a deterministic polynomial time algorithm to determine s, t connectivity in log-space – merely iterate
over all paths of length log n. That is, we iterate over all elements of [d]logn and for each such element, we follow the
corresponding path and check if we see t anywhere.

How do we extend this to arbitrary graphs? Given a graph G, we would like to get a graph G′ such that
• G′ has polynomially many vertices,
• G′ has “constant” degree (independent of n),
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• G′ preserves connectivity (s, t are connected in G iff some s′, t′ are connected in G′), and
• each component of G′ is an expander.

Let us look at a couple of operations one can do on a (n, d, λ)-expander G.

Squaring (G2) the vertex set is the same as that of G, and there is an edge between u, v for each length 2 walk
between u, v ∈ G. This is a multigraph with self-loops. G2 is a (n, d2, λ2)-expander; the random walk matrix on G2

is just M2, where M is the random walk matrix on G. Because the second eigenvalue has gone down, connectivity
has improved. However, the degree has increased.

Zig-zag product (G⃝z H) Let G be a (n,D, λ1)-expander and H a (D, d, λ2)-expander. Note that the degree of
the first graph is the number of vertices in the second! The goal of this product is to decrease the degree, without
changing expansion too much.
The idea is very similar to that we saw in Lecture 9 to derandomize algorithms, and we shall “derandomize the
random walk in G using H” – instead of going to a random neighbour in G, we determine which vertex to travel to
using H .
G⃝z H has nD vertices and is d2-regular. Suppose that the edges at each vertex in G are put in bijection with V (H)
in some arbitrary manner.

• The vertex set of G⃝z H is V (G)× V (H); we shall replace each vertex of Gwith the vertices of H .
• Let v = (aG, aH) ∈ V (G⃝z H) and (i, j) ∈ [d]2. The (i, j)th neighbour (bG, bH) of (aG, aH) is as follows.

1. Let a′H be the ith neighbour of aH in H .
2. Let (bG, b′H) be the a′H th neighbour of aH in G (recall that we had put the neighbours of a given vertex in

bijection with V (H)). That is, bG is the a′H th neighbour of aG and aG is the b′H th neighbour of bG.
3. Let bH be the jth neighbour of b′H .

Lemma 2.9. Suppose that H is a non-bipartite graph, and let wH , w′
H be any vertices in H . Then, s, t are connected

in G iff (s, wH) and (t, w′
H) are connected in G⃝z H .

Proof. It suffices to show that for any v ∈ V (G), the “cloud” v × V (H) is connected. Indeed, the connectivity of
clouds is identical to the connectivity of G. Consider some arbitrary aH , bH with a 2-walk aHvHbH in H between
them. Due to the non-bipartiteness of H , we are done if we show that there is a path between (v, aH) and (v, bH).
Indeed, considering some neighbour (w, cH) of (v, aH) in G⃝z H such that w is the vH th neighbour of v, it is seen
that both (v, aH) and (v, bH) are adjacent to (w, cH) in G⃝z H , so we are done. ■

What happens to the eigenvalue of G ⃝z H? For the sake of simplicity, let γ1 = 1 − λ1 and γ2 = 1 − λ2 be the
corresponding spectral gaps. We claim that

Lemma 2.10. It is true that
γ(G⃝z H) ≥ γ1γ

2
2 .

We prove the above shortly, and first describe how this results in a conversion of our graph to an expander graph.

First of all, how do we construct the (D, d, λ2) graph H?
There exists a simple method to construct a (D4, D, 1/8) graph H that we do not describe.
To generate a larger graph with bounded spectral value, we can do the following.

1. Set G1 as H2.
2. For each k, set Gk+1 as G2

k
⃝z H .
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We claim that Gk is a (D4k, D2, 1/2) graph (by 1/2 we mean that the eigenvalue is at most 1/2).
The first two parameters are easily verified. It may be shown using Lemma 2.10 without much trouble that λ(G⃝z
H) ≤ λ1 + 2λ2.
Then, an inductive argument yields the eigenvalue bound for Gk. Indeed, λ(G1) ≤ 1/2 and λ(Gk+1) ≤ λ(Gk)

2 +
2λ(H) ≤ (1/2)2+2/8 = 1/2. Before coming to the proof of Lemma 2.10, we describe the construction used to convert
G to a graph G′ satisfying the conditions described earlier.
Algorithm 3: Converting an arbitrary graph to an expander
Input: An graph G
Output: A graph G′ each of whose components is an expander

1 G0 ← regularize(G)
2 for 1 ≤ k ≤ O(log n) do
3 Gk+1 ← G2

k
⃝z H

First, make G a regular graph. G0 is an (n,D2, 1− 1
poly(n) ) graph. We claim that Gk is an (nD4k, D2, 17/18).

The first two parameters are straightforward. Let γk = 1− λ(Gk). Assume that for some k γk−1 ≤ 1/18. Then,

γk+1 ≥
(
1− (1− γk)

2
)(7

8

)2

= (2γk − γ2
k)

49

64

≥
(
35

18
γk

)
49

64
≥ 5

4
γk.

Consequently, γ increases from 1/ poly(n) to a constant in O(log n) steps!
The only thing that remains is to prove Lemma 2.10.
Lemma 2.11. Let C be a random walk matrix with eigenvalue λ. Then, it is possible to write C = (1− λ)J + λE for
some matrix E with spectral norm equal to 1.
Proof. Let v be a vector, and let v1, v2 be its components along and orthogonal to the all ones vector. Observe that all
eigenvalues of J other than the first are equal to 0. As a result,

∥Ev∥ = 1

λ

∥∥Cv − (1− λ)Jv
∥∥

=
1

λ

∥∥v1 + Cv2 − (1− λ)v1
∥∥

=
1

λ
∥λv1 + Cv2∥

=
1

λ

√
λ2∥v1∥2 +∥Cv2∥2

≤ 1

λ

√
λ2∥v1∥2 + λ2∥v2∥2 =∥v∥ .

The above inequality is tight on setting v2 as the second eigenvector of C, so the spectral norm is precisely 1. ■

Proof of Lemma 2.10. Let B be the random walk matrix of H , and let B̃ = In ⊗ B.3 Let Ã be the matrix that encodes
the second edge (usingG-edges) traversed in the construction of the zigzag product. Then, the transition matrixM
of G⃝z H is just B̃ÃB̃!
Now, denote by J the matrix that has all elements 1/n.

3this is a nD × nD matrix, with n blocks on the diagonal that are all Bs.
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Now, use Lemma 2.11 on B̃.
M = B̃ÃB̃

=
(
γ2J̃ + λ2Ẽ

)
Ã
(
γ2J̃ + λ2Ẽ

)
= γ2

2 J̃ÃJ̃ + γ2(1− γ2)
(
ẼÃJ̃ + J̃ÃẼ

)
+ (1− γ2)

2ẼÃẼ

= γ2
2 J̃ÃJ̃ + (1− γ2

2)X,

for some matrixX . Observe that the spectral norm ofX is at most 1 because Ẽ, Ã, J̃ all have spectral norms at most
1, and so by submultiplicativity of the spectral norm,4 ẼÃJ̃ , J̃ÃẼ, and ẼÃẼ all have spectral norms at most 1.
Now, we wish to bound the second eigenvalue ofM . Note that J̃ÃJ̃ is precisely the randomwalk matrix ofG⊗Kn,
which has second eigenvalue equal to that of G. Recalling very carefully that the second eigenvector of M is some
vector v orthogonal to 1, we have

∥Mv∥2 =
∥∥∥γ2

2 J̃ÃJ̃x
∥∥∥+∥∥∥(1− γ2

2)Xx
∥∥∥

≤
(
γ2
2λ1 + (1− γ2

2)
)
∥v∥ = (1− γ2

2γ1)∥v∥ ,

completing the proof. ■

2.3. Lecture 9: Expander graphs

2.3.1. Lecture 9

Definition 2.12. A graphG is said to be an (n, d, λ)-expander if |V (G)| = n,G is d-regular, and λ is the second largest
eigenvalue λ(G) of G in absolute value.

Definition 2.13 (Spectral expanders). A sequence {Gn}n≥0 of d-regular graphs is said to be a spectral expander family
if for some λ < 1, λ(Gi) ≤ λ for all i.

We saw last lecture that random walks on expander graphs converge to the uniform distribution in O(log n) steps.
This means that there are only dO(logn) = poly(n) paths to explore. Therefore, there is a deterministic polynomial
time algorithm to determine connectivity of expander graphs.

Definition 2.14 (Sparsity). Given a d-regular graph G, define the sparsity

h(G) = min
S⊆V

|S|≤(n/2)

|E(S, S)|
d|S|

.

Some definitions use |E(S, S)|/|S| instead.
It is natural to see that h(G) measures (in some sense) how well-connected a graph is. If it is low, there is some
“bottleneck” in the graph where the random walk can get stuck – a set of high measure with very few outgoing
edges.
It is clear that h(G) ≤ 1.

4∥AB∥ ≤∥A∥∥B∥. This is obvious because∥ABx∥ ≤∥A∥∥Bx∥ ≤∥A∥∥B∥∥x∥.
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Definition 2.15 (Combinatorial expanders). A sequence {Gn}n≥0 of d-regular graphs is said to be a combinatorial
expander family if for some h > 0, h(Gi) ≥ h for all i.

Theorem 2.16 (Cheeger’s Inequality). For any graph Gwith second eigenvalue λ2 and sparsity h,

1− λ2

2
≤ h ≤

√
2(1− λ2).

In particular, spectral expanders are combinatorial expanders and vice-versa.

We prove this later.

Markov chain Monte Carlomethods find many uses nowadays in problems such as sampling random spanning trees,
random independent sets etc. The idea in these is that we start with an arbitrary spanning tree (say), and then
randomly move to a “neighbouring” spanning tree – add a random edge not in the spanning tree and remove a
random edge from the cycle thus formed. After sufficiently many steps, we are at a(n almost) uniformly random
spanning tree. This massive graph composed of spanning trees as vertices ends up being an expander! Because
the graph of spanning trees has only exponentially many vertices, we get a polynomial time algorithm to randomly
sample spanning trees.

Example 2. The n-cycle Cn has sparsity h(Cn) = 2/n, and λ(Cn) = cos(2π/n) ≈ 1− (2π/n)2.
The hypercube graph Hn := P⊗n

2 . We have h(Hn) = 1/n and λ(Hn) = 1− 1
k .

Each of these give a case where the appropriately inequality in Cheeger’s Inequality is (asymptotically) tight.

What guarantee do we even have that expanders exist? It turns out that a random d-regular graph is a (combinato-
rial) expander with high probability!

However, how dowe construct expander graphs? Our goal is to use expander graphs to reduce randomness in algo-
rithms, so it does not make sense to construct them using the above random argument. We also want the algorithm
itself to run in polylog time – this requirement makes sense in light of our remarks towards the end of Lecture 6.

Example 3. Let p be a prime and consider the 3-regular graph over F∗
p, where each x is adjacent to x+ 1, x−

1, x−1. This graph is an expander, but the proof of this is not very straightforward.

Theorem 2.17 (Expander Mixing Lemma). Let G be a (n, d, λ)-expander. Then, for any S, T ⊆ V ,∣∣∣∣E(S, T )− d

n
|S||T |

∣∣∣∣ ≤ dλ
√
|S||T |.

If G were a random graph, then the expected number of edges between S, T is precisely (d/n)|S||T | – of the d|S|
edges out of S, we expect a |T |/n fraction to be incident on T .

Proof. Let M be the transition matrix of the random walk on G; it is equal to (1/d) times the adjacency matrix of G.
For any set X , let 1X be the indicator vector of X with 1s at vertices in X and 0 elsewhere.
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Observe that
1

d
E(S, T ) = 1

⊤
SM1T .

Now, we have M =
∑

i λiuiu
⊤
i using the spectral theorem, where (ui) are orthonormal eigenvectors of M with

corresponding real eigenvalues (λi). Note in particular that λ1 = 1 and ui is the vector with all coordinates having
value 1/√n.
Let 1S =

∑
i αiui and 1T =

∑
i βiui. Note in particular that α1 = ⟨1S , u1⟩ = |S|/

√
n and β1 = |T |/

√
n.

Using orthonormality,

1

d
E(S, T ) =

∑
i

αiui

∑
i

λiuiu
⊤
i

∑
i

βiui


=
∑
i

αiβiλi

= α1β1 +

n∑
i=2

αiβiλi

=
|S||T |
n

+

n∑
i=2

αiβiλi.

Therefore, ∣∣∣∣E(S, T )− d

n
|S||T |

∣∣∣∣ =
∣∣∣∣∣∣

n∑
i=2

αiβiλi

∣∣∣∣∣∣
≤ dλ

n∑
i=2

|αiβi|

≤ dλ

√√√√√
 n∑

i=2

α2
i

 n∑
i=2

β2
i


≤ dλ

√
∥1S∥∥1T ∥ = dλ

√
|S||T |.

■

We now see how to save randomness using expanders.
Let A be an algorithm that uses k independent random bits. Let G be a (2k, d, λ)-expander. Starting at an arbitrary
vertex v1, perform a random walk for ℓ steps through vertices v1, v2, . . . , vℓ. Run the algorithm on each of these
inputs v1, . . . , vℓ (interpreting the 2k elements of V (G) as length k bit strings.
Recall that if A once (using k bits) has error probability β, running the algorithm ℓ times (using kℓ bits) reduces
this to error probability βℓ. It turns out that running the algorithm ℓ times as described above (using k+ ℓ log d bits)
reduces the error probability to (β + λ)ℓ!
In purely graph theoretic terms, this says the following.

Theorem 2.18. Let G be a (n, d, λ)-expander, and let B ⊆ V be of size βn. Starting at a random vertex v1, consider ℓ
steps of the random walk going through vertices v1, v2, . . . , vℓ. Then,

Pr [all vi are in B] ≤ (β + λ)ℓ.

Proof sketch. Consider the diagonalmatrixDwith 1s at vertices inB and 0 elsewhere. Let p(0) be the initial (uniform)
distribution of v0. Observe that the ℓ1 norm of (BM)ip(0) is precisely the probability that vi is in B. To bound this,
we split a given vector into its component along and orthogonal to the uniform distribution. The norm of the second
part decreases by λ at every step. ■
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Theorem 2.19 (Alon-Boppana bound). For any (n, d, λ)-expander,

λ =
2
√
d− 1

d
(1− o(1)).

Definition 2.20 (Ramanujan Graph). A (n, d, λ)-expander is said to be a Ramanujan graph if

λ ≤ 2
√
d− 1

d
.

It was proved in 2014 by Adam Marcus, Daniel Spielman, and Nikhil Srivastava that there exist infinite families of
bipartite Ramanujan graphs of every degree greater than 2.

�3. Reed-Solomon Codes

3.1. Lecture 11: Introduction

3.1.1. Lecture 11

Randomly choosing strings from {0, 1}n tends to yield a good code, with high distance between points with high
probability. This is true even for exponentially many points, say 20.1n. At the heart of getting good codes is deran-
domizing this process to get good explicit codes.
In some sense, good codes, expander graphs, and extractors are equivalent. In fact, some of the best known expander
constructions today come from coding theoretic constructions.
The subject of coding theory lies at the intersection of numerous disparate fields, such as (theoretical) computer
science, electrical engineering, and math. Interestingly, the same objects are studied in all the disciplines, merely
from different perspectives.

Definition 3.1 (Reed-Solomon Code). Let F be a finite field, and k, n ∈ N with n ≥ k, |F|. Also fix some distinct
α1, . . . , αn. The message space of the Reed Solomon code RS(k, n) is

{g(x) ∈ F[x] : deg(g) ≤ k − 1}.

That is, we identify k-dimensional vectors in Fk with corresponding polynomials. A polynomial g is encoded as

Enc(g) = (g(α1), . . . , g(αn)).

Note that the number of possible messages if |F|k. Let us look at some basic properties of this code.
1. AReed-Solomon code is a linear code. This follows immediately from the fact that (αg+h)(αi) = αg(αi)+h(αi),

and if g, h are of degree at most k − 1 then so is αg + h.
2. The code has rate k/n.
3. The distance of the code is n− k + 1. Indeed, by the Fundamental Theorem of Algebra, two polynomials can

coincide in value at at most k − 1 points (otherwise their difference, a nonzero polynomial of degree at most
k − 1, would have more than k − 1 roots).



CS 761 : Derandomization and Pseudorandomness 25 / 40 Amit Rajaraman

Observe that given a vector (g1, . . . , gk) ∈ Fk, we encode it as
1 α1 α2

1 · · · αk−1
1

1 α2 α2
2 · · · αk−1

2... ... ... . . . ...
1 αn α2

n · · · αk−1
n


(
g1 g2

... gk

)
.

Also note that the above properties do not depend on our choice of (αi).

It turns out that Reed-Solomon codes are optimal in some sense.

Theorem 3.2. Reed-Solomon codes match the singleton bound.

This says that over large fields, they essentially match the best possible rate-distance trade-off.

3.2. Lectures 11�12: Decoding

3.2.1. Lecture 11 (continued)

Thematrix multiplication scheme above describes a simple way to encode RS codes. How dowe decode them? That
is, if r = (r1, . . . , rn) ∈ Fn, what do we decode it to? This asks to find the RS codeword c closest to r; find the RS
codeword c such that dH(c, r) < (n− k + 1)/2 (if no such codeword exists, say no).

In the 60s, numerous decoding algorithms such as those of Peterson, Sugiyama, and Berlekamp-Massey were pro-
posed. Despite being elementary, these are all very clever. In practice, Berlekamp-Massey is typically used (it is
nearly linear in the input size).
We shall look at theWelch-Berlekamp algorithm, which was proposed in the 80s. Amusingly, this was not originally
published in a paper but in a patent. Some time later, Madhu Sudan et al. decoded5 the patent. The algorithm has
had surprisingly pervasive effects in computer science, and the methods have helped resolve several open problems
in math as well. Interested readers can see the “polynomial method” for more details; while it has been used in the
past in math, this introduced it to mainstream theoretical computer science.
The algorithm is as follows.

1. Find a nonzero polynomial Q(x, y) = A(x) + yB(x) such that
(a) deg(B) <

⌈
(n− k + 1)/2

⌉
=: d,

(b) deg(A) < d+ (k − 1) =: D, and
(c) for all i, Q(αi, ri) = 0.

2. Set g(x) = −A(x)/B(x). If g is a polynomial and dH(Enc(g), r) < (n − k)/2 and deg(g) ≤ k − 1, output g.
Otherwise, say that no codeword exists.

Observe that if g is a polynomial, the polynomial is certainly correct.
Wemust prove that if g is not a polynomial, then no codeword exists. First, however, let us describe how to determine
the bivariate polynomial Q.
Set D = (n+ k)/2 and d = (n− k)/2. The desired Q is of the form

Q(x, y) = A0 +A1x+ · · ·+AD−1x
D−1 +B0y +B1xy + · · ·+Bd−1x

d−1.

Then, we wish to determine coefficients (Ai) and (Bi) such that for all i

Q(x, y) = A0 +A1αi + · · ·+AD−1α
D−1
i +B0ri +B1riαi + · · ·+Bd−1riα

n−1
i = 0.

5Pardon the pun.
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This is just a linear system of n equations. If D + d > n, which is indeed true, we may solve it for a non-trivial
solution.
To compute g using A,B, we just have to do polynomial long division from high school (there are better methods to
do this).
All that remains is to check correctness.

Theorem 3.3. If there exists a polynomial h ∈ F[x] of degree at most k − 1 such that dH(Enc(h), r) < (n− k + 1)/2,
the Welch-Berlekamp algorithms outputs it.

Proof. LetQ(x, y) = A(x)+yB(x)with deg(A) < D, deg(B) < d, andQ(αi, ri) = 0 for all i be the polynomial output
in the first step of the algorithm.

Consider U(x) = Q(x, h(x)). This is A(x) + h(x)B(x). For starters, the degree of U is at mostD− 1 < (n+ k− 1)/2.
If h(αi) = ri, then U(αi) = 0. Consequently, the number of zeroes of U on {α1, . . . , αn} is at least the number of
agreements betweenEnc(h) and r. Due to the distance contraint on h, there are at least (n+k−1)/2 such agreements.
Therefore,U hasmore zeros thandegree, soU must be the zero polynomial (!) and therefore g is indeed apolynomial
and equal to h. ■

The idea of the construction is just that the first step forces us to have aQ of large degree, while the second (assuming
a valid h exists) forces Q to have small degree. The sweet spot in the middle is precisely where we lie.

Next class, we shall look at decoding Reed-Solomon codes beyond the error limit of half the minimum distance. One
option is to output any codeword in the given radius. The more useful (albeit more stringent) notion is to output
all these codewords. Such algorithms are called “list decoding algorithms”. We must ensure that the amount we go
beyond (n− k + 1)/2 is not so high that the list becomes exponentially large. This is guaranteed by the following.

Theorem 3.4 (Johnson). Let C be a code of block length n with distance ∆. Then, for all r ∈ Fn, the number of
codewords in C within distance n−

√
n(n−∆) (the “Johnson radius”) of r is poly(q, n,∆).

For Reed-Solomon codes, this value is equal to

n−
√

n
(
n− (n− k + 1)

)
≈ n−

√
nk.

This is far larger than the minimum distance. If k = 0.01n, say, then the minimum distance is about 0.49n, but the
Johnson radius is about 0.9n! Next class, we shall describe how to output all the codewords within the prescribed
radius.
We also remark that there exist Reed-Solomon codes where we go beyond the Johnson radius while still having
polynomially many codewords in the given radius. Such codes are not explicitly known, however, and are obtained
by taking a sufficiently large field and choosing random evaluatin points αi. The question of when in general the
Johnson bound is not tight does not have many satisfactory answers to date. In particular, we do not know if the
Johnson bound is non-tight for all Reed-Solomon codes.

3.2.2. Lecture 12

Given S = {(αi, βi)}ni=1, we aim to find all polynomials f ∈ Fq[x], deg f < k, such that

agr(f,S) :=
∣∣∣{u ∈ [n] : f(αi) = βi

}∣∣∣ ≥ t.

Last lecture, we saw the setting where t ≥ (n+ k − 1)/2.
Due to Johnson, the setting where t ≥

√
nk enters consideration. We shall now look at how to decode Reed-Solomon
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codes up to the Johnson radius.

First, we shall look at the case where t ≥ 2
√
nk. The basic idea is that we take the Welsh-Berlekamp algorithm, but

look at polynomials that are higher degree in y.
1. Set ℓ ≈

√
n/(k − 1). Find nonzero Q(x, y) = A0(x) + A1(x) + y2A2(x) + · · · yℓAℓ(x) such that deg(Ai) ≤ n/ℓ

for each i, and Q(αi, βi) = 0 for each i.
2. Find all factors of Q(x, y) of the form (y − h(x)), where deg(h) < k and agr(h,S) ≥ t. Output all such h.

This is very similar in spirit to the earlier algorithm. Indeed, Q(x, f(x)) = 0 just says that (y− f(x)) divides Q(x, y).
The first step of the algorithm is exactly as earlier and amounts to solving a system of linear equations. There is an
algorithm, that factors polynomials of deg d on Fq in time poly(d, log q).6 This is rather interesting, as it means we
are able to factorize elements of the polynomial ring. Compare this to the integer ring, where we cannot factorize
elements efficiently. We do not describe this algorithm.
Proof of correctness. The number of variables in the system of linear equations in the first step is (ℓ+ 1)

(
n
ℓ + 1

)
> n,

which is more than the number of datapoints, so such a Q exists.
Let f ∈ F[x] be of degree < k and agree with S at more than 2

√
nk points. Then, we wish to show that R(x) :=

Q(x, f(x)) ≡ 0. We have deg(R) ≤ (k − 1)ℓ+ nℓ. On the other hand, as before, if f(αi) = βi, R(αi) = Q(αi, βi) = 0.
If the number of agreements is more than deg(R), we are done. That is,

t >
n

ℓ
+ (k − 1)ℓ.

The quantity on the right is minimized for 2
√
n(k − 1) and the corresponding ℓ is approximately

√
n/(k − 1). ■

Now, let us modify the algorithm slightly to
√
2nk.

1. Set D ≈
√
2n(k − 1). Find nonzero Q(x, y) = A0(x) + A1(x) + y2A2(x) + · · · yD/(k−1)AD/(k−1)(x) such that

deg(Ai) ≤ D − (k − 1)i for each i, and Q(αi, βi) = 0 for each i.
2. Find all factors of Q(x, y) of the form (y − h(x)), where deg(h) < k and agr(h,S) ≥ t. Output all such h.

Proof of correctness. The key observation is that in the above argument, we can push the degree of most Ai higher,
without affecting the bound on the overall degree. Let degAi = Di, so the degree of f iAi is at most i(k− 1) +Di. If
we want the overall degree to be D, then we get deg(Ai) ≤ D − (k − 1)i.
The new number of variables is approximately

D/(k−1)∑
i=0

D − (k − 1)i ≈ D2

k − 1
− D2

2(k − 1)
=

D2

2(k − 1)
.

So, we want a D such that the above is greater than D.
For the second part of the argument, we have deg(R) ≤ D by definition, so we are fine if t > D.
Overall, this gives a bound of around

√
2n(k − 1).

■

Finally, let us look at how to get a bound of t ≥
√
nk. This argument is slightly more involved than the short jump it

took to get from 2
√
nk to

√
2nk.

We shall begin with a brief discussion of the method of multiplicities, which is something like the polynomial method
on steroids.

Definition 3.5. ApolynomialQ(x, y) is said to have a zero of multiplicity≥ r at (α, β) if for all i, j such that i+j < r,
∂Q

∂xiyj
(α, β) = 0.

6This algorithm is randomized, and no such deterministic algorithm is known
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1. SetD, r such thatD/r ≈
√
n(k − 1). Find nonzeroQ(x, y) = A0(x)+A1(x)+y2A2(x)+· · · yD/(k−1)AD/(k−1)(x)

such that deg(Ai) ≤ D − (k − 1)i for each i, and Q passes through (αi, βi)with multiplicity r.
2. Find all factors of Q(x, y) of the form (y − h(x)), where deg(h) < k and agr(h,S) ≥ t. Output all such h.

Proof of Correctness. The number of variables now remains D2

2(k−1) , but the number of constraints has increased to
about (r+1

2

)
n. So, we require

D2

2(k − 1)
≥
(
r + 1

2

)
n.

Approximately, this requires.
D2

r2
≥ n(k − 1).

Now, due to our additional multiplicity constraints, if f(αi) = βi, thenR(x) = Q(x, f(x)) vanishes with multiplicity
at least r at αi. Now, we have that there are at most D/r such distinct f . The observation is that each point of
agreement gives us r zeros, not just one.
We require

t ≥ D

r
.

In all, this gives us the required bound
√

n(k − 1)! ■

We again draw attention to the part where we used the fact that a nonzero degree d univariate polynomials has at
most d/r distinct zeros of multiplicity ≥ r. Using this fact, we can consider another code.

3.3. Lectures 12, 14: Multiplicity codes

3.3.1. Lecture 12 (continued)

Definition 3.6 (Univariate Multiplicity code). Let F be a finite field of size at least n, α1, . . . , αn ∈ F. The message
set is {f ∈ F[x],deg f < k}. We map f to the n-dimensional vectorM over Fs, where

(Mi)j = f (j)(αi) =
∂j−1f

∂xj−1
(αi).

Note that the messages are encoded in Fs, so errors mean errors in the entire vector, not specific derivatives.
The rate of this code is approximately k/ns, which is worse than before. The distance however, jumps up to n− k−1

s !
A unique decoding algorithm for the multiplicity is very similar to Berlekamp-Welch, and we omit the details.
Next class, we shall prove incredible list decoding results, namely that for any ϵ > 0, for sufficiently large s, multi-
plicity codes can be efficiently decoded from fractional agreement k

ns + ϵ. We can get arbitrarily close to the (hard)
bound – we cannot hope to get a degree k polynomial with fewer than k datapoints!
Recent state-of-the-art expander graphs are constructed using multiplicity codes!

3.3.2. Lecture 14

When talking about the derivative, we mean the syntactic derivative, which evaluates (on exponents of x) exactly
the same as ordinary derivatives.
Note that in contrast to Reed-Solomon codes, we can allow the degree of the polynomial to be more than n.
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Theorem 3.7 (Neilsen ’01, Kopparty ’13, Guruswami-Wang 14). For every ϵ > 0, for sufficiently large s, univariate
multiplicity codes are efficiently list decodable from fractional agreement k

ns + ϵ.

We can get arbitrarily close to the (hard) bound (!) – we cannot hope to get a degree k polynomial with fewer than
k datapoints. Further, this can be done with a constant list size, with the constant depending on ϵ – this was shown
by Kopparty-Saraf-RonZewi-Wooffer ’17.
The fraction of agreement here is (1 + ϵ) k

sn = (1 + ϵ) · (Rate). Compare this to what we had studied about Reed-
Solomon codes, where we only had

√
Rate.

The remainder of this section is dedicated to the proof of this theorem; we shall look at the proof/algorithm of this
due to Guruswami-Wang.

The input to the algorithm is an s×nmatrix Y . Wewish to find all polynomials p of degree atmost kwhose encoding
has “large” agreement with Y . More precisely, there is a set T ⊆ [n] of size greater than t such that for all i ∈ T and
j ∈ [s],

p(j)(αi) = Yji.

Call this set of all polynomials as L. We want t to be as small as possible.
Sticking with the Welch-Berlekamp idea, the proof (and algorithm) goes as follows.

1. Find a nonzero (m+ 2)-variate polynomial

Q(x, z0, z1, . . . , zm) = z0A0(x) + z1A1(x) + · · ·+ zmAm(x)

such that
• deg(Ai) < D for some D we shall fix later,
• multiplicity constraints which we shall come up with later, and
• Q “explains” the given data: for every j ∈ [n], Q(αi, Y0,i, Y0,i, . . . , Ym,i) = 0. We want it to explain the top

m rows of the matrix,
2. Show that for all p ∈ L,

Q(x, p(x), p(1)(x), . . . , p(m)(x)) ≡ 0. (3.1)

3. Find all low degree solutions toQ satisfying Equation (3.1). Note that we cannot rely on factoring for this, and
it is more complicated.

Set R(x) equal to the LHS of Equation (3.1) for some polynomial p, so it is

R(x) = A0p+A1p
(1) + · · ·+Amp(m).

If Y and the encoding of p agree at αi, then R(αi) = 0.7 The multiplicity constraint means that we also want the
derivative of R to be zero at αi. We have

dR

dx
= A

(1)
0 p+A0p

(1) +A
(1)
1 p(1) +A1p

(2) + · · ·+A(1)
m p(m) +Amp(m+1),

so if m < s,

0 =
dR

dx

∣∣∣∣
αi

= A
(1)
0 (αi)Y0,i +A0(αi)Y1,i +A

(1)
1 (αi)Y1,i +A1(αi)Y2,i + · · ·+A(1)

m (αi)Ym,i +Am(αi)Y(m+1),i.

So, at each i, the aforementioned multiplicity constraints correspond to about s−m− 1 additional constraints of the
above form.

7Stopping here would lead to unique decoding, by setting m as s or s− 1 or so.
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Now, we would like to set D in the first step such that it has a solution. There are Dm variables and n(s −m − 1)
constraints. So, we require Dm ≥ n(s−m− 1). Set

D =
n

m
(s−m).

Let us now look at step 2. For a given polynomial in L, the degree of R is at most D + k − 1. To ensure that R is
identically zero, we need that t(s−m− 1) ≥ D+ k, since each point of agreement gives (s−m− 1) equations. That
is, we need

t >
1

s−m
(D + k)

≈ n

m
+

k

s−m
t

n
>

k

n(s−m)
+

1

m
.

Settingm as around 1/ϵ and s > 1/ϵ2 does the job!

Finally, it remains to see if it is possible to find all low degree solutions p toQ(x, p, p(1), . . . , p(m)(x)) ≡ 0. Let us look
at just the trivariate case, with Q(x, p, p′) ≡ 0. That is, we wish to solve

A0(x)p(x) +A1(x)p
(1)(x) +A2(x)p

(2)(x) ≡ 0.

Note that the space of all p satisfying this is a subspace of the space of all polynomials of degree< k. Wemay assume
wlog that two of the Ai are nonzero, as the problem is not very interesting otherwise. Suppose that A2 ̸≡ 0. This
means that there exists some β ∈ F such that A2(β) ̸= 0. We can assume wlog that β = 0 by “shifting” the axis by β
otherwise. Dividing by a constant, we can also assume that the constant term in A2 is 1, so

A0p+A1p
(1) + (1 + Ã2)p

(2) ≡ 0,

where Ã2 has no constant term.
The p we wish to find is of the form

p(x) = p0 + p1x+ p2x
2 + · · · pk−1x

k−1.

Plugging this into the previous equation, we have

A0(p0 + p1 + · · · ) +A1(p1 + 2p2x+ · · · ) + (1 + Ã2)(2p2 + 3 · 2p3 + · · · ) ≡ 0.

This means that all the coefficients of the resulting polynomial is zero. This is just a linear system of equations, so
we can solve it. It remains to argue that the number of solutions (the list size) is not too large.
The coefficient for the degree 0 coefficient is

A00p0 +A10p1 + 2p2 = 0,

In fact, note that the equation for the coefficient of degree k being 0 involves only the first k + 2 coefficients of p!
Consequently, the solution space lives in a 3-dimensional subspace, so it is solvable. In general, it lives in an (m+1)-
dimensional subspace.
These constructions give the best bipartite expanders, condensers, and extractors that we know.
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�4. Hardness v. Randomness

4.1. Lectures 13, 15: Hardness

4.1.1. Lecture 13

A general question one can ask is this: for any polynomial-time randomized algorithm, is it possible to derandomize
it (possibly using more space) to get a polynomial-time deterministic algorithm doing the same job?
It has been shown that given a “hard” function, one can construct very good pseudorandom bits. However, no ex-
plicit hard functions are known.

Consider the notion of worst case hardness. For example, if we can show for some language that no algorithm that
runs in O(n10) can compute the output correctly on all inputs, then the language is hard in some sense.
We also have the notion of average case hardness. Here, if we can show for some language that no algorithm that runs
inO(n10) can compute the output correctly on more than 3/4 of the inputs, then the language is hard in some sense.
It is not too difficult to see that average case hardness is a stronger notion than worst case hardness.

Problems that are average case hard yield good pseudorandom generators. Another question of concern is convert-
ing worst case hardness to average case hardness, which is done through error correcting codes.
The rough idea behind the second question is the following. Error-correcting codes, when given two words as input
that are close, make them far apart.

Definition 4.1 (RP). A language L is said to be in RP if there is a randomized algorithm A running in polynomial
time such that

1. for x ∈ L,
Pr
r

[
A(x, r) = yes

]
≥ 1

2
.

2. for x ̸∈ L,
Pr
r

[
A(x, r) = yes

]
≥ 0.

For example, the algorithm we saw in Section 2.2 was in RP.

Definition 4.2 (BPP). A language L is said to be in BPP if there is a randomized algorithmA running in polynomial
time such that

1. for x ∈ L,
Pr
r

[
A(x, r) = yes

]
≥ 2

3
.

2. for x ̸∈ L,
Pr
r

[
A(x, r) = yes

]
≤ 1

3
.

Here, by randomized algorithms, we mean probabilistic turing machines.

Next, let us look at pseudorandom distributions. The goal of these is to find some universal set of random bits which
we can substitute in place of the (ideally) uniformly random bits.
Denote by Um the uniform distribution on {0, 1}m.
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The idea of this is that a distribution D is pseudorandom (with respect to A) if for the given algorithm A, for all
inputs x, ∣∣∣∣ Pr

r∼Um

[B(x, r) = yes]− Pr
r∼D

[B(x, r) = yes]

∣∣∣∣ ≤ ϵ.

One neat way to think about algorithms with input is circuits.
In fact, any deterministic algorithm can be viewed as a family (Cn)n≥1 of circuits, with Cn computing the output
correctly if the input is of size n. We can view a randomized algorithm as a deterministic one with two inputs, x and
r. The circuit then has n+m input leaves, where n is the size of the input x and m is the number of random bits r.
If we fix the x part of the input, we get a circuit in the remaining input, namely r1, . . . , rm.

Definition 4.3 (Pseudorandom distribution). A distribution D on {0, 1}m is called (S, ϵ)-pseudorandom if for any
circuit C on m input gates and size at most S,∣∣∣∣ Pr

r∼Um

[C(r) = 1]− Pr
r∼D

[C(r) = 1]

∣∣∣∣ ≤ ϵ.

When the above happens, we say that D “fools” all circuits of size at most S.

Definition 4.4 (Pseudorandom generator). A function G : {0, 1}∗ → {0, 1}∗ is said to be a m(ℓ)-pseudorandom
generator if for r ∈ {0, 1}ℓ,
(a) G(r) ∈ {0, 1}m(ℓ),
(b) G(r) can be computed in 2O(ℓ) time, and
(c) the distribution over {0, 1}m(ℓ) which takes a uniformly random element s of {0, 1}ℓ and takes value G(s) is

(m(ℓ)3, 1/10)-pseudorandom.

The existence of the above would imply that any randomized algorithm in BPP using m random bits and running
timem3 can be simulated by a deterministic algorithmwith running timeO(2O(ℓ)m3). We merely run the algorithm
on G(r) for all r ∈ {0, 1}ℓ, and output whatever answer (yes or no) occurs more.
If wewant to completely derandomize our randomized polynomial-time algorithm to get a deterministic polynomial
time algorithm, we want that m = 2Ω(ℓ). In particular, if a pseudorandom generator with ℓ = O(logm) exists, then
BPP = P. When this is true, we say that the PRG has “exponential stretch”.
Our goal in the next few lectures will be to show that “circuit lower bounds” imply the existence of pseudorandom
generators.

Theorem 4.5. There exists a “PRG” with exponential stretch which satisfies only (a) and (c) in the definition.

Proof. Choose a random G – for each s ∈ {0, 1}ℓ, set G(s) to be a uniformly random string in {0, 1}m.
Fix a circuit C of size at most m3. Suppose that Prr∼Um [C(r) = 1] = p, and let

BC := {r ∈ {0, 1}m : C(r) = 1}.

Note that the random variable
XC :=

∣∣∣∣{s ∈ {0, 1}ℓ : G(s) ∈ BC

}∣∣∣∣

https://en.wikipedia.org/wiki/Boolean_circuit
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is the sum of 2ℓ Bernoulli random variables equal to 1 with probability p. By the Chernoff bound,

Pr
G

[
|XC − E[XC ]| > ϵ2ℓ

]
≤ 2e−(ϵ2ℓ)2/3E[XC ] = 2e−(ϵ2ℓ)2/(3p·2ℓ) ≤ 2e−ϵ22ℓ/3.

Now, the number of circuits with size at mostm3 is bounded from above by 23m
3 . An application of the union bound

yields that
Pr
G
[for some C of size at most m3, |XC − E[XC | > ϵ2ℓ] ≤ e−(ϵ22ℓ/3)+(ln 2)(3m3+1).

For ϵ = 1/10, ℓ = 4 logm, and sufficiently large m, the RHS is less than 1, so there exists some G that satisfies (a)
and (c) in the definition of a PRG. ■

4.1.2. Lecture 15

In the previous lecture, we had said the following (after defining what a PRG is).

Theorem 4.6. If a 2Ω(ℓ)-PRG exists, BPP = P.

Note that a 2ℓ-PRG does not exist. Indeed, if it did, we could design a circuit that is 1 precisely at each point in
{0, 1}2ℓ that is mapped to by the PRG, and is 0 everywhere else.
While no PRGs are known that fool all circuits of size bounded bym(ℓ)3, there are PRGs known under more specific
conditions on the circuit. For example, we can get a PRG that fools any randomized algorithm that is log-space.8 It
is also known that there exist (non-trivial) PRGs which fool constant-depth circuits.

Now, what are circuit lower bounds? We had remarked in the previous lecture that they imply the existence of PRGs.

Definition 4.7 (Worst-case hardness). For f : {0, 1}n → {0, 1}, its worst-case hardnessHworst(f) is the largest number
S such that for any circuit of size at most S, there exists some x ∈ {0, 1}n such that C(x) ̸= f(x).

We cannot compute the function using a circuit of size any smaller than its worst-case hardness. The implementation
of the truth table yields that the worst-case hardness of any function is at most about O(2n).

Does there exist any function which is actually this hard? There are 22
n functions from {0, 1}n → {0, 1}, and there

are (about) 2S circuits of size at most S. Consequently, some functions do require an S of at least about 2n/n.
However, no such function is explicitly known – this is another huge open question! In fact, the hardest explicit
function we know has worst-case hardness just 3n− o(n). As mentioned at the beginning of this section, we can use
(worst-case) hard functions to design good pseudorandom generators.

Definition 4.8 (Average-case hardness). For f : {0, 1}n → {0, 1}, its average-case hardness Havg(f) is the largest
number S such that for any circuit of size S,

Pr
x∼Un

[
C(x) ̸= f(x)

]
>

1

2
+

1

S
.

Note that we can trivially get a circuit that is equal to f with probability ≥ 1/2, either set it as the constant 0 or the
constant 1 (depending on which value f takes more often).
Clearly, the average-case hardness of any function is at least the worst-case hardness.

8This does not make sense in our current framework, but it is possible to modify the definition of PRGs appropriately. In this setting, we do
not have exponential stretch, but we can go from Ω(log2 m) to m. The question of whether RL = L is a huge open question.
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4.2. Lectures 15, 16: Average-case hardness to derandomization

4.2.1. Lecture 15 (contd.)

Theorem 4.9 (Nisan-Wigderson). If (for sufficiently large n) there exists a function computable in time 2O(n) with
Havg(f) ≥ 22n/3, then there exists a (2ℓ/45)-PRG and in particular, BPP = P.

This links the worlds of algorithms (in the time complexity of f), circuits, and derandomization.

Before moving to the proof of the above, let us try to go from ℓ to ℓ+ 1.
Proposition 4.10. Let f : {0, 1}ℓ → {0, 1} be such that Havg(f) ≥ ℓ4. Then, G defined by

G(r) = (r1, . . . , rℓ, f(r)) = (r, f(r))

is a PRG.
That is, we would like to say that the output of the function cannot be predicted for a given input. The above merely
says that unpredictability implies indistinguishability.

Theorem 4.11 (Yao’s Theorem). LetD be a distribution on {0, 1}m. Suppose that for any i and any circuit of size 2S,

Pr
y∼D

[C(y1, . . . , yi) = yi+1] <
1

2
+ ϵ.

Then, for any circuit B of size S, ∣∣∣∣ Pry∼D
[B(y) = 1]− Pr

y∼Um

[B(y) = 1]

∣∣∣∣ < mϵ.

4.2.2. Lecture 16

Proof of Yao’s Theorem. We shall show the contrapositive of the statement. Let B be a circuit of size S such that

Pr
y∼D

[B(y) = 1]− Pr
y∼Um

[B(y) = 1] ≥ mϵ.

We remove themodulus becausewe can consider the probability that it is 0 otherwise. Define a sequence of distribu-
tionsD0, D1, . . . , Dm as follows, whereDi is obtained by drawing x fromD, and then replacing the first i coordinates
with draws from Um. That is, a draw is (y1, . . . , yi, zi+1, . . . , zm), where y ∼ D and z ∼ Um. Note that D0 = Um and
Dm = D. Let

Pi = Pr
r∼Di

[B(r) = 1].

Because Pm − P0 ≥ mϵ, there is some i such that Pi − Pi−1 ≥ ϵ. Note that Di and Di−1 differ only at the ith bit.
We shall give an algorithm topredict yi given y1, . . . , yi−1 for y ∼ D and a randomchoice of z ∼ Um. IfB(y1, . . . , yi−1, zi, . . . , zm),
then output zi, and if it is 0 then output 1 − zi. For the sake of succinctness, let x = (y1, . . . , yi−1, zi, . . . , zm). Now,
the probability of success is

1

2

Pr[B(x) = 1 | yi = zi]︸ ︷︷ ︸
Pi

+Pr[B(x) = 0 | yi = 1− zi]︸ ︷︷ ︸
(1−α), say


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We have

Pi−1 = Pr[B(x) = 1] =
1

2

(
Pr[B(x) = 1 | yi = zi] + Pr[B(x) = 1 | yi = 1− zi]

)
=

1

2
(Pi + α).

Therefore,
probability of success = 1

2
(Pi + 1− α) =

1

2
+ Pi − Pi−1 ≥

1

2
+ ϵ.

To get the final circuit C, note that on a random choice of z ∼ Um in our “algorithm”, we succeed with probability
at least (1/2) + ϵ. Therefore, there exists some specific choice which gives a probability of success at least (1/2) + ϵ,
which is precisely what we want. ■

Let us now come to the proof of Theorem 4.9. The idea is as follows. We would like to consider a bunch of subsets of
[ℓ], and apply a hard function f to each of them to get one extra bit to append. In all, the number of bits we append
is the number of subsets we choose. If we choose all subsets to be disjoint, then the resulting new bits are completely
independent of each other, but we do not get exponentially many new bits. Therefore, we allow some small amount
of intersection of the subsets, and thus some small amount of correlation, without compromising the uncorrelation
of the new bits by too much.

Definition 4.12. An (l, k, d)-combinatorial design is a collection I1, . . . , Ir of size k subsets such that for distinct i, j ∈ [r],
|Ii ∩ Ij | ≤ d.

Proposition 4.13. For k = ℓ/30, d = k/3, there exists an (l, k, d)-design of size at least 2d/10 ≥ 2ℓ/900.

We do not prove this.
Proof of Nisan-Wigderson. Set ℓ = 900 log n, and k as from the above.
Fix some combinatorial design I = {I1, . . . , In} guaranteed by the above, and let f : {0, 1}k → {0, 1} be a hard
function. Then, the final pseudorandom bits we output are f(zIr ) for each r ∈ [n]. For simplicity, denote f(Ir) =
f(zIr ).
Let f be computable in time 2O(k) and Havg(f) ≥ 22k/3. Denote the resulting PRG by NWf

I . We shall show that
NWf

I(Uℓ) is (22k/3/2, 1/10)-pseudorandom, which is (n20/2, 1/10)-pseudorandom.
Now, we shall use Yao’s Theorem, by showing unpredictability instead. That is, we are done if we show that for any
circuit C of size at most n20,

Pr
z∼Uℓ

[
C(f(zI1), . . . , f(zIi−1

)) = f(zIi)
]
≤ 1

2
+

ϵ

n
.

Let fj(z) = f(zIj ) for each j.
Suppose otherwise. Let z′ = z[ℓ]\Ii , and z′′ = zIi , so

Pr
z∼Uℓ

[
C(f1(z

′, z′′), . . . , fi−1(z
′, z′′)) = f(z′′)

]
>

1

2
+

ϵ

n
.

Ignore z′ for now, fixing their values as something (this will be done in precisely the sameway as in Yao’s Theorem),
abuse notation to denote the new functions by fj as well. Then,

Pr
z∼Uℓ

[
C(f1(z

′′), . . . , fi−1(z
′′)) = f(z′′)

]
>

1

2
+

ϵ

n
.

using this, we get a circuit for f that succeeds with probability at least (1/2) + ϵ
n . Note that each fj(z

′′) uses at most
d bits. By taking (i − 1) trivial circuits of f , which are each of size at most about d2d, we get a circuit for f of size
d2d2d/10 + 22d/2 ≤ 22d, contradicting the hardness of f . ■
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4.3. Lecture 17: Worst-case hardness to average-case hardness

4.3.1. Lecture 17

Now, we would like to convert a function that is worst-case hard to some other function that is average-case hard.

Definition 4.14. Given 0 < ρ < 1 and a function f : {0, 1}n → {0, 1}, defineHρ
avg(f) to be the largest S such that for

any circuit C of size S,
Pr

x∼Um

[f(x) = C(x)] < ρ.

In particular, we have Hworst(f) = H1
avg(f).

Given a function f : {0, 1}n → {0, 1} with worst-case hardness Hworst(f), we may view it as a string TruthTable(f)
in {0, 1}2n . For any circuit S of size less than Hworst(f), we have TruthTable(f) ̸= TruthTable(C). This idea of using
a few inequalities to generate a large number of inequalities is reminiscent of error correcting codes – maybe we
can convert the truth table to an element of {0, 1}22n , say, using an encoder E of relative distance 1/4, and our new
average-case hard function f ′ is defined by TruthTable(f ′) = E(TruthTable(f)).
However, this trick does not allow us to show that all circuits differ from f ′ on a constant fraction! It only does so for
circuits whose truth table is equal to some image of the encoding function.
Can we do something in the backward direction? Given a circuit B on 2n inputs of size S1/5 (say) that agrees with
f ′ significantly (on a 1

2 + 1
S fraction), is it possible to construct a small circuit C on n inputs of size S that agrees

with f everywhere?

Let us do something slightly weaker, and suppose that B agrees with f ′ on a 0.9 fraction. This essentially asks us
to decode the code. However, the size of the input string to the decoding algorithm is 22n, so we need a very fast
decoding algorithm.
In usual decoding, we look at the entire corrupted encoded string, and try to retrieve the entire message. In local
decoding, we read a small part of the corrupted string to recover some portion of the original message. Indeed, finally,
we do not want to know the values of f at every point, only at the input point x.
We can compute the value of B at this small part, and use it to recover the specific bit corresponding to f(x).

Definition 4.15 (Local decoding). Let E : {0, 1}N → {0, 1}M be a encoder that runs in poly(N). A local decoder for
handling ρ errors is an algorithm D such that given random access to a string y ∈ {0, 1}M with ∆(y,E(x)) ≤ ρ for
some x ∈ {0, 1}n and an index j ∈ [N ], runs in time polylog(M) and outputs xj with probability at least 2/3.

Theorem 4.16. Suppose we have an encoder E with a local decoder D for handling ρ errors. Further suppose we
have functions fn : {0, 1}n → {0, 1} in EXP that have worst-case hardnessHworst(f) ≥ S(n). Then, there exists ϵ > 0

and f̂m ∈ EXP onm bits such that
H1−ρ

avg (f̂n) ≥ (S(2ϵm))ϵ.

The proof is exactly as in the preceding paragraphs. We have (f̂(x))x∈{0,1}m = E((f(x))x∈{0,1}n) Let N = 2n and
M = 2m. Suppose instead that B is a circuit of size T = (S(ϵm))ϵ such that

Pr
x∼Um

[B(x) = f(x)] ≥ 1− ρ.

Now, we have that
∆((B(x))x∈{0,1}m , (f̂(x))x∈{0,1}m) < ρ.
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Fix x to be the string in {0, 1}n that we wish to obtain the value of (of f). Each time we compute B(y) for some y,
we incur a time of T .
We still need to eliminate the randomness in the local decoding algorithm. To do this, modify the encoding algorithm
by repeating it enough times that the error probability is less than 1/N2. Then, for a fixed f, x, this implies that there
exists some fixed set of random bits which outputs f(x) correctly for all x ∈ [N ].

4.4. Lectures 18�19: Local decoding

4.4.1. Lecture 18

In this lecture, we elaborate a bit more on local decoding. Recall Reed-Solomon codes from Section 3. Are these
locally decodable?
Given a polynomial

m = a0 + a1x+ · · ·+ ad−1x
d−1

and (m(α1),m(α2), . . . ,m(αn)), can we recover a specific ai by looking at a few of them(αi)? They do not seem very
suitable for local decoding, so let us look at some other codes that are more amenable to this.

Definition 4.17 (Reed-Muller codes). Let F be a finite field, and ℓ, d ∈ N such that |F| > d. Also fix S1, . . . , Sℓ ⊆ F
The message space of the Reed Solomon code RM(n, ℓ, d) is

{p(x1, . . . , xℓ) ∈ F[x1, . . . , xℓ] : deg(p) ≤ d}.

A polynomial p is encoded as
Enc(p) = (p(α1, . . . , αℓ))α∈(S1×···×Sℓ).

In our setting, we fix all the Si to be F.
That is, the encoding goes from F(

d+ℓ
ℓ ) to F|F|ℓ . What is the distance of this code? Given a nonzero polynomial p over

ℓ variables of degree at most d, what is the largest number of zeros it can have?

Proposition 4.18. Any polynomial p ∈ F[x1, . . . , xℓ] of degree at most d has at most d|F|ℓ−1 zeros. That is,

Pr
α∼Fℓ

[p(α) = 0] ≤ d

|F|

Proof. Assume wlog that the degree of p is d. The idea is that we will partition Fℓ into a bunch of “lines” and show
that on each line, the probability is at most d/|F|. For α ∈ Fℓ, r ∈ Fℓ, consider the line

Lα,r = {α+ tr : t ∈ F}.

We shall show that for some clever choice of r, the polynomial does not become the zero polynomial on this line
for any α. Restricted to this line, the function becomes a polynomial in t. We want to show that this is a nonzero
polynomial

p(α1 + tr1, . . . , αℓ + trℓ).

in t. Let Pd be the degree d part of P , and note that the coefficient of td in this polynomial is Pd(r1, . . . , rℓ), independent
of α! Further, Pd cannot be identically zero on Fℓ because this would imply that the degree of p is less than d (this
uses the fact that |F| > d). Therefore, the polynomial is nonzero for some choice of r. This means that the univariate
polynomial is nonzero, so has at most d/|F| zeros, and we are done. ■
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Are the Reed-Muller codes locally decodable? Let us change our perspective slightly, changing the message space
from the coefficients to the evaluations of F at some (ℓ+d

d

) (fixed and specific) points – there exists a choice of such
points which uniquely determines the polynomial.
In the absence of errors, this makes local decoding trivial. What do we do in the presence of errors?
Suppose we want to evaluate the polynomial at some point β given the evaluations at all points (with an ϵ fraction
of errors). If we manage to come up with some line through β that has relatively few errors, then we can use Reed-
Solomon decoding on this line to compute what p(β) is precisely. Suppose that we choose this line randomly. Then,
the expected number of errors is

Erandom line ℓ through β [number of corruptions on ℓ] = 1error at β
1

(|F|ℓ − 1)/(|F| − 1)
(number of errors not at β)

≤ 1 + ϵ|F|.

Therefore, by a Markov argument,

Pr
ℓ
[ℓ has less than 3(ϵ|F|+ 1) errors] ≥ 2

3

and we are done.

In all, we choose a random line through β, apply Reed-Solomon coding on this line, then use the resultant polyno-
mial to compute p(β).
Here, the local decoding algorithm runs in O(|F|) time, which we wish to be polylog(|F|ℓ). For sufficiently large ℓ
(Ω((|F|/ log |F|)δ) for some constant δ > 0), this is indeed true.

When we try to convert this to the binary setting however, one major issue pops up. We can of course view F as
a string over {0, 1}log |F|, but in this case the notion of “error” changes. An ϵ fraction corruption means that an ϵ
fraction of the bits are corrupted, not points in Fℓ. Indeed, an ϵ fraction of bits being corrupted means that an ϵ log |F|
fraction of the points in Fℓ could be corrupted.
We would like a coding scheme over the binary alphabet that can tolerate a constant fraction of errors, and Reed-
Muller codes do not seem to satisfy this.

4.4.2. Lecture 19

In the last lecture, we saw that the relative distance of the Reed Muller code was 1 − d/|F|, when viewed as a code
on alphabet |F|. When viewed as a code on alphabet {0, 1} however, this goes to (1− d/|F|)/ log |F|. This issue of the
relative distance being o(1) cannot be fixed even by changing F, ℓ, d.
To fix this, we shall do the following: for each element of F (each coordinate when viewed as a code on alphabet F),
we shall replace it with another codeword, possibly larger. That is, if we encode it as x ∈ F|F|ℓ under the Reed-Muller
code, we encode each xi as another element {0, 1}t, where twill end up being log |F|.

This second code is theWalsh-Hadamard code, defined as follows. The encoding is a functionWH : {0, 1}k → {0, 1}2k ,
where for each S ⊆ [k], we have (WH(x))S =

⊕
i∈S xi.

We claim that the relative distance of this code is 1/2. Indeed, if we change r bits, all coordinates corresponding to
subsets that contain an odd number of these r bits will change.
Further, it turns out that this optimal.

Proposition 4.19. For any δ > (1/2), there exists n0 such that no code with more than 2n0 codewords has relative
distance ∆.

Proof sketch. Let us just look at the case where the code is over {0, 1}n0 , and suppose instead that we have a mapping
f : {0, 1}n0 → {−1, 1}m with relative distance ∆ > 1/2. Note that ⟨f(x), f(y)⟩ < 0 for any distinct x, y ∈ {0, 1}n0 .
The result follows by bounding the number of such vectors from above. ■
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In addition, the Walsh-Hadamard code is indeed locally decodable. Given x and some corruption ofWH(x), we can
consider sets of the form T and T ∪ {i}, where i ̸∈ T . Adding (XORing) the two should give xi in the absence of
corruption. When there is corruption, we can just choose a bunch of random T and perform this same operation,
taking the majority finally. The probability that both T and T ∪{i} are uncorrupted is at least 1−2ρ, so for ρ < (1/2),
we are fine.

In conclusion, our final code is WH(RM(x)).9 Here, WH is a mapping from {0, 1}log |F| → {0, 1}|F|. The relative
distance of this code is (1/2)(1−d/|F|), which isΘ(1) for appropriate d, |F|! We can handle an error fraction of about
ρ ≈ ∆/2 ≈ (1/4).
One interesting thing is that due to the previous proposition, we cannot even do better than 1/4 using a coding
theory-based proof like this.
Now, we have gone from exponentialHworst to exponentialH1−ρ

avg , which in the limiting case isH3/4
avg . How do we go

from this to Havg? We do not delve into the details of this, but the main result used is the following.

Theorem 4.20 (Yao’s XOR Lemma). Given a function f : {0, 1}n → {0, 1}, define the function f̂ : {0, 1}nk → {0, 1}
defined by

f(x1, x2, . . . , xk) = f(x1)⊕ f(x2)⊕ · · · ⊕ f(xk),

where each xi is in {0, 1}n.
If δ > 0 and ϵ > 2(1− δ)k,

H(1/2)+ϵ
avg (f̂) ≥ ϵ2

400n
H1−δ

avg (f).

Given a function with exponentially large H1−δ
avg , making ϵ appropriately exponentially small does the job (around

H1−δ
avg (f)−1/3).

Alternatively, one way to go directly from Hworst to Havg is to use local list decoding for the Reed-Muller and Walsh-
Hadamard combination we saw earlier in the lecture.

Therefore, if we have a function that has exponential worst-case hardness, BPP = P!

9mildly abusing notation to mean that we apply WH on a coordinate-by-coordinate basis to RM(x).
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