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�1. Introduction

In typical linear programming, we have an objective that a single individual is trying to maximize (subject to some
constraints). In game theory, we typically study systems where there are multiple individuals with objectives that
they are trying to maximize, but each individual can only set some of the variables (the set of variables is shared).
An optimal solution for one individual might not be the optimal solution for another. As a result, it is now better to
look at equilibria instead of pure black-and-white optimality.
These equilibria are what we shall study.
The course is broadly split in two parts:

• Game theory, where we study games, interactions between agents who want to maximize their utilities. This is
a predictive approach. We wish to find the most probably outcomes or responses of the agents/players.

• Mechanism design, where we try to design a game with desirable outcomes. This is a prescriptive approach.
Given a reasonable outcome, we wish to build a game that yields this as a probable outcome.

The above is essentially analysis versus synthesis.

A well-known example of game theory is the Prisoner’s Dilemma, which we slightly rephrase in the following.

Example 1 (Neighbouring kingdomsdilemma). Twokingdoms can eachdecide to dedicate all their resources
to either agriculture or warfare. If both kingdoms choose warfare, they each earn one unit of joy. If one
chooses agriculture and the other chooses warfare, the former earns nothing while the latter earns six units
of joy. Finally, if both choose agriculture, they each earn five units of joy.
This can be represented by the following matrix.

A, B Agriculture War

Agriculture 5, 5 0, 6
War 6, 0 1, 1

The above matrix is called a game matrix. Each of the two numbers in the cells are referred to as the utilities
of the respective kingdoms.
Suppose that kingdomA decides to invest in agriculture. In this case, note that irrespective of what the other
kingdom decides to choose, A can increase its payoff by switching to investing in warfare. Consequently,
it makes more sense to invest in warfare (since the game is symmetric, this is true for both players). Even
though both kingdoms heading to war is not the most profitable outcome, it appears to be the most likely
outcome.

A game is a formal representation of the strategic interaction between multiple agents called players. The choices
available to the players are called actions. A mapping from the state of the game to the set of actions is referred to as
a strategy.
Depending on the context, games can be represented in different ways, normal form, extensive form, repeated form,
stochastic form, etcetera.

Game theory is the formal study of the strategic interactions between players who are rational and intelligent.
A player is rational if they pick actions to maximize their payoff.
A player is intelligent if they know the rules of the game perfectly and picks actions assuming that the remaining
players are also rational and intelligent. This also assumes that the player has sufficient computational ability to find
the “optimal” action.

Let us now look at an example of mechanism design.

https://en.wikipedia.org/wiki/Prisoner%27s_dilemma
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Example 2. Suppose we want to split a cake in two parts (for two children, say) in an “envy-free” fashion.
That is, neither child would prefer the other piece of cake. We do not see the children’s preferences, so we
do not even know what a fair division might involve. This well-known problem has a well-known solution –
make one child cut the cake and the other choose the piece. Why does this work? The first child splits it in
a way that is exactly half from their perspective, and they are indifferent to the two pieces. The second child
on the other hand gets a larger piece in their perspective.

While game theory allows us to study existing games, mechanism design helps us design games to attain specific
goals.

The reader is no doubt familiar with the rules of chess. It has two players,White and Black, with 16 pieces each. Each
piece has some legal moves (the players’ actions are these moves). The game starts with White and players take
alternating turns. White wins if they capture Black’s king, and Black wins they capture White’s king. There are a
couple of conditions under which a draw can occur, which we do not detail.
There are numerous natural questions that arise. First and foremost, doesWhite (or Black) have a winning strategy?
A winning strategy is a plan of moves such that it wins irrespective of the moves performed by Black. Alternatively,
is it possible to guarantee a draw? It is possible for none of these exist.

What is a strategy? Denote a board position by xk. A game situation is a finite sequence (x0, . . . , xk), such that x0

is the opening board position and xk → xk+1 for even (resp. odd) k is created by a single action of White (resp.
Black).
This set of game situations can be naturally represented by a tree, referred to as the game tree. The nodes are labelled
with board positions (xi), and arrows between nodes are labelled with actions. A strategy is a mapping from game
situation to action, which describes what action to take at every vertex of this game tree. This is something of a
contingency plan for every possible situation.
A strategy pair (sW , sB)which describes strategies for both players determines an outcome, also called a play of the
game. This describes a path through the game tree.
All leaves in the game tree correspond to either White’s victory, Black’s victory, or a draw.

Awinning strategy forWhite is a strategy s∗W such that for any strategy sB , (s∗W , sB) ends in awin forWhite. Similarly,
we can define a strategy guaranteeing at least a draw for White, denoted s′W .
It is not immediately obvious if such strategies exist.

Theorem 1.1 (von Neumann, 1928). In chess, exactly one of the following statements is true.
(1) White has a winning strategy.
(2) Black has a winning strategy.
(3) Each player has a strategy guaranteeing a draw.

If any such strategy was known, the game would become boring.
Proof sketch. Each vertex of the game tree is a game situation. Denote by Γ(x) the subtree rooted at x (including x
itself) and by nx the number of vertices in Γ(x). nx = 1 implies that x is a terminal vertex.
Using induction on nx, we prove that one of the three statements must hold at any game situation. The theorem is
clearly true for nx = 1. Suppose x is a vertex with nx > 1. By the inductive hypothesis, for all y ∈ Γ(y) \ {x}, the
statement holds (ny < nx). Let C(x) be the vertices reachable from x in one step, and assume wlog that it is White’s
turn.
(a) If there exists y0 ∈ C(x) such that (1) is true, then (1) is true at x as well.
(b) If (2) is true for all y ∈ C(x), then Black will win irrespective of White’s move.
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(c) Otherwise, because (a) does not hold, White does not have a winning strategy for any y ∈ C(x). As a result,
for every y ∈ C(x), either Black has a winning strategy or both have a draw-guaranteeing strategy.
Because (b) does not hold, there is some y ∈ C(x) where Black does not have a winning strategy. By the
preceding argument, both players must have a draw-guaranteeing strategy at this node. ■

Remark. The above proof is technically incorrect since the game tree for chess is infinite, so Γ(x) need not be finite.
This issue can be fixed through some clever manipulation of the “cycles” in the game tree to make the graph finite,
but we do not go into more detail on this.
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�2. Normal form games

2.1. De�nitions

Normal form is a representation technique for games.

Definition 2.1 (Normal form game). A normal form game is a 3-tuple ⟨N, (Si)i∈N , (ui)i∈N ⟩, where
1. N = {1, . . . , n} is the set of players.
2. Si is the set of strategies of player i. A particular strategy is denoted si ∈ Si and the set of strategy pro-

files is S :=×i∈N
Si, with specific elements s = (s1, . . . , sn) ∈ S. A strategy profile without i is s−i =

(s1, . . . , si−1, si+1, . . . , sn).
3. ui : S → R is the utility function of player i.

If Si is finite for all i ∈ N , the game is said to be a finite game.

As mentioned earlier, a player is rational if they pick actions that maximize their utility. A player is intelligent if they
know the rules of the game perfectly, and pick actions assuming that all other players are rational and intelligent.

A fact is said to be common knowledge if
1. all players know the fact,
2. the fact that “all players know the fact” is also common knowledge.

Example 3 (Propagation of common knowledge). There is an isolated island (with a hundred people, say)
where all inhabitants have eye color either blue or black. There is no reflecting surface on the island (people
cannot figure out their own eye color) and nobody can communicate with each other.
One day, a truth-telling god comes to the island and declares that all blue-eyed people are bad for the island
and must leave as soon as possible. He also says that there is at least one blue-eyed person on the island.
The inhabitants, being deeply devout, do listen to him and leave at the end of the day if they discover that
their eyes are blue. In this setting, the fact that there is at least one blue-eyed person on the island is common
knowledge.

If there was only one blue-eyed person, he would see that all other people have black eyes. Because the god
said that there is a blue-eyed person, he infers that he must be the only blue-eyed person and leaves at the
end of the first day.
If there were two, then on the second day everyone would notice that all people remain on the island, so
they would infer that there are at least two blue-eyed people on the island. If one of the inhabitants sees that
exactly one of the other four people is blue-eyed, then he, along with the other blue-eyed person, leaves on
the second day.
This goes on, and it is seen that if there are exactly n blue-eyed people, then all of these n people leave at the
end of the nth day.

Now, we discuss the concept of domination in NFGs. Consider the following game matrix:

1, 2 L M R

U 1, 0 1, 3 3, 2
D −1, 6 0, 5 3, 3
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Observe that player 2 has no reason to ever play R. Indeed, no matter what player 1 chooses, they can increase their
payoff by switching toM instead. In such a scenario, we say that R is dominated by M.

Definition 2.2. A strategy s′i ∈ Si of player i is said to be strictly dominated if there exists another strategy si ∈ Si

such that for every strategy profile s−i ∈ S−i,

ui(si, s−i) > ui(s
′
i, s−i).

A strategy s′i ∈ Si of player i is said to be weakly dominated if there exists another strategy si ∈ Si such that for every
strategy profile s−i ∈ S−i,

ui(si, s−i) ≥ ui(s
′
i, s−i)

and in addition, there exists some s̃−i ∈ S−i such that

ui(si, s̃−i) > ui(s
′
i, s̃−i).

So, in the earlier example R is strictly dominated and D is weakly dominated.
There is no reason for a rational player to ever play a (weakly or strictly) dominated strategy.

Definition 2.3. A strategy si ∈ Si is strictly (weakly) dominant if it strictly (weakly) dominates all s′i ∈ Si \ {si}.

Recall Example 1. In this, warfare strictly dominates agriculture, which is precisely what we said there, albeit in
more explicit terms.

Let us give another example of this.

Example 4 (Second price auctions). Suppose there are two players having “values” v1, v2 respectively. Each
player can choose a number in [0,M ], whereM ≫ v1, v2. The player who quotes the larger number wins the
object (with ties being broken in favour of player 1, say), and pays the losing player’s chosen number. The
utility of the winning player is their value vi minus their payment (the amount bid by the other player), and
the utility of the losing player is 0.
As a NFG representation, N = {1, 2}, S1 = S2 = [0,M ], and

u1(s1, s2) =

{
v1 − s2, s1 ≥ s2,

0, otherwise, and u1(s1, s2) =

{
v2 − s1, s1 < s2,

0, otherwise,

It turns out that the strategy si where player i chooses vi is a weakly dominant strategy! Let us check this for
player 1.
Suppose that s′1 > v1 is in S1 and s2 ∈ S2. We would like to show that u1(s1, s2) ≥ u1(s

′
1, s2). If s2 > s′1, both

payoffs are zero. If s2 ≤ s1 < s′1, then both payoffs are equal to the same value. The remaining case is when
s1 ≤ s2 ≤ s′1. The payoff for s1 is zero, but the payoff for s′1 is non-positive since we are paying more than we
value the item.

2.2. Some types of equilibria
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Definition 2.4. A strategy profile (s∗1, s∗2, . . . , s∗n) is a strictly (weakly) dominant strategy equilibrium if each s∗i is a strictly
(weakly) dominant strategy.

We abbreviate the above as SDSE or WDSE.
No rational player would play dominated strategies, so we can eliminate dominated strategies one-by-one. A point
of note here is that after eliminating a strategy, we get a reduced gamewith fewer strategies, and this gamemay have
dominated strategies that were not there earlier.
For strictly dominated strategies, the order of elimination does notmatter. Forweakly dominated strategies however,
some reasonable outcomes may be eliminated; this is because eliminating one player’s weakly dominated strategies
may introduce new dominated strategies for another.

Example 5 (Order of eliminating weakly dominated strategies matters). Consider the following.

L C R

T 1, 2 2, 3 0, 3
M 2, 2 2, 1 3, 2
B 2, 1 0, 0 1, 0

Right off the bat, it is seen that T, B, and C are weakly dominated strategies. Suppose we start by imposing
that player 1 does not play T. If we do this, then R becomes weakly dominated as well, so it makes sense to
eliminate it. Similarly, we can go on to eliminate B and C. Finally, the payoff of (M, L) is 2, 2.
On the other hand, if we eliminate strategies in the order of B, L, C, T, then the final remaining strategies are
(M,R), which gives a payoff of 3, 2, which is not the same as the previous 2, 2!

Dominant strategies (and dominant strategy equilibria) need not exist in games in general.

Example 6 (Dominated strategies need not exist). Consider the following game.

L R

L 1, 1 0, 0
R 0, 0 1, 1

As a result, dominance is not enough to give a reasonable outcome, so we must give a more refined notion.

Definition 2.5 (Nash Equilibrium). A strategy profile (s∗i , s
∗
−i) is a pure strategy Nash equilibrium (PSNE) if for all

si ∈ Si,
ui(s

∗
i , s

∗
−i) ≥ ui(si, s

∗
−i).

That is, fixing the remaining players’ strategies, no player can increase their payoff by moving to another strategy.
More succinctly, unilateral deviation is not beneficial.
In the above example, (L, L) and (R,R) are both PSNEs.
PSNEs need not exist either!

Example 7 (PSNEs need not exist). The following game has no PSNE.

L R

L −1, 1 1,−1
R 1,−1 1,−1
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Definition 2.6. A best response of player i against a strategy profile s−i is a strategy that gives the maximum utility.
That is,

Bi(s−i) = {si ∈ Si : ui(si, s−i) ≥ ui(s
′
i, s−i) for all s′i ∈ Si}.

So, a PSNE is a strategy profile (s∗i , s∗−i) such that s∗i ∈ Bi(s
∗
−i) for all i ∈ N .

A PSNE gives some sort of stability. Once there, no rational player has a reason to change their strategy.

One of our biggest assumptions thus far is that all players are rational and intelligent. There are, however, other
types of rationality.
One is risk-aversion, where each player makes pessimistic estimates of others. This worst case optimal choice is
called a max-min strategy.

Definition 2.7. A strategy smaxmin
i is a max-min strategy for player i if

smaxmin
i ∈ argmax

si∈Si

min
s−i∈S−i

ui(si, s−i).

The max-min value is defined by
vi = max

si∈Si

min
s−i∈S−i

ui(si, s−i).

We have that for any t−i ∈ S−i,
ui(s

maxmin
i , t−i) = vi.

Theorem 2.8. Any dominant strategy is a maxmin strategy.

Proof. Let s∗i be a dominant strategy for player i. We have that for any s−i ∈ S−i and s′i ∈ Si \ {s∗i },
ui(s

∗
i , s−i) ≥ ui(s

′
i, s−i).

In particular, when we set s−i as any smin
−i (s

∗
i ) ∈ argmins′−i∈S−i

ui(s
∗
i , s

′
−i), we get

min
s−i∈S−i

ui(s
∗
i , s−i) = ui(s

∗
i , s

min
−i (s

∗
i )) ≥ ui(s

′
i, s

min
−i (s

′
i)) ≥ min

s−i∈S−i

ui(s
′
i, s−i)

and as a result,
s∗i ∈ argmax

si∈Si

min
s−i∈S−i

ui(si, s−i). ■

Theorem 2.9. Every PSNE s∗ = (s∗1, . . . , s
∗
n) of an NFG satisfies

ui(s
∗) ≥ vi

for all i ∈ N .

Proof. We have
ui(s

∗
i , s

∗
−i) = max

si∈Si

ui(si, s
∗
−i) (by definition of PSNE)

≥ max
si∈Si

min
s−i∈S−i

ui(si, s−i) = vi. ■
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What happens to stability and security when games are eliminated? Recall that depending on the order in which
dominant strategies are eliminated, the final value can change.

Example 8. The game matrix involved in this example is very similar to that in Example 5.

L C R

T 1, 2 2, 3 0, 3
M 2, 2 2, 1 3, 2
B 2, 0 0, 0 1, 0

The initial maxmin values for the two players are 2 for player 1 and 0 for player 2, but after we eliminate B,
the values go to 2 and 2.
It is not a coincidence that the maxmin value of 2 for player 1 is unchanged.

Theorem 2.10. Consider an NFG G = ⟨N, (Si)i∈N , (ui)i∈N ⟩. Let ŝj ∈ Sj be a dominated strategy, and Ĝ be the
residual game after removing ŝj . The maxmin value of player j in Ĝ is equal to that in G.

The idea is that the eliminated strategy cannot be the unique maxmin strategy in G since it is dominated.
Proof. We are done if we show that there is a maxmin strategy in G in Sj \ {s−j} (Why?).
Let ŝj be dominated by tj ∈ Sj \ {ŝj}. Then, for all s−j ∈ S−j ,

uj(tj , s−j) ≥ uj(ŝj , s−j).

We have
min

s−j∈S−j

uj(tj , s−j) ≥ min
s−j∈S−j

uj(ŝj , s−j),

so
max

sj∈Sj\{ŝj}
min

s−j∈S−j

uj(sj , s−j) ≥ min
s−j∈S−j

uj(ŝj , s−j),

completing the proof – there is another strategy whose value is at least that of ŝj . ■

To summarize,
• eliminating strictly dominated strategies has no effect on the PSNEs,
• eliminating weakly dominated strategies may make the set of PSNEs smaller, but does not add new PSNEs,

and
• the maxmin value is unaffected by eliminating (strictly or weakly) dominated strategies.

2.3. Matrix games

Definition 2.11. A matrix game or two player zero-sum game is a normal form game ⟨N, (Si)i∈N , (ui)i∈N ⟩ with N =
{1, 2} and u1 + u2 ≡ 0.
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Example 9. Examples of matrix games are the following.

L C R

T 3,−3 −5, 5 −2, 2
M 1,−1 4,−4 1,−1
B 6,−6 −3, 3 −5, 5

L R

L −1, 1 1,−1
R 1,−1 −1, 1

A point of note here that we shall soon examine in more detail is that the first game has PSNEs while the
second does not.

A matrix game can be represented by a single utility matrix, by considering the utilities of only one of the players,
say player 1. Player 2’s utilities are then just the negative of the matrix.
Given a utility matrix u, u1 ≡ u and u2 ≡ −u.

What are the PSNEs, if any, of a matrix game?
Definition 2.12. A saddle point of a matrix A is an index Aij that is the largest in the ith row and the smallest in the
ith column.

Theorem 2.13. In a matrix game with utility matrix u, (s∗1, s∗2) is a PSNE if and only if it is a saddlepoint.

Proof. Indeed, (s∗1, s∗2) is a saddle point iff

u(s∗1, s
∗
2) ≥ u(s1, s2∗) for all s1 ∈ S2 and

u(s∗1, s
∗
2) ≤ u(s∗1, s2) for all s2 ∈ S2,

which is equivalent to being a PSNE since u1 ≡ u and u2 ≡ −u. ■

Definition 2.14. Given a two player game with utility matrix u, define the maxmin value v by

v = max
s1∈S1

min
s2∈S2

u(s1, s2)

and the minmax value v by
v = min

s2∈S2

max
s1∈S1

u(s1, s2).

The above can be slightly rephrased to say

v = − min
s1∈S1

max
s2∈S2

u2(s1, s2)

v = min
s2∈S2

max
s1∈S2

u1(s1, s2).

Lemma 2.15. For matrix games, v ≥ v.
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Proof. Let v and v be attained by (s1, s2) and (t1, t2) respectively. Then,

v = u(s1, s2)
(1)

≥ u(t1, s2)
(2)

≥ u(t1, t2) = v,

where (1) is because (s1, s2) is a minmax strategy and (2) is because (t1, t2) is a maxmin strategy. ■

Going back to Example 9, check that in the first game, v = 1 = v, while in the second game, v = 1 and v = −1.

Theorem 2.16. A matrix game has a PSNE iff v = v.

Proof. We wish to show that a utility matrix u has a saddle point iff its maxmin and minmax values are equal.

Suppose that (s∗1, s∗2) is a saddle point. Then,

u(s∗1, s
∗
2) ≥ max

s1∈S1

u(s1, s
∗
2) ≥ min

s2∈S2

max
s1∈S1

u(s1, s2) = v.

An identical argument for player 2 (keeping in mind that u2 ≡ −u!) yields that v ≥ u(s∗1, s
∗
2).

Combining the two,
v ≥ u(s∗1, s

∗
2) ≥ v.

Recalling Lemma 2.15, we must have that v = v.

Now, suppose that v = v. There is a strategy (s∗1, s
∗
2) that is both a maxmin and minmax strategy (Why?).

For any s2 ∈ S2,
u(s∗1, s2) ≥ min

t2∈S2

u(s∗1, t2) = max
t1∈S1

min
t2∈S2

u(t1, t2) = v.

Similarly, for any s1 ∈ S1,
u(s1, s

∗
2) ≤ max

t1∈S1

u(t1, s
∗
2) = min

t2∈S2

max
t1∈S1

u(t1, t2) = v.

The two equations above imply that (s∗1, s∗2) is a saddle point, so we are done. ■

2.4. Mixed strategies

So far, one issue is that PSNEs may not exist. We are also limiting ourselves to “pure” strategies, in the sense that
there is a certain strategy that we definitely play.

Given a finite set A, define the set of probability distributions on A

∆A = {p ∈ [0, 1]A
∑
a∈A

pa = 1}.

A mixed strategy of player i is some σi ∈ ∆(Si).
Because we are looking at non-cooperative games, mixed strategies of distinct players are independent.
The utility of the ith player for a mixed strategy profile (σi, σ−i) is

ui(σi, σ−i) =
∑

s1∈S1

· · ·
∑

sn∈Sn

∏
i∈[n]

σi(si)

ui(s1, . . . , sn).

That is, the utility of a mixed strategy is the expectation of the utility.
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Example 10. Consider the following game.

U D

L −1, 1 1,−1
R 1,−1 −1, 1

Suppose the mixed strategy σ1 chooses L and Rwith probabilities 2/3 and 1/3 respectively, and σ2 chooses U
and D with probabilities 4/5 and 1/5 respectively. Then,

u1(σ1, σ2) =
2

3
· 4
5
· (−1) + 2

3

1

5
· 1 + 1

3

4

5
· 1 + 1

3

1

5
· (−1) = −1/5.

By linearity of expectation, we have

ui(λσi + (1− λ)σ′
i, σ−i) = λui(σi, σ−i) + (1− λ)ui(σ

′
i, σ−i). (2.1)

This is referred to as mixing strategies.

Definition 2.17 (Mixed Strategy Nash Equilibrium). A mixed strategy nash equilibrium (MSNE) is a mixed strategy
profile (σ∗

i , σ
∗
−i) such that for all i ∈ N ,

ui(σ
∗
i , σ

∗
−i) ≥ ui(σ

′
i, σ

∗
−i)

for any σ′
i ∈ ∆(Si).

A PSNE is just a special case of a MSNE where all the mixed strategies are degenerate distributions.

Theorem 2.18. A mixed strategy profile (σ∗
i , σ

∗
−i) is a MSNE iff

ui(σ
∗
i , σ

∗
−i) ≥ ui(si, σ

∗
−i)

for all si ∈ Si.

The forward implication is direct on setting the σ′
i appropriately, and the backward implication by an extension of

Equation (2.1) to more than two strategies (How?).

Therefore, any PSNE is a MSNE. In any MSNE, there must be some amount of “balance” – in Example 10, the
probability distributions that assign 1/2 to each strategy together constitute a MSNE (check this!).
How do we make this notion of balance more formal?
Definition 2.19. Given a mixed strategy σi, the support of σi is

δ(σi) = {si ∈ Si : σi(si) > 0}.

We now characterize MSNEs.

Theorem 2.20. A mixed strategy profile (σ∗
i , σ

∗
−i) is a MSNE iff

(a) ui(si, σ
∗
−i) is equal for all si ∈ δ(σ∗

i ), and
(b) ui(si, σ

∗
−i) ≥ ui(s

′
i, σ

∗
−i) for all si ∈ δ(σ∗

i ), s′i ̸∈ δ(σ∗
i ).
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We encourage the reader to use the above theorem to determine MSNEs in earlier examples.
Proof. We have

ui(σ
∗
i , σ

∗
−i) = max

σi∈∆(Si)
ui(σi, σ

∗
−i)

= max
si∈Si

ui(si, σ
∗
−i) (similar to Theorem 2.18)

= max
si∈δ(σ∗

i )
ui(si, σ

∗
−i)

=
∑

si∈δ(σ∗
i )

σ∗
i (si)ui(si, σ

∗
−i).

It is possible for the maximum and weighted average to be equal iff all the utilities are the same, so (a) is proved.
Now, suppose that there is some si ∈ δ(σ∗

i ), s
′
i ̸∈ δ(σ∗

i ) such that
ui(si, σ

∗
−i) < ui(s

′
i, σ

∗
−i).

Consider the mixed strategy that is identical to σ∗
i except that the weight that was on si is shifted to s′i. This gives a

strictly larger utility, contradicting the fact that we have an MSNE and proving (b).

Now, let us prove the backward direction. Let ui(si, σ
∗
−i) = mi(σ

∗
−i) for all si ∈ δ(σ∗

i ) (using (a)). Using (b), we
have mi(σ

∗
−i) = maxsi∈Si ui(si, σ

∗
−i). Then,

ui(σ
∗
i , σ

∗
−i) =

∑
si∈δ(σ∗

i )

σ∗
i (si)ui(si, σ

∗
−i)

= mi(σ
∗
−i)

= max
si∈Si

ui(si, σ
∗
−i),

so we are done by Theorem 2.18. ■

We now try to convert the above theorem to an algorithm. Suppose we have an NFGG = ⟨N, (Si)i∈N , (ui)i∈N ⟩. The
number of possible supports of S1 × · · · × Sn isK = (2|S1|−1)(2|S2|−1) · · · 2|Sn|−1.
For every possible support profile X1 × · · · ×Xn, solve the following feasibility program.

wi =
∑

s−i∈S−i

∏
j ̸=i

σj(sj)

ui(si, s−i) for all si ∈ Xi, i ∈ N and

wi ≥
∑

s−i∈S−i

∏
j ̸=i

σj(sj)

ui(si, s−i) for all si ∈ (Si \Xi), i ∈ N ,

where for all j ∈ N , σj(sj) ≥ 0 for all sj ∈ Sj and
∑

sj∈Sj
σj(sj) = 1.

This program is not linear unless there are only two players.
For games in general, there is no polynomial time algorithm known for this. In fact, the problem of finding anMSNE
is PPAD-complete1. The interested reader may see [DGP09] for more details.

The previous algorithm may be applied to a smaller set of strategies by removing dominated strategies. Now, we
can even talk about domination by a mixed strategy. As we saw earlier, removing a weak dominated strategy can
upset the equilibrium.

Theorem 2.21. If a pure strategy si is strictly dominated by a mixed strategy σi ∈ ∆(Si), any MSNE of the game
chooses si with probability zero.

1PPAD stands for “Polynomial Parity Argument on Directed graphs”.
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We can remove strictly dominated strategies without consequences.

Theorem 2.22 (Nash, [Nas51]). Any finite game has a mixed Nash equilibrium.

Above, “finite” means that the number of players and strategies are finite.

2.5. Correlated equilibria

So far, we have worked in the setting where each agent independently picks their own strategy. Now, we look at an
alternative approach with a mediating agent or device. This is merely another version of rationality. It may lead to
results where the utility of all players is improved, and is computationally tractable.

Example 11. Consider the following game, modelling the choices of cars at a crossroads.

Wait Go

Wait 0, 0 1, 2
Go 2, 1 −10,−10

It is clear that bothWait,Go andGo,Wait are PSNEs. It can also be seen however that aMSNE can assign some
nonzero probability to the event where both players choose Go. In practice, a traffic light guides the players.
This trusted third party is called the mediator. It randomizes over the strategy profiles (and not just strategies
like earlier) and suggests the corresponding strategies to the players. If the startegies are enforceable, then it
is an equilibrium.

Definition 2.23. A correlated strategy is a mapping π ∈ ∆S.

In the setting of the previous example, an example of a sensible correlated strategy is that which choosesWait,Go or
Go,Wait with equal probability 1/2.

Definition 2.24. A correlated equilibrium is a correlated strategy π such that∑
s−i∈S−i

π(si, s−i)ui(si, s−i) ≥
∑

s−i∈S−i

π(si, s−i)ui(s
′
i, s−i)

for all si, s′i ∈ Si for all i ∈ N .

That is, no player benefits from (unilaterally) changing their strategy. This is largely similar to the definition of an
MSNE, but the distribution is over strategy profiles and not strategies.

One massive advantage of correlated equilibria is that they can be computed efficiently! We merely need to find a
solution to the set of constraints∑

s−i∈S−i

π(si, s−i)ui(si, s−i) ≥
∑

s−i∈S−i

π(si, s−i)ui(s
′
i, s−i) for all si, s′i ∈ Si and i ∈ N

π(s) ≥ 0 for all s ∈ S∑
s∈S

π(s) = 1.
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If |Si| = m for all i, this gives O(nm2) inequalities in the first part and O(mn) inequalities for the second.
All together, they represent a feasibility linear program.

In MSNEs, the total number of support profiles was O(2mn). Here, we just have O(mn) inequalities, which is expo-
nentially smaller.

Theorem 2.25. Given a MSNE σ∗, consider the strategy profile distribution π∗ defined by

π∗(s1, . . . , sn) =

n∏
i=1

σ∗
i (si).

Then, π∗ is a correlated equilibrium.

We omit the proof of the above as it is straightforward.
Summarizing much of our discussion thus far, we have that the set of SDSEs is contained in the set of WDSEs, which
is contained in the set of PSNEs, which is contained in the set of MSNEs, which is contained in the set of CEs.



CS 6001 : Game Theory and Mechanism Design 16 / 64 Amit Rajaraman

�3. Long-form games

Thus far, we have only looked at “single-step” games in NFGs. Not all games can be represented by this however,
with an obvious example that we have discussed being chess.

3.1. Perfect information extensive form games

Definition 3.1 (Perfect Information Extensive Form Game). A perfect information extensive form game
(PIEFG/EFG) is a 7-tuple ⟨N,A,H,X , P, (ui)i∈N ⟩where

• N is the set of players,
• A is the set of all possible actions (of all players)
• H ⊆ ⋃∞

k=0 A
k is the set of all sequences of actions (histories) satisfying

– ∅ ∈ H and
– if h = (a(0), a(1), . . . , a(τ)) ∈ H, any subsequence h′ = (a(0), a(1), . . . , a(t)) of h (for t ≤ τ) starting at the

root is inH,
• Z ⊆ H is called the set of all terminal histories, where a history h = (a(0), a(1), . . . , a(τ−1)) is terminal if there

exists no a(τ) ∈ A with (a(0), a(1), . . . , a(τ)) ∈ H,
• X : H \ Z → 2A, called the action set selection function, gives the set of all valid actions given a non-terminal

history,
• P : H \ Z → N is the player function which gives the player who plays at a given non-terminal history, and
• ui : Z → R is the utility of player i.

A history is essentially a path from the root in the game tree (recall our discussion of this from the first section).
A natural next question is: what is a strategy in a PIEFG?

Definition 3.2 (Strategy). A strategy of a player in an EFG is a tuple of actions at every history where the player
plays. That is, a strategy of a player i is an element of

Si = ×
h∈H:P (h)=i

X (h).

We can transform EFGs to NFGs! Indeed, the above definition explicitly describes the strategy set of each player,
and associated to any tuple of strategies for all the players, we can determine the payoff.
This conversion has a massive explosion in size however, and equilibria in the converted NFG do not necessarily
make sense in the context of the original EFG.
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Example 12 (PSNEs in PIEFGs). Consider the following game with two players, red and blue.

3, 8

C

8, 3

D

A

5, 5

E

2, 10

G

1, 0

H

F

B

At the node BF, red has no reason to play H since choosing G results in a higher payoff. However, it is still
seen that (AH,CF ) (at each node, the player chooses whichever of these actions is available) is a PSNE!
This is a consequence of the fact that this strategy profile never even reaches the node where red chooses G
or H , so it never comes into play.

Henceforth, we talk about PSNEs of EFGs as PSNEs of their NFG conversion.

Definition 3.3. A subgame of a game is the restriction of the game to the descendants of a history.

The idea behind an equilibrium should be subgame perfection, where each player chooses the best possible action at
each subgame where they play.

Definition 3.4 (Subgame Perfect Nash Equilibrium). A subgame perfect nash equilibrium (SPNE) of an EFG G is a
strategy profile s ∈ S such that for any subgame G′ of G, the restriction of s to G′ is a PSNE of G′.

Similar to MSNEs, SPNEs are guaranteed to exist in finite PIEFGs. Observe that any SPNE is a PSNE. As we shall
now see, the algorithm to find an SPNE is quite simple.

Algorithm 1: Backward induction to determine SPNEs
Input: An EFG G
Output: The utility and action to be taken by a given player at a certain history

1 backInd(history h)
2 if h ∈ Z then
3 return u(h),∅
4 bestUtilP (h) ← −∞
5 foreach a ∈ X (h) do
6 utilAtChildP (h) ← backInd((h, a))
7 if utilAtChildP (h) > bestUtilP (h) then
8 bestUtilP (h) ← utilAtChildP (h)

9 bestActionP (h) ← a

10 return bestUtilP (h), bestActionP (h)
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The idea of subgame perfection is intrinsically tied to the above algorithm.
The issue however is that we are essentially parsing the entire tree, so the algorithm is computationally very expen-
sive. Further, some criticize the idea of SPNEs for assuming that the cognitive limit of the players is infinite (which
is not realistic).
It is easy to find an SPNE in simple games such as tic-tac-toe.

Example 13 (Centipede game). Players 1 and 2 alternate, and each can play a move from {take, push}, with
a maximum of N rounds, say. The game terminates when take is played for the first time or the limit of N
rounds if take is never played.
The game also fixes some quantities m0,m1 with m0 > m1. Suppose that the game ends on round t ∈
{0, . . . , N − 1} with player p making the final move; let p′ be the other player. Then, the payoffs for the two
players are as follows:

• if p played take, then p, p′ have payoffs of 2tm0 and 2tm1 respectively.
• if p played push, then p, p′ have payoffs of 2t+1m1 and 2t+1m0 respectively.

That is, if a player plays push, they increase the size of the pot to be won, and if they play take, the game ends,
with them getting a larger amount of money.
Most players except grandmasters play for a few rounds, with some of the reasons claimed for this being
altruism, the difference in computational capacity of individuals and incentive difference.

There are some other criticisms of SPNEs as well, such as that it discusses what to do if the game reaches a certain
history, but the equilibrium in earlier stages might show that we cannot actually reach this history.

3.2. Imperfect information extensive form games

EFGs are perfect information systems, where every player has perfect information about all developments in the
game until that round. This is not useful in many practical scenarios, such as card games. EFGs also do not allow the
representation of games with simultaneous moves. For example, the neighbouring kingdom dilemma we discussed
in Example 1 depends significantly on the fact that both kingdoms move simultaneously.
This can be modeled as a sequential game, where the second player does not known for certain which history the
game is in. This is called an information set. Such gameswhere players dealwith information sets instead of particular
histories are called imperfect information extensive form games. When the information sets are singletons, we get
back PIEFGs.

Definition 3.5. An imperfect information extensive form games (IIEFG) is an 7-tuple ⟨N,A,H,X , P, (ui)i∈N , (Ii)i∈N ⟩
where

• ⟨N,A,H,X , P, (ui)i∈N ⟩ is a PIEFG,

• for every i ∈ N , Ii = (I1i , I
2
i , . . . , I

k(i)
i ) is a partition of {h ∈ H \ Z : P (h) = i} with the property that

X (h) = X (h′) and P (h) = P (h′) = i whenever there exists some j such that h, h′ ∈ Iji . The Iji s are called the
information sets of player i, and Ii the collection of information sets of i.

At a given information set, the player and all their available actions are the same. The player is not certain which
history in the information set the game is at.
Since the actions now depend on the information sets and not the histories, we denote X (Iji ) := X (h) for any h ∈ Iji .
Strategies are also defined over information sets. The strategy set of player i ∈ N is defined by

Si = ×̃
I∈Ii

X (Ĩ).
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With IIEFGs, NFGs can be represented using EFGs, though this is not very succinct. The representation used is
typically chosen on the basis of the game we are working with.

3.2.1. Strategies

In NFGs, we had mixed strategies where we randomized over pure strategies. In EFGs, randomization can be done
in several ways:

• randomize over the strategies defined at the very beginning of the game, and
• randomize over the actions at a given information set – we call such a strategy a behavioral strategy. This takes

advantage of all the information a player has at a certain point of time.

Definition 3.6. A behavioral strategy of a player in an IIEFG is a function that maps each of their information sets to
a probability distribution over the set of actions at that information set.

A couple of questions come to mind seeing this: can a player attain a higher payoff using one type of strategy? Is
there any sort of equivalence between mixed and behavioral strategies.
Given a node x, mixed/behavioral strategy σi, and a mixed/behavioral strategy vector ξ−i, denote by p(x;σi, χ−i)
the probability of going to the node x in a game.

Definition 3.7 (Equivalence of mixed and behavioral strategies). Amixed strategy σi and a behavioral strategy bi of
a player i in an IIEFG are equivalent if for every mixed/behavioral strategy vector ξ−i of the other players and every
vertex x in the game tree,

p(x;σi, ξ−i) = p(x; bi, ξ−i).

Now, by definition, equivalence implies that the above equality holds at leaf nodes.
In fact, it suffices to check that it holds at leaf nodes! Given an arbitrary non-leaf nodes, the probability of reaching
that node is equal to the sum of the probabilities of reaching the leaf nodes in the subtree, so equality at the leaves
implies equality at non-leaves.
As a result, we get the following.

Theorem 3.8 (Utility Equivalence). If σi, bi are equivalent, then for every mixed/behavioral strategy vector of the
other players ξ−i and every j ∈ N ,

uj(σi, ξ−i) = uj(bi, ξ−i).

Corollary 3.9. Let σ and b be equivalent. Then, for all i ∈ N , ui(σ) = ui(b).

Behavioral strategies are more natural in IIEFGs. Players plan at a given stage (i.e. information set), and don’t have
a master plan from the very beginning. They are also far simpler computationally, since we only need to deal with
fewer variables. For example, if a player has 4 information sets with 2 actions each, a mixed strategy would require
24 − 1 variables whereas a behavioral strategy requires only 4.
It turns out that behavioral strategies and mixed strategies have incomparable power, as the following two examples
demonstrate.
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Example 14 (There exist mixed strategies without equivalent behavioral strategies). Consider the following
game tree with a single player.

L2 R2

L1

L2 R2

R1

Observe that there does not exist any behavioral strategy b for the player such that p(b;L1R2) = p(b;R1L2) =
0. Indeed, this would require b1(L2) = b1(R2) = 0.
On the other hand, there does exist a mixed strategy σ that sets σ(L1R2) = σ(R1L2) = 0. This is easily seen
on realizing that S1 = {L1, L2}×{R1, R2}, so we have complete freedom in assigning probabilities to all four
leaf ndoes.

Example 15 (There exist behavioral strategies without equivalent mixed strategies). Consider the following
game tree with a single player.

L1 R1

L1 R1

Observe that there exists no mixed strategy that goes to L1R1 with nonzero probability. Indeed, here, S1 =
{L1, R1}, so the path L1R1 is not even an option.
On the other hand, the behavioral strategy that picks L1 or R1 with equal probability 1/2 does go to L1R1

with probability 1/4.

In the first example above, the player remembers that they made a move but does not remember which move they
made. In the second, the player does not remember that they made a move.

So, when exactly does a behavioral strategy not have an equivalent mixed strategy?

Lemma 3.10. If there exists a path from the root to some vertex x that passes through the same information set twice,
and if the action leading to x is not the same at each of these vertices, then the player of the information set has a
behavioral strategy that has no equivalent strategy.

Theorem 3.11. Consider an IIEFG such that every vertex has at least two actions. Every behavioral strategy has an
equivalent mixed strategy iff each information set of a player intersects every path emanating from the root at most
once.

When does a mixed strategy not have an equivalent mixed strategy?
We need to figure out some way of formalizing the forgetfulness in Example 14.
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LetX = (x0, x1, . . . , xK) and X̂ = (x0, x̂1, . . . , x̂L) be two paths in the game tree and Iji an information set of player
i that intersects the two paths are precisely one vertex, say xk and x̂ℓ respectively where k < K, ℓ < L. Then, the
two paths choose the same action at Iji if the two actions at these vertices are identical, that is,

ai(xk → xk+1) = ai(x̂ℓ → x̂ℓ+1).

In general, we also consider ai(x → y) (where y is a descendant but not necessarily a child of x), defined by the
action ai(x→ x′), where x′ is the child of x on the path from x to y.
Player i is said to have perfect recall if

1. any path from the root to a leaf intersects an information set of player i at most once, and
2. any two paths that end in the same information set of player i pass through the same information sets of i in

the same order, and in every such information set, the two paths choose the same action.
Let us state this more formally.

Definition 3.12 (Perfect recall). Player i is said to have perfect recall if for every Iji and pair of vertices x, x̂ ∈ Iji , if the
decision vertices of i are x1

i , x
2
i , . . . , x

L
i = x and x̂1

i , x̂
2
i , . . . , x̂

L̂
i = x̂ respectively for the two paths from the root to x

and x̂, then
1. L = L̂,
2. for any 1 ≤ ℓ ≤ L, xℓ

i , x̂
ℓ
i ∈ Iki for some k, and

3. for any 1 ≤ ℓ ≤ L, ai(xℓ
i → xℓ+1

i ) = ai(x̂
ℓ
i → x̂ℓ+1

i ).
A game is said to be of perfect recall if every player has perfect recall.

Why is the game in Example 14 not of perfect recall?
Observe that perfect recall subsumes the condition in Theorem 3.11.
This effectively says that “every player remembers their choices, as well as whatever they remembered in the past”.
Let us look at some consequences of perfect recall.
Given a node x, let S∗

i (x) be the set of pure strategies of player i at which he chooses the actions leading to x. This
is the intersections of members of Si with the paths from the root to x.

Theorem 3.13. If i is a player with perfect recall and x, x̂ are two vertices in the same information set of i, then
S∗
i (x) = S∗

i (x̂).

The above conclusion follows because the same information sets are seen and we take the same actions at these sets.

Theorem 3.14 (Kuhn). In an IIEFG, if i is a player with perfect recall, then for any mixed strategy of i, there exists
an equivalent behavioral strategy (and vice-versa).

The proof is constructive in nature, with the construction using perfect recall.
We remark that the converse of this theorem is not true, as seen in Example 15.
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3.2.2. Bayesian equilibria

What are some notions of equilibria in IIEFGs? We could extend the subgame perfection in PIEFGs, but because the
histories are uncertain, we are forced to use mixed strategies. Due to the information sets, a best response cannot be
defined without the “belief” of each player.
Belief is a conditional probability distribution over the histories in an information set (where the conditioning is
done over reaching the information set).

Example 16. Consider the following IIEFG, and the behavioral strategy described therein (by thick lines) –
in the first round, player 1 plays L,M,R with probabilities 5/12, 4/12, 3/12 respectively.

2, 1

ℓ

0, 2

L1

3, 0

R1

m

2, 2

L1

0, 0

R1

r

x2

L

2, 2

L2

0, 3

R2

x6

ℓ

0,−1

L2

5, 3

R2

x7

m

3, 2

r

x3

M

2, 0

R

Now, suppose that player 2 believes that they are at x6, x7 with probabilities p, 1− p respectively. If it is at x6,
it makes sense to choose L2, and if at x7, it makes sense to chooseR2. So, if the belief was> 2/7 (1−p > 2/7),
then the player chooses R2. Such an action that maximizes expected utility at each information set is called
sequential rationality.

Is the behavioral strategy described an equilibrium? Let us check this in the recursive method we did for
usual SPNEs.
First of all, as mentioned, we require p ≥ 5/7.
On the left subtree, the choice of R1 is vacuously rational because we can never reach that subtree.
Now, let the belief of player 2 for the nodes x2, x3 be q, 1 − q respectively. If it plays ℓ, it gets a utility of 1
with probability q and 2with probability 1− q. If it chosem instead, it would get 0with probability q and−1
with probability 1− q. Finally, if it chose r, it would get 0 with probability q and 2 with probability 1− q. It
is seen that the expected utility for the choice of ℓ is always highest. In general, we need to compare it to the
expected utilities for other choices. In this case, by nature of the behavioral strategy, the belief corresponds
to q = 5/9.
Therefore, this behavioral strategy is indeed an equilibrium.
This is not a unique equilibrium however. As an exercise, check whether (MR1R2,m) is an equilibrium.

Definition 3.15. Let the information sets of player i be Ii = {Iki }k(i)k=1. The belief of player i is a probability distribution
µj
i over Iji .

A belief µi = {µj
i}

k(i)
j=1 of player i is said to be a Bayesian belief wrt the behavorial strategy σ if it is derived from σ

using Bayes’ rule. That is, for each Iji such that there exists some y ∈ Iji with Pσ(y) ̸= 0,

µj
i (x) =

Pσ(x)∑
y∈Ij

i
Pσ(y)

for all x ∈ Iji and j = 1, 2, . . . , k(i).
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A strategy σi of player i at information set Iji is said to be sequentially rational given σ−i and partial beliefs µj
i if∑

x∈Ij
i

µj
i (x)ui(σi, σ−i | x) ≥

∑
x∈Ij

i

µj
i (x)ui(σ

′
i, σ−i | x).

for all actions σ′
i at Iji .

The tuple (σ, µ) is sequentially rational if it is sequentially rational for every player at every information set. Such a
tuple (t, µ) is also called an assessment.

Sequential rationality is a refinement of Nash equilibria.

Proposition 3.16. In a PIEFG, a behavioral strategy profile σ is an SPNE iff the tuple (σ, µ̂) is sequentially rational.

Above, µ̂ assigns a degenerate distribution to every node.

Definition 3.17. An assessment (σ, µ) is a perfect Bayesian equilibrium (PBE) if for every player i ∈ N ,
1. µi is Bayesian with respect to σ, and
2. σi is sequentially rational given σ−i and µi.

Note that the belief µi is allowed to be arbitrary on information sets that are never reached. This is often represented
with only σ, because µ is obtained from σ.

3.2.3. Example: peer-to-peer �le sharing

In traditional file sharing models, download rate rapidly tapers off as the number of users increases. In peer-to-peer
(P2P) models however, the download rate does not change significantly with an increase in users.
P2P models are very scalable and resilient to failures.

1. A protocol is the messages that can be sent and the actions that can be taken over the network.
2. A client is a particular process for sending messages and taking actions.
3. A reference client is a specific implementation of a client.
4. The peers are the ones using the protocol, and are the players in the game theoretic version of this problem

which we shall discuss.
One of the earliest P2P systems, Napster, had a centralized database using which users could download music form
one another.
Later, Gnutella became more popular. Each peer A can get a list of IP addresses of peers from a set of knwn peers
(there is no server). To get a file, it broadcasts a query message to known peers, and the query response is sent by a
peerBwho has the desired file (this response is routed back to the original requester). Finally,A directly downloads
the file from B.

Now, in Gnutella, each player can choose to either share, or “free ride” and gain the benefits of downloadingwithout
sharing anything. A corresponding game matrix looks something like
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Share Free

Share 2, 2 −1, 3
Free 3,−1 0, 0

This is very similar to the neighbouring kingdoms dilemmawe have seen. The issue with Gnutella is that it does not
take these strategic thoughts into consideration. It does in fact turn out [AH00] that very few of the peers actually
share anything.
In 2005, 85% (!) of the peers were free-riding. By 2013, Gnutella comprised less than 1% of worldwide P2P traffic.
Many other P2P systems met the same fate.

We shall look at BitTorrent, which now comprises about 85% of P2P traffic in USA. It is used for both file sharing and
software distribution (like Linux).
The key innovation is that it breaks files into pieces, and views it as a repeated game, with each piece shared separately.

1. First, the user goes to a searchable directory to find a link to a .torrent file corresponding to the desired
content.

2. The .torrent file contains metadata about the content, in particular tracker URLs.
3. The tracker provides a list of peers participating in the swarm for the content (that is, their IP address and

port).
4. The users BitTorrent client can now contact all these peers to download content.

The tracker is a centralized entity that controls traffic, tracks connection between peers and their speed of upload,
download etc.
BitTorrent’s algorithm is referred to as the optimistic unchoking algorithm. The reference client does as follows.

1. It sets a threshold r of upload speed.
2. If a peer j uploaded to i at a rate ≥ r, unchoke j in the next period.
3. If a peer j uploaded to i at a rate < r, choke j in the next period.
4. Some peers who have just appeared may end up being choked because of this because they have not uploaded

anything yet. So, every three time periods, optimistically unchoke a random peer from the neighbourhood
who is currently choked, and leave them unchoked for three time periods.

This is forcing a repeated game by fragmenting files. The “leecher-seeder” (downloader-uploader) game is a re-
peated version of the neighbouring kingdoms dilemma, and the strategy of the seeder is just tit-for-tat – it cooperates
as long as the leecher does as well.
The reader may find a simulation of the algorithm here.

There are various implementation-related questions and things to consider.
• How often should one contact the tracker?
• Which fragments of the file should be revealed?
• How many upload slots and which peers should be unchoked and at what speed?
• What data should others be allowed to download?
• Possible goalsmight be tominimize upload speed,maximize download speed, or perhaps some sort of balance.

There are numerous attacks on BitTorrent as well, such as
• BitThief [LMSW09]. The goal is to download files without uploading. It asks for peers from the tracker very

frequently to grow its neighbourhood rapidly. It exploits optimistic unchoking, so never needs to upload.
This can be fixed by modifying the tracker to block the IP address.

• Strategic Piece Revealer [LLSB08]. The reference client tells neighbours about new pieces, and requests the
“rarest” piece first. It then tries to set up a monopoly while keeping others interested. Because we have estab-
lished a monopoly over rare pieces, we can get any piece we desire.

ex: neighbouring kingdom dilemma
http://mg8.org/processing/bt.html
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�4. Bayesian Games

Thus far, we have only discussed non-cooperative games with complete information, where players only aim to
maximize their ownutilities (as opposed to cooperative gameswhere players form coalitions and utilities are defined
over coalitions, and incomplete information games where players do not deterministically knowwhat game they are
playing). There are various other types of games, such as repeated games, stochastic games etc.
We shall not discuss cooperative games in this course, but we shall now discuss incomplete information games. In
such games, players receive private signals, known as types. We shall focus specifically on Bayesian games [Har67].

Example 17. Suppose we have a soccer game with two competing teams. Each can choose a game plan,
where they either aim to win, or to draw. These two plans are the two possible types, which are private
signals caused by external factories such as possibly weather, player injuries etc.
There are four possible type profiles in this example, WW,WD,DW,DD. Given this, we get four possible
game matrices (DW is just the opposite of WD).

WW Attack Defend

Attack 1, 1 2, 0
Defend 0, 2 0, 0

WD Attack Defend

Attack 2, 0 2, 1
Defend 0, 1 1, 0

WW Attack Defend

Attack 0, 0 1, 0
Defend 0, 1 −1,−1

The probabilities of choosing each of the four profiles come from a common prior distribution, which is
common knowledge.

Definition 4.1. A Bayesian game is represented by ⟨N, (θi)i∈N , P, (Γθ)θ∈×i∈N Θi
⟩, where

1. N is the set of players,
2. Θi is the set of types of player i,
3. P is the common prior distribution over Θ :=×i∈N

Θi, with the restriction that∑
θ−i∈Θ−i

P (θi, θ−i) > 0

for all θi ∈ Θi for all i ∈ N . That is, themarginals for every type is positive (because otherwisewe can eliminate
θi and prune the type set), and

4. Γθ is an NFG ⟨N, (Ai(θ))i∈N , (ui(θ))i∈N ⟩ for the type profile θ ∈ Θ. We typically assume that Ai(θ) = Ai for
all θ, and set A :=×i∈N

Ai. As a result, u is a function A×Θ→ R.

A Bayesian game is played as follows.
1. First, a profile θ is randomly drawn according to P .
2. Each player observes (only) their own type θi.
3. Player i picks an action ai ∈ Ai for all i ∈ N .
4. Player i gets payoff ui(ai, a−i; θ).

Now, let us look at strategies in Bayesian games.

Definition 4.2. A (pure) strategy in a Bayesian game is a map si : Θi → Ai for each i.
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Similarly, a mixed strategy is a map σi : Θi → ∆Ai.

Definition 4.3.

1. Let σ be a mixed strategy profile of a Bayesian game. The ex-ante utility of σ is the expected utility before
observing one’s own type. It is given by

ui(σ) =
∑
θ∈Θ

P (θ)ui(σ(θ); θ).

2. After observing the type θi, we can reevaluate the probabilities of the other players’ profiles as

P (θ−i | θi) =
P (θi, θ−i)∑

θ̃−i∈Θ−i
P (θi, θ̃−i)

.

The ex-interim utility is the expected utility after observing one’s own type θi is

ui(σ | θi) =
∑

θ−i∈Θ−i

P (θ−i | θi)ui(σ(θ); θ).

More explicitly, we have

ui(σ) =
∑
θ∈Θ

(a1,...,an)∈A

P (θ)

∏
j∈N

σj(θj)(aj)

ui(a1, . . . , an; θ1, . . . , θn).

Observe that when the types are independent, both utilities are the same.

Bayes’ rule immediately yields that
ui(σ) =

∑
θi∈Θi

P (θi)ui(σ | θi).

Example 18. Suppose we have a buyer and a seller trying to buy/sell an item. Let their type sets be Θ1 =
Θ2 = [100] and action sets A1 = A2 = [100].
If the bid of the seller is less than or equal to that of the buyer, the trade goes through at the average of the
two bids. Otherwise, the trade does not happen.
Suppose that type generation occurs independently and uniformly over Θ1,Θ2. Then, for all θ1, θ2,

P (θ2 | θ1) = P (θ1 | θ2) =
1

100
.

We also have
u1(a1, a2; θ1, θ2) =

{
a1+a2

2 − θ1, a2 ≥ a1

0, otherwise
and

u2(a1, a2; θ1, θ2) =

{
θ2 − a1+a2

2 a1 ≥ a2

0, otherwise.
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Example 19 (Sealed bid auctions I: first price auctions). Suppose we have two players, both willing to buy
an object. Their values θi and bids bi lie in [0, 1]. The allocation functions that indicate the winner are

o1(b1, b2) = 1b1≥b2 =

{
1, b1 ≥ b2,

0, otherwise and o2(b1, b2) = 1− o1(b1, b2).

Again, suppose that the prior distribution is uniform over [0, 1]2. Then,

ui(b1, b2; θ1, θ2) = oi(b1, b2)(θi − bi).

Such a game where we pay the bid in the beginning is called a first price auction.

4.1. Equilibria

As discussed, there are two stages to the game, ex-ante before observing the type, and ex-interim after observing
the type.
Of course, we have a Nash equilibrium in the ex-ante stage, where σ∗ is an equilibrium if

ui(σ
∗
i , σ

∗
−i) ≥ ui(σ

′
i, σ

∗
−i)

for all σ′
i, i ∈ N .

In the ex-interim stage, we have the Bayesian equilibrium:

ui(σ
∗
i (θi), σ

∗
−i | θi) ≥ ui(σ

′
i(θi), σ

∗
−i | θi)

for all σ′
i, θi ∈ Θi, i ∈ N .

For exactly the same reason as in Theorem 2.18, it suffices to check the right-hand-side for pure strategies ai.

Theorem 4.4. In finite Bayesian games, a strategy profile is a Bayesian equilibrium iff it is a Nash equilibrium.

Proof.

⇒ Suppose that (σ∗, P ) is a Bayesian equilibrium. Then,

ui(σ
′
i, σ

∗
−i) =

∑
θi∈Θi

P (θi)ui(σ
′
i(θi), σ

∗
−i | θi)

≤
∑

θi∈Θi

P (θi)ui(σ
∗
i (θi), σ

∗
−i | θi) = ui(σ

∗
i , σ

∗
−i).

⇐ Suppose instead that (σ∗, P ) is not a Bayesian equilibrium. That is, there exists some i ∈ N, θi ∈ Θi, ai ∈ Ai

such that
ui(ai, σ

∗
−i | θi) > ui(σ

∗
i (θi), σ

∗
−i | θi).

Consider the strategy σ̂i defined by
– σ̂i(θ

′
i) = σ∗

i (θ
′
i) for θ′i ∈ Θi \ {θi},

– σ̂i(θi)(ai) = 1, and
– σ̂i(θi)(bi) = 0 for bi ∈ Ai \ {ai}.
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Then,

ui(σ̂i, σ
∗
−i) =

∑
θ̃i∈Θi

P (θ̃i)ui(σ̂i(θ̃i), σ
∗
−i | θ̃i)

=
∑

θ̃i∈Θi\{θi}

P (θ̃i)ui(σ̂i(θ̃i), σ
∗
−i | θ̃i) + P (θi)ui(σ̂i(θi), σ

∗
−i | θi)

=
∑

θ̃i∈Θi\{θi}

P (θ̃i)ui(σ
∗
i (θ̃i), σ

∗
−i | θ̃i) + P (θi)ui(ai, σ

∗
−i | θi)

>
∑

θ̃i∈Θi\{θi}

P (θ̃i)ui(σ
∗
i (θ̃i), σ

∗
−i | θ̃i) + P (θi)ui(σ

∗
i (θi), σ

∗
−i | θi)

= ui(σ
∗
i , σ

∗
−i),

a contradiction. ■

Theorem 4.5. Every finite Bayesian game has a Bayesian equilibrium.

A finite Bayesian game is one where the set of players, action set, and type set are finite.
The idea of the proof is that we transform the game to a complete information game treating each type as a player,
then we invoke Nash.

Example 20 (Sealed bid auctions II: equilibria in first price auctions). This is a continuation of Example 19.
In that example, we looked at first price auctions. We claim that the pure strategy profile defined by b∗1 =
θ1/2, b

∗
2 = θ2/2 is a Bayesian equilibrium. For player 1, for a given θ1, the utility under a unilateral deviation

of b1 is

u1(b1, b
∗
2 | θ1) =

∫ 1

0

f(θ2 | θ1)(θ1 − b1)1b1≥θ2/2 dθ2

= (θ1 − b1)

∫ 1

0

1θ2≤2b1 dθ2. (P is uniform)

If b1 ≤ 1/2, this is equal to (θ1 − b1)2b1, which is maximized for b1 = b∗1 = θ1/2 as desired. When b1 > 1/2,
this is equal to (θ1 − b1) ≤ (θ1 − 1/2) ≤ θ21/2.
Therefore, the payoff is indeed maximized for b1 = b∗1 = θ1/2. Unilateral deviation for player 2 is similar, and
the profile is a Bayesian equilibrium as claimed.
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Example 21 (Sealed bid auctions III: second price auctions). Next, let us look at second price auctions. The
highest bidder wins as before, but the amount he pays is the second highest bid. Then,

u1(b1, b2; θ1, θ2) = (θ1 − b2)1b1≥b2

u2(b1, b2; θ1, θ2) = (θ2 − b1)1b1<b2 .

Here, we claim that b∗1 = θ1, b
∗
2 = θ2 is a Bayesian equilibrium.

Similar to earlier, player 1’s payoff under unilateral deviation is∫ 1

0

(θ1 − θ2)1b1≥θ2 dθ2 =

(
b1θ1 −

θ21
2

)
.

This is maximized when b1 = b∗1 = θ1. Unilateral deviation for player 2 is similar.

It turns out that even in the situation where the distributions of θ1, θ2 are arbitrary but still independent,
b∗1 = θ1, b∗2 = θ2 is a Bayesian equilibrium. Indeed, for unilateral deviation of player 1,∫ b1

0

f(θ2)(θ1 − θ2) = θ1F (b1)−
∫ 1

0

θ2f(θ2).

Differentiating with respect to b1 and setting the derivative to 0 to maximize it, we get

θ1f (b1)− b1f (b1) = 0,

so the payoff is maximum when b1 = b∗1 = θ1 (assuming the density is positive everywhere).
For any independent positive prior, bidding the true type is a Bayesian equilibrium of the induced Bayesian
game in second price auctions.



CS 6001 : Game Theory and Mechanism Design 30 / 64 Amit Rajaraman

�5. Social Choice

5.1. Introduction

Mechanism design is something of an inverse of game theory, where our task is to set the rules of the game given
the desired objects/outcomes.
Some common examples of this are elections, resource allocation, matching students to universities, etc.
Let N be a set of players, X a set of outcomes, and Θi a set of private information of each agent i. Each element
θi ∈ Θi is called a type.

The type manifests in the preferences over the outcomes. We shall look at two ways this can happen.
1. Ordinal: θi defines an ordering over the outcomes, which describes a preference order. It does not describe

how much something is preferred, however.
2. Cardinal: A utility function ui maps an outcome/type pair to real numbers. In the private value model, ui is a

map X ×Θi → R. In the interdependent value model, (ui)i∈N is a map X ×Θ→ R.

Example 22. Let us look at the example of voting. Here, X is the set of candidates, and each θi is a ranking
over the candidates. For example, (a, b, c)means that the voter prefers a over b over c.
Another example is single object allocation. Each outcome is x = (a, p) ∈ X , where a = (a1, . . . , an), where
each ai ∈ {0, 1} and at most one of the ais is 1, and p = (p1, . . . , pn)where pi is the payment charged to i. θi is
the amount i values the object. The utility is given by ui(x, θi) = aiθi − pi. We shall study this in more detail
later in Section 5.4.3.

Now, the designer has a certain objective captured by a social choice function (SCF) f : Θ1 × · · · × Θn → X . For
example, in voting, if there is a candidate who beats everyone else in pairwise contests, we would like him to be
chosen as the winner. In public project choice, where θi : X → R is the value of each project, we should pick
f(θ) = argmaxx∈X

∑
i∈N θi(x).

To create a game where f(θ) emerges as the outcome as an equilibrium, we require mechanism design.

Definition 5.1. A(n indirect)mechanism is a collection ofmessage spaces and a decision rule ⟨M1, . . . ,Mn, g⟩, where
Mi is themessage space of agent i, and g : M1×· · ·×Mn → X . A directmechanism is the specific casewhereMi = Θi

and g ≡ f .

We shall see soon that it suffices to look at direct mechanisms.
All subsequent definitions assume cardinal preferences, but they can be replaced with ordinal preferences quite
simply.

Definition 5.2. In a mechanism ⟨M1, . . . ,Mn, g⟩, a message mi is weakly dominant for player i at θi if

ui(g(mi, m̃−i), θi) ≥ ui(g(m
′
i, m̃−i), θi) (5.1)

for all m̃−i,m
′
i.

Definition 5.3 (Dominant strategy implementability). An SCF f : Θ → X is implemented in dominant strategies by
⟨M1, . . . ,Mn, g⟩ if

1. there exists a message mapping si : Θi →Mi such that si(θi) is a dominant strategy for agent i at θi, and
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2. g(s1(θ1), . . . , sn(θn)) = f(θ) for all θ ∈ Θ.
We say that SCF f is dominant strategy implementable (DSI) by ⟨M1, . . . ,Mn, g⟩.

Definition 5.4 (Dominant strategy incentive compatibility). A direct mechanism ⟨Θ1, . . . ,Θn, f⟩ is dominant strategy
incentive compatible (DSIC) if

ui(f(θi, θ−i), θi) ≥ ui(f(θ
′
i, θ−i), θi) (5.2)

for all θi, θ′i, θ̃−i, i.

To determine if an SCF f is DSI, it seems that we must search over all possible indirect mechanisms.

Theorem 5.5 (Revelation principle). If there exists an indirect mechanism that implements f in dominant strategies,
then f is DSIC.

This means that we can focus on DSIC mechanisms without loss of generality.
Proof. Let f be implemented by ⟨M1, . . . ,Mn, g⟩, and fix si : Θi → Mi as in the definition. Set m′

i = si(θ
′
i), m̃−i =

s−i(θ̃−i) in Equation (5.1), to get

ui(g(si(θi), s−i(θ̃−i))︸ ︷︷ ︸
f(θi,θ̃−i)

, θi) ≥ ui(g(si(θ
′
i), s−i(θ̃−i))︸ ︷︷ ︸
f(θ′

i,θ̃−i)

, θi),

so f is DSIC. ■

Now, let us look at a Bayesian extension, where agentsmay have probabilistic information about others’ types. Recall
bayesian games.

Definition 5.6 (Bayesian implementability). A(n indirect) mechanism ⟨M1, . . . ,Mn, g⟩ implements an SCF f in
Bayesian equilibrium if

1. there exists a message mapping profile (s1, . . . , sn) such that si(θi)maximizes the ex-interim utility of agent i,
that is,

E−θi

[
ui(g(si(θi), s−i(θ−i)), θi)|θi

]
≥ Eθ−i

[
ui(g(m

′
i, s−i(θ−i)), θi)|θi

]
for all m′

i, θi, i ∈ N , and
2. g(si(θi), s−i(θ−i)) = f(θi, θ−i) for all i ∈ N .

We say that f is Bayesian implementable via ⟨M1, . . . ,Mn, g⟩ under the prior P .

Proposition 5.7. If an SCF f is dominant strategy implementable, it is Bayesian implementable.

Similar to dominant strategy incentive compatibility, we have the following.



CS 6001 : Game Theory and Mechanism Design 32 / 64 Amit Rajaraman

Definition 5.8 (Bayesian incentive compatibility). Adirectmechanism ⟨Θ1, . . . ,Θn, f⟩ is Bayesian incentive compatible
(BIC) if

Eθ−i

[
ui(f(θi, θ−i), θi)|θi

]
≥ Eθ−i

[
ui(f(θ

′
i, θ−i), θi)|θi

]
. (5.3)

for all θi, θ′i, i.

Theorem 5.9 (Revelation principle II). If an SCF f is implementable in Bayesian equilibrium, it is BIC.

The proof is near-identical to that of the first revelation principle.

5.2. Arrow's Impossibility Theorem

Consider the setting where we have finite sets A = {a1, . . . , am} of alternatives and N = {1, . . . , n} of players. Each
player has a preference order Ri over a (a binary relation over A) such that

1. Completeness: for every a, b ∈ A, aRib or bRia or both,
2. Reflexivity: for all a ∈ A, aRia, and
3. Transitivity: for a, b, c ∈ A, if aRib and bRic, then aRic

The set of all such preference orders is denote R. An ordering is linear if for a, b ∈ A, if aRib and bRia, then a = b.
The set of all such linear orderings is denoted P .

Given any ordering Ri, we can decompose it into an asymmetric part Pi and symmetric part Ii.

Definition 5.10 (Arrovian Social Welfare Function). An Arrovian Social Welfare Function (ASWF) is a function
F : Rn → R.

That is, given the preference orders of multiple people, we try to consolidate them into a single preference order.
Let F̂ (R) and F (R) be the asymmetric and symmetric parts of F (R) respectively.

Definition 5.11 (Pareto). An ASWF F is said to be weak Pareto if for a, b ∈ A, if aPib for all i ∈ N , then aF̂ (R)b.
An ASWF F is said to be strong Pareto if for a, b ∈ A, if aRib for all i ∈ N and for some j, aPjb, then aF̂ (R)b.

It is not too difficult to see that strong Pareto ASWFs are weak Pareto.
We say thatRi, R

′
i ∈ R agree on {a, b} if for agent i, aPib iff aP ′

i b, bPia iff bP ′
ia, and aIib iff bIia. We use the shorthand

Ri|a,b = R′
i

∣∣
a,b

to denote this. If it holds for every agent i, we write R|a,b = R′
∣∣
a,b

.

Definition 5.12 (Independence of irrelevant alternatives). An ASWF F is said to satisfy independence of irrelevant
alternatives (IIA) if for all a, b ∈ A, if R|a,b = R′

∣∣
a,b

, then F (R)
∣∣
a,b

= F (R′)
∣∣
a,b

.

That is, if everyone prefers one option to another, then the final preference order also prefers this option to the other.
Note that the dictatorship ASWF, defined by F (R) = Ri for some fixed i, is both weak Pareto and IIA.
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Theorem 5.13 (Arrow). For |A| ≥ 3, if an ASWF F is weak Pareto and IIA, then it is a dictator.

Over the rest of this section, we prove the above.
First, we need some notions of “decisiveness”.

Definition 5.14. Let F : Rn → R be given, and let G ⊆ N be non-empty.
G is said to be almost decisive over {a, b}, denotedDG(a, b), if if aPib for all i ∈ G and bPja for all j ̸∈ G, then aF̂ (R)b.
G is decisive over {a, b}, denoted DG(a, b), if if aPib for all i ∈ G, then aF̂ (R)b.

If a group is (almost) decisive over all pairs of coordinates, we say that it is (almost) decisive.
The proof goes in two parts.

1. Field expansion: If a group is almost decisive over a pair of alternatives, then it is decisive over all pairs of
alternatives.

2. Group contraction: If a group is decisive, a strict subset of that group is also decisive.
Lemma 5.15 (Field expansion). Let F be WP and IIA. For all a ̸= b and x ̸= y, and G ⊆ N,G ̸= ∅, DG(a, b) implies
DG(x, y).
Proof. There are 6 cases to consider.

1. Case 1. x = a and y ̸= a, b. Pick arbitrary R ∈ Rn such that aPiy for all i ∈ G. We wish to show that aF̂ (R)y.
Construct another preference R′ as follows. For i ∈ G, we have aP ′

i b and bP ′
iy, and on N \ G, bP ′

ia and bP ′
iy,

and between a, y we retain the same ordering as in Ri.
We ensure that R′

i

∣∣
a,y

= Ri|a,y for all i ∈ N . Almost-decisiveness of F over {a, b} for R′ implies that aF̂ (R′)b.
Weak Pareto over b, y implies that bF̂ (R′)y. So, by transitivity, aF̂ (R′)y. Now, use IIA to conclude that aF̂ (R)y
as well, completing the proof.

2. Case 2. y = b and x ̸= a, b. The idea for this is nearly identical to that in case 1. R′ is constructed such that for
i ∈ G, xP ′

ia and aP ′
i b, and on N \G, xP ′

ia and bP ′
ia, and the ordering of a, b is the same as that in R.

3. Case 3. x ̸= a, b and y ̸= a, b. We haveDG(a, b), soDG(a, y) by case 1, soDG(a, y) by definition, soDG(x, y) by
case 2.

4. Case 4. x ̸= a, b and y = a. We have DG(a, b), so DG(x, b) by case 2, so DG(x, b) by definition, so DG(x, a) by
case 1.

5. Case 5. x = b and y ̸= a, b. We have DG(a, b), so DG(a, y) by case 1, so DG(a, y) by definition, so DG(b, y) by
case 2.

6. Case 6. x = a and y = b. This similarly follows from previous parts.
7. Case 7. x = b and y = a. This similarly follows from previous parts.

■

Lemma 5.16 (Group contraction). Let F be WP and IIA. Let G ⊆ N with |G| ≥ 2 be decisive. Then, there exists
non-empty G′ ⊊ Gwhich is decisive.
Proof. Arbitrarily choose G1 ⊊ G and G2 = G \ G1. Let a, b, c ∈ R. Consider an ASWF R which orders aPibPic for
i ∈ G1, cPiaPib for i ∈ G2, and bPicPia for i ∈ N \G. Because aPib for all i ∈ G and G is decisive, aF̂ (R)b.
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1. Case 1. aF̂ (R)c. Observe that aPic for all i ∈ G1 and cPia for i ̸∈ G1. Consider all R′ where this condition
holds. By IIA, aF̂ (R′)c. Therefore, G1 is almost decisive over {a, c} and by field expansion, G1 is decisive.

2. Case 2. cF (R)a. Recalling that aF̂ (R)b, we have cF̂ (R)b. Observe that cPib for all i ∈ G2 and bPic for i ̸∈ G2.
Considering all R′ where this condition holds again, we get by IIA that bF̂ (R′)c, so G2 is almost decisive over
{b, c} and by field expansion, G2 is decisive. ■

To complete the proof of Arrow, note that N is decisive, so by Lemma 5.16, there is a singleton decisive set and F is
a dictator.

5.3. Social Choice

This means the Arrovian social welfare set up is too demanding. It says that achieving a social ordering in a demo-
cratic way is impossible. There are two suggestions to mitigate this:

1. consider a social choice setting, where we output an alternative instead of an ordering.
2. put restrictions on the agents’ preferences.

Definition 5.17. A social choice function is a function f : Pn → A.

Note that we assume strict preferences.
Over the next few examples, we shall look at various voting rules.

Example 23 (Voting).
1. Scoring rule. Let s = (s1, . . . , sm) be some common score vector. Each voter’s kth preferred alternative

is given a score of sk. The scores are summed over all candidates, and the candidate with the highest
score wins. There are various specific cases depending on s.

• Plurality. s = (1, 0, 0, . . . , 0).
• Veto. s = (1, 1, . . . , 1, 0).
• Bonds. s = (m− 1,m− 2, . . . , 1, 0).
• Harmonic. s = (1, 1/2, . . . , 1/m).
• k-approval. s = (1, . . . , 1, 0, . . . , 0) with exactly k 1s.

2. Plurality with runoff. This has two phases: in the first, the top 2 highest scoring candidates are retained
and everyone else eliminated, and in the second everyone is asked to vote again. This is practiced in
the French presidential election.

3. Maximin. This chooses the candidate with the largest margin of victory wins.
4. Copeland. Here we view the set of orderings as a collection of votes for pairwise elections, and choose

the candidate who wins the most pairwise elections.
A Condorcetwinner is a candidate that beats every other candidate in a pairwise election. It is not guaranteed
to exist.
A voting rule that returns a Condorcet winner, if it exists, as the winner, is called Condorcet consistent. Clearly,
Copeland is Condorcet consistent. It turns out that no scoring rule is Condorcet consistent (!), even seemingly
logical strategies such as plurality.
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Definition 5.18 (Pareto efficiency). An alternative a is Pareto dominated by b if for all i ∈ N , bPia.
An SCF f is Pareto efficient if for all preference profiles P and a ∈ A, if a is Pareto dominated, then f(P ) ̸= a.

Definition 5.19 (Unanimity). An SCF f is unanimous if for a preference profileP withP1(1) = P2(1) = · · · = Pn(1) =
a (where Pi(k) is the kth preferred alternative of agent i), f(P ) = a.

Proposition 5.20. Any Pareto efficient SCF is unanimous, and the converse is not true.
Indeed, every alternative other than a is Pareto dominated by it. Further, this containment is strict, as can be seen by
considering an SCF which picks a dominated alternative when not all the top alternatives are identical.

Definition 5.21 (Ontoness). An SCF f is onto if for all a ∈ A, there exists P ∗ ∈ Pn such that f(P ∗) = a.

Proposition 5.22. Any unanimous SCF is onto.
Indeed, a is chosen by any preference profile which has a at the top spot everywhere.

Definition 5.23 (Manipulability). An SCF f is manipulable if there exists a profile P and i ∈ N such that

f(P ′
i , P−i)Pif(Pi, P−i)

for some P ′
i .

That is, false reporting can result in a more preferred outcome.
Non-manipulability means that false reporting can only result in a worse outcome.

Example 24 (Manipulability). Consider a voting system with three candidates a, b, c (with ties broken in
favour of a > b > c).
First, suppose we are in the the plurality setting, and the three voters have true preference orders abc, bac, cba.
If the third voter reports cba, then the winner is a. If he reports bca on the other hand, the winner is b, who is
preferred to a.
Next, suppose we are in the Copeland setting, and the three voters have true preference orders abc, bca, cab.
If everyone reports their true preferences, a is the winner. If the second voter instead reports cba, then c
becomes the Copeland winner.

Definition 5.24 (Strategyproofness). An SCF is said to be strategy-proof (SP), truthful, or incentive-compatible if it is
not manipulable by any agent at any profile.

Let us look at some properties of strategyproof SCFs.
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Definition 5.25 (Dominated set). For a ∈ A and preference Pi, the dominated set of a at Pi is

D(a, Pi) = {b ∈ A : aPib}.

Definition 5.26 (Monotonicity). An SCF f is monotone (MONO) if for any two profiles P, P ′ with f(P ) = a and
D(a, Pi) ⊆ D(a, P ′

i ) for all i ∈ N , then f(P ′) = a.

That is, if the relative position of aweakly improves from R to R′, then a remains the winner.

Lemma 5.27. An SCF is strategyproof if and only if it is monotone.

Proof. Let us look at the forward direction first. Let f be SP and P, P ′ be two profiles with f(P ) = a and D(a, Pi) ⊆
D(a, P ′

i ) for all i ∈ N . For 0 ≤ k ≤ n, let P (k) = (P ′
1, P

′
2, . . . , P

′
k, Pk+1, . . . , Pn) – note that P (0) = P and P (n) = P ′.

We shall show inductively that f(P (k)) = a for each 0 ≤ k ≤ n. The base case k = 0 is trivial.
Suppose that f(P (k−1)) = a but f(P (k)) = b ̸= a for some k ≥ 1. Now, note that it is not possible that bPka or aP ′

kb
as this would violate strategyproofness. This means that aPkb and bP ′

ka, but this contradicts D(a, Pk) ⊆ D(a, P ′
k),

so we have a contradiction and are done.

Let us now look at the backward direction. Suppose instead that for some profile P , i ∈ N , and P ′
i , f(P ′

i , P−i)Pif(P ).
Set P ′ = (P ′

i , P−i), f(P ) = a, f(P ′) = b, so bPia. Construct a preference ordering P ′′
i with P ′′

i (1) = b and P ′′
i (2) = a,

and let P ′′ = (P ′′
i , P−i).

We clearly haveD(a, Pj) ⊆ D(a, P ′′
j ) for all j ∈ N . Monotonicity implies that f(P ′′) = f(P ) = a. On the other hand,

D(b, P ′
j) ⊆ D(b, P ′′

j ) for all j ∈ N , so by monotonicity f(P ′′) = f(P ′) = b, resulting in a contradiction. ■

We shall repeatedly see the above proof strategy.

Lemma 5.28. If an SCF is monotonic and onto, it is Pareto efficient.

Proof. Suppose instead that f is monotonic and onto, but not PE – let P be a preference profile and a, b ∈ A such that
bPia for all i ∈ N , but f(P ) = a.
Using ontoness, let P ′ be a profile with f(P ′) = b, and construct a profile P ′′ with P ′′

i (1) = b and P ′′
i (2) = a for

all i ∈ N . Clearly, D(b, P ′) ⊆ D(b, P ′′), so f(P ′′) = b. We also have D(a, P ) ⊆ D(a, P ′′), so f(P ′′) = a, yielding a
contradiction. ■

Corollary 5.29. Let f be a strategyproof SCF. The following are equivalent.
1. f is Pareto efficient.
2. f is unanimous.
3. f is onto.

It turns out that even the above requirement is too strict, however.
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Theorem 5.30 (Gibbard-Satterthwaite Theorem). Suppose |A| ≥ 3. f is strategyproof and onto if and only if it is
dictatorial.

The above is untrue when |A| = 2 – plurality with some fixed tie-breaking rule is strategyproof, onto, and non-
dictatorial. It may also break down if we place restrictions on the set of alternatives that a voter can report (we
assume it to be P).
As long as all ordinal ranks are feasible in the cardinal preference setting, this has an extension to that setting.
We shall only prove the result for n = 2 (so N = {1, 2}). It is possible to then apply induction on the number of
agents to prove it for an arbitrary n, but we omit this part – interested readers may consult [Sen01] for more details.
Proof. First of all, we claim that for every preference profile P , f(P ) ∈ {P1(1), P2(1)}.
If P1(1) = P2(1), unanimity implies that f(P ) is this common value.
Suppose that P1(1) = a ̸= b = P2(1), and f(P ) = c ̸= a, b. Consider a preference P ′

1 with P ′
1(1) = a, P ′

1(2) = b,
and a preference P ′

2 with P ′
2(1) = b, P ′

2(2) = a. Note that f(P1, P
′
2) ∈ {a, b}, because every other alternative is

Pareto dominated and f is Pareto efficient. Further, f(P1, P
′
2) ̸= b because this would mean that f is manipulable

(by player 2). Therefore, f(P1, P
′
2) = a. Similarly, we get that f(P ′

1, P2) = b. Now, due to monotonicity (because f is
strategyproof), D(a, P1) ⊆ D(a, P ′

1), so f(P ′
1, P

′
2) = a, but similarly D(b, P2) ⊆ D(b, P ′

2) so f(P1, P
′
2) = b, leading to

a contradiction and proving the claim.

Now, let P, P ′ be two profiles with P1(1) = a ̸= b = P2(1) and P ′
1(1) = c, P ′

2(1) = d. It suffices to show that f(P ′) = c
if f(P ) = a and f(P ′) = d if f(P ) = b.
If c = d, this is trivial by unanimity, so assume c ̸= d. We shall show that if f(P ) = a, f(P ′) = c; the other side
follows symmetrically.

1. First, consider the case where (c, d) = (a, b). By the claim, f(P ′) ∈ {a, b}. Suppose instead that f(P ′) = b. Let
profile P̂ with P̂1(1) = a, P̂1(2) = b, P̂2(1) = b, P̂2(2) = a.
By monotonicity using P , we get that f(P̂ ) = f(P ) = a, and by monotonicity using P ′, we get that f(P̂ ) =
f(P ′) = b, a contradiction.

2. Next, consider the case where d = b but c ̸= a, b. Again, we have that f(P ′) ∈ {c, b}, and suppose instead
that f(P ′) = b. Let P̂1 be a preference order with P̂1(1) = c, P̂1(2) = a. By case 1, f(P̂1, P2) = f(P ′

1, P
′
2) = b.

Under true preferences (P̂1, P2), we see that player 1misreporting their preference as P1 would result in amore
preferred alternative (a as opposed to b), contradicting strategyproofness.

3. Next, suppose that c ̸= a, b and d ̸= b, and assume that f(P ′) = d. Let P̂ be a profile such that P̂1(1) =

c, P̂2(1) = b. By a symmetric version of case 2 applied for P ′, P̂ , f(P̂ ) = b. By case 2 applied for P, P̂ , f(P̂ ) = c,
leading to a contradiction.

All remaining cases follow similar to case 3 using previously shown cases, so we omit the details. ■

A reason for a restrictive result like the GS theorem is that the domain of the SCF is too large, so a potential manip-
ulator has far too many ways to manipulate.
What this means is that we must restrict the domain of our SCF.

5.4. Domain restriction

Consider the following different definition of strategyproofness.
An SCF f is strategyproof if for all i ∈ N, Pi, P

′
i ∈ P, P−i ∈ Pn−1,

f(Pi, P−i)Pif(P
′
i , P−i) or f(Pi, P−i) = f(P ′

i , P−i).

If we reduce the set of preferences from P to S ⊊ P , a function that is strategyproof on P continues to remain strat-
egyproof on S. However, we may get some more strategyproof functions.

There are various examples of domain restrictions which lead to interesting non-dictatorial strategyproof SCFs.
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5.4.1. Single-peaked preferences

Consider the example of a roomwith several people in it, and each person has a preferred temperature t∗i – anything
above or below this is monotonically disliked more. The agent preferences are “single-peaked” in the sense that
there is one unique temperature we like the most, and everything else is liked less in a monotonic fashion.
There is a common ordering, the temperature scale here, and each person has a unique preferred point, and on each
side there is a monotone decrease.
This common ordering is denoted <, where the order is any total order (a binary relation is transitive and antisym-
metric).
Why is this a domain restriction? If the ordering is over {a, b, c} and the ordering is a < b < c, then preferences such
as acb are ruled out.

Definition 5.31 (Single-peaked preference). A preference order Pi (that is linear over A) of agent i is single-peaked
with respect to the common order < of the alternatives A if

1. for all b, c ∈ Awith b < c ≤ Pi(1), cPib and
2. for all b, c ∈ Awith Pi(1) ≤ b < c, bPic.

Denote by S the set of single-peaked preferences.

So, under this domain restriction, our SCF is a function Sn → A.
We also typically take A to be a finite subset of R.
This circumvents the Gibbards-Satterthwaite Theorem as seen by the strategyproof, onto, and non-dictatorial SCF
which just outputs the leftmost peak. Clearly, the player with the leftmost peak has no reason to misreport. For any
other player, misreporting only changes the outcome if they report something less than the leftmost peak, and they
necessarily prefer this less than the current outcome.
A generalization of this is as follows.

Definition 5.32 (Median voter SCF). An SCF f : Sn → A is a median voter SCF if there exists a multiset B =
{y1, . . . , yn−1} such that f(P ) = median(B, peaks(P )) for all P ∈ S.

The points in B are called the peaks of “phantom voters”. Note that B is fixed for f and does not change with P .

Lemma 5.33 (Moulin 1980). Every median voter SCF is strategyproof.

We do not prove this as it is relatively simple – the proof is similar to what we did when considering the leftmost
peak SCF.

Proposition 5.34. f is Pareto efficient iff for each preferenceP , setting pmin, pmax be the leftmost and rightmost peaks,
f(P ) ∈ [pmin, pmax].

Proof. First, suppose that f(P ) ̸∈ [pmin, pmax]. Assume that f(P ) < pmin without loss of generality. Then, every
agent prefers pmin to f(P ), so f(P ) is dominated and f is not Pareto efficient.
On the other hand, if f(P ) ∈ [pmin, pmax], there does not exist any b such that bPif(P ) for all i ∈ N . Indeed, if
b < f(P ), it is less preferred by the player with peak pmax, and if b > f(P ), it is less preferred by the player with
peak pmin. This vacuously implies Pareto efficiency. ■
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Although the proofs differ quite a bit, several results like in the unrestricted setting hold even here.

Theorem 5.35. Let f : Sn → A. If f is strategyproof, it is monotonic.

The proof of this is quite similar to thatwe did earlier in Lemma 5.27, althoughwe need to arguewhy the construction
in the reverse implication is valid.

Theorem 5.36. Let f : Sn → A be strategyproof. The following are equivalent.
1. f is onto.
2. f is unanimous.
3. f is Pareto efficient.

Proof. We know that Pareto efficiency implies unanimity which implies ontoness. As a result, it suffices to show that
ontoness implies Pareto efficiency. Suppose instead that f is strategyproof and onto but not Pareto efficient. Then,
there exist a, b ∈ A such that aPib for all i ∈ N but f(P ) = b. Because preferences are single-peaked, there is some
alternative c ∈ A which is a “neighbour” of b such that cPib for all i ∈ N (possibly, c = a) – go “one step” in the
direction of a from b.
Using ontoness, let P ′ such that f(P ′) = c. Consider P ′′ such that P ′′

i (1) = c and P ′′
i (2) = b for all i ∈ N . Due to

monotonicity fromP toP ′′, f(P ′′) = b, and due tomonotonicity fromP ′ toP ′′, f(P ′′) = c, leading to a contradiction.
■

Definition 5.37. Given a preference profile P and a permutation σ : N → N , define a new preference profile Pσ by
(P ◦ σ−1) – the preference of i under P is the preference of σ(i) in the new profile.

Definition 5.38 (Anonymity). An SCF f : Sn → A is said to be anonymous if for every profile P and permutation σ
of the agents, f(Pσ) = f(P ).

Any social choice function that specifically looks at the agent identities is not anonymous. In particular, dictatorial
SCFs are not anonymous.
Anonymity seems a sensible property to desire from a good SCF.

Theorem 5.39 (Moulin 1980). An SCF f is strategyproof, onto, and anonymous iff it is a median voter SCF.

Proof. The backward direction is trivial. We have already seen in Lemma 5.33 that f is strategyproof. It is also triv-
ially anonymous because we only look at the set of peaks and do not assign importance to any particular player’s
peak. For ontoness, given an alternative a, we can consider the preference profile that places every player’s peak at
a. Clearly, the outcome is a.

Let f : Sn → A be strategyproof, anonymous, and onto. Define P 0
i to be agent i’s preference with a peak at the

leftmost position, and P 1
i as that with a peak at the rightmost position. First, construct the phantom peaks

yj = f(P 0
1 , P

0
2 , . . . , P

0
n−j , P

1
n−j+1, . . . , P

1
n)
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for j = 1, . . . , n− 1.

First, we claim that the (yj) is non-decreasing.
Note that the profiles we use to define yj and yj+1 differ only at the (n − j)th coordinate. Consequently, due to
strategyproofness, we must have yjP 0

n−jyj+1 or the two are equal. However, P 0
n−j is single-peaked with its peak at

the leftmost position, so this just means that yj ≤ yj+1.

Let P be an arbitrary profile, and pi be the peaks of Pi. We claim that

f(P ) = median(p1, . . . , pn, y1, . . . , yn).

Due to anonymity, we may assume without loss of generality that p1 ≤ · · · ≤ pn. Say a is the median we are inter-
ested in.

First, consider the case where a = yj for some j. By the previous claim and the definition of the median, we must
have that (j − 1) phantom peaks and (n− j) agent peaks are to the left, and (n− 1− j) phantom peaks and j agent
peaks to the right of a. That is,

p1 ≤ · · · ≤ pn−j ≤ yj = a ≤ pn−j+1 ≤ · · · ≤ pn.

By definition,
yj = f(P 0

1 , P
0
2 , . . . , P

0
n−j , P

1
n−j+1, . . . , P

1
n).

Let
b = f(P1, , P

0
2 , . . . , P

0
n−j , P

1
n−j+1, . . . , P

1
n).

Due to strategyproofness, yjP 0
1 b, so yj ≤ b. By strategyproofness again, bP1yj . Further, p1 ≤ yj , so this means that

b ≤ yj . Therefore, b = yj ! We can then repeat this argument for the first (n− j) agents to get that

f(P1, . . . , Pn−j , P
1
n−j+1, . . . , P

1
n) = yj .

After this, we replace preferences from the right hand-side, to finally get that yj = f(P ).

Next, suppose that a = pj for some j. We prove this in the case where there are two players, and the general case is
a (slightly non-trivial) extension of this argument.
Let a = P1(1) and b = P2(1).
Let P ′ such that Pi(1) = P ′

i (1) for all i ∈ N . We claim that f(P ) = f(P ′). That is, as long as the peaks stay the same,
the preferences stay the same.
Set f(P ) = x and f(P ′

1, P2) = y. Because f is strategyproof, xP1y and yP ′
1x. If x and y are on the same side of the

peak a, then they must be the same.
Assume without loss of generality that x < a < y and a < b. Recall that f is Pareto efficient by Theorem 5.36, so by
Proposition 5.34, f(P ) ∈ [a, b]. However, we have f(P ) = x < a. We repeat this same argument to go from (P ′

1, P2)
to (P ′

1, P
′
2), thus proving the claim.

Now, set y1 to be the phantom peak obtained from earlier. By our assumption, the median is an agent peak, so say
it is equal to a. This means that b < a < y1 or y1 < a < b. Assume for contradiction that f(P ) = c ̸= a.
In the situation where b < a < y1, we have by Pareto efficiency that c < a. Construct P ′

1 such that P ′
1(1) = a

and y1P
′
1c (this is possible because c and y1 are on different sides of the peak). Conider the profile (P 1

1 , P2). We
have b < y1 ≤ P 1

1 (1) so the median of the three is y1, a phantom peak, and we can use case 1 to conclude that
f(P 1

1 , P2) = y1. However, y1P ′
1c by construction, contradicting strategyproofness since f(P ′

1, P2) = c.
The case where y1 < a < b is very similar, except that we consider P 0

1 instead of P 1
1 . ■

For a complete proof of the above result (with n players), the reader may consult [Mou80].
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5.4.2. Task allocation domain

The next domain restriction we shall look at is called task allocation domain. In this, we have a unit amount of task
to be shared among n agents, and agent i gets a share si ∈ [0, 1] such that∑i∈N si = 1.
Similar to single-peaked preferences, every agent has a preferred shared of work.

Example 25. Each task may have a reward, say a w amount of wages per unit time. If agent i works for time
ti, then they earn an amount of wti. This task also has costs (say physical tiredness) depending on the agent
equal to cit

2
i . The net payoff is then wti − cit

2
i , which is maximized at t∗i = w/(2ci).

This is single-peaked over the share of the task, and not the alternatives.
If the alternatives are (0.2, 0.4, 0.4) and (0.2, 0.6, 0.2), player 1 is indifferent. Note that if the preferences are
single-peaked for all, we cannot have a single common order over the alternatives.

Denote the domain of task allocation by T (a single-peaked function over the task share), so the SCF is f : Tn → A.
For a preference profile P ∈ Tn, we have (f(P ))i ∈ [0, 1] for each i and∑i∈N (f(P ))i = 1.
Suppose that player i has peak pi over the share.

Definition 5.40. An SCF f : Tn → A is Pareto efficient if there exists no other share of the task that is weakly preferred
by all agents and strictly preferred by at least one. That is, there exists no a ∈ A such that aRif(P ) for all i ∈ N and
aPjf(P ) for some j.

Lemma 5.41. An SCF f : Tn → A is Pareto efficient iff
1. for any preference profile P with∑i∈N pi = 1, fi(P ) = pi for all i ∈ N .
2. for any preference profile P with∑i∈N pi > 1, fi(P ) ≤ pi for all i ∈ N .
3. for any preference profile P with∑i∈N pi = 1, fi(P ) ≥ pi for all i ∈ N .

Proof. First of all, if∑i∈N pi = 1, then there is no problem and we must allocate tasks according to the peaks of the
agents. This is the unique Pareto efficient SCF.

If∑i∈N pi > 1, for any SCF f , there exists some k ∈ N such that fk(P ) < pk.
If f is Pareto efficient, can there exist an agent j such that fj(P ) > pj? No, because if this were the case, we would
increase k’s share of the task and reduce j’s share of the task, to make both players strictly better off.
Consequently, for all j ∈ N , fj(P ) ≤ pj .
Finally, an identical argument yields that if∑i∈N pi < 1, fj(P ) ≥ Pj for all j ∈ N . ■

Definition 5.42 (Anonymity). For an anonymous SCF f : Tn → A,

fσ(j)(P
σ) = fj(P ).

Let us look at a couple of candidate SCFs.
1. Serial dictatorship. A predetermined sequence of agents is fixed. Each agent is given either their peak or a

leftover share. If∑ pi < 1, the last agent is given the leftover share. This is Pareto efficient and strategyproof
but not anonymous. It is also quite unfair for later agents.
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2. Proportional. Every player is assigned a share that is some constant multiplied by their peaks. That is, if∑
i∈N pi = s, we assign a share of pi/s to each player.

This is not strategyproof. For example, if the peaks are 0.2, 0.3, 0.1, we have s = 0.6 and player 1 gets 1/3. If
they report 0.1, 0.3, 0.1 instead however, player 1 gets 0.2.

We shall next describe a rule that is Pareto efficient, anonymous, and strategyproof, known as the uniform rule.
Suppose that∑i∈N pi < 1. We begin with everyone’s allocation being 1. We keep reducing each person’s allocation
uniformly. Whenever we hit someone’s peak, we stop reducing that agent’s share. We stop reducing when∑ fi = 1.
When∑i∈N pi > 1, we instead start with everyone’s allocation being 0 and increase it gradually.

Definition 5.43. The uniform allocation rule fu is described as follows.
1. If∑i pi = 1, fu

i (P ) = pi.
2. If∑i∈N pi < 1, set µ(P ) as the number that satisfies∑i∈N max{pi, µ} = 1 and allocate fu

i (P ) = max{pi, µ(P )}.
3. If∑i∈N pi > 1, set λ(P ) as the number that satisfies∑i∈N min{pi, λ} = 1 and allocate fu

i (P ) = min{pi, λ(P )}.

Lemma 5.44. The uniform rule SCF is anonymous, Pareto efficient, and strategyproof.

Proof. It is quite easy to see anonymity since we only look at the agents’ peaks and not the agents themselves. Pareto
efficiency follows trivially by Lemma 5.41.
Strategyproofness is evident when∑ pi = 1. Suppose now that∑i pi < 1, so fu

i (P ) ≥ pi. The only agents who have
any reason tomanipulate are those with fu

i (P ) > pi. That is, µ(P ) > pi and the allocation stopped before “reaching”
pi. The only way this allocation can change is by reporting p′i > µ(P ) > pi, but this is a worse allocation for i than
µ(P ). The proof when∑ pi > 1 is similar. ■

Theorem 5.45 (Sprumont). An SCF f : Tn → A is strategyproof, Pareto efficient, and anonymous iff it is the uniform
rule.

We do not describe the proof of the above, and refer the reader to [Spr91].

5.4.3. Mechanism design with transfers

In this case, the utility can be transferred and is thought of as something like money. A social choice function here
is a function F : Θ→ X , where an outcome x ∈ X has two components – an allocation a ∈ A and a payment vector
π ∈ Rn.

Example 26. One real-life example of this is a public decision of building a bridge or a park, so A is
{bridge,park}.
We can think of the allocation of a divisible good (a “shared spectrum”), where a ∈ [0, 1]n and∑ ai = 1.
We can also have a single indivisible good, where a ∈ {0, 1}n and∑ ai ≤ 1.
Alternatively, we can have multiple indivisible objects, wherein we have an overall set of objects S and

A = {(A1, . . . , An) : Ai ⊆ S and Ai ∩Aj = ∅ for all distinct i, j ∈ N}.

Here, the type of an agent is θi ∈ Θi, the private information of i. An agent’s benefit from an allocation is defined
using a valuation function vi : A×Θi → R.
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In the previous example, if we look at the benefit to the environment for example, the valuation of a bridge would
be lower than that for a park.

The utility of a player i when their type is θi and the outcome is x = (a, π) is given by

ui((a, π), θi) = vi(a, θi)− πi.

Note that this is always linear in the payment, but can be non-linear in the allocation component. Due to this, we
call this the quasilinear domain.
If we have two alternatives (a, π(1)) and (a, π(2)), agent i always prefers that with the lower πi! This is the simple
restriction intrinsic to this section, which opens up opportunity for numerous interesting SCFs.

We split the function F into the allocation part and the payment parts, f : Θ→ A and pi : Θ→ R. Here, πi = pi(θ).
The tuple of pi is denoted p.

Example 27 (Allocation rules). A couple of examples of allocation rules are as follows.
1. One uninteresting allocation rule is the constant rulewhere f c(θ) = a for all θ ∈ Θ for some fixed a ∈ A.
2. A slightly more inspired rule is the dictatorial rule, where

fD(θ) = argmax
a∈A

vd(a, θd)

for all θ ∈ Θ for some fixed d ∈ N .
3. The allocatively efficient or utilitarian rule is

fAE(θ) = argmax
a∈A

∑
i∈N

vi(a, θi)

for all θ ∈ Θ, where we pick any arbitrary a in the maximizing subset of A.
4. The affine maximizer rule is defined by

fAM(θ) = argmax
a∈A

∑
i∈N

wivi(a, θi) + κ(a)

 ,

where each λi is chosen to be non-negative and at least one is nonzero. Note that all three rules before
this are specific cases of the affine maximizer rule.

5. The max-min or egalitarian rule has

fMM(θ) = argmax
a∈A

min
i∈N

vi(a, θi).

Example 28 (Payment rules). Three examples of rules that our payment function p might satisfy are
1. No deficit. Here,∑i∈N pi(θ) ≥ 0 for all θ ∈ Θ.
2. No subsidy. Here, pi(θ) ≥ 0 for all θ ∈ Θ, i ∈ N . Clearly, a no subsidy payment rule is a no deficit

payment rule.
3. Budget balanced. Here,∑i pi(θ) = 0 for all θ ∈ Θ.

Recall incentive compatibility. This definition can be reformulated in the mechanism design with payment scenario
as follows.
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Definition 5.46 (Dominant strategy incentive compatibility). A mechanism (f, p) is dominant strategy incentive com-
patible (DSIC) if for all i ∈ N, θ−i ∈ Θ−i, θi, θ̃i ∈ Θi, if we set θ = (θi, θ−i) and θ̃ = (θ̃i, θ−i),

vi(f(θ), θi)− pi(θ) ≥ vi(f(θ̃), θi)− pi(θ̃).

DSIC means that telling the truth is a weakly dominating strategy equilibrium.
Our goal is that the payment rule implements f in dominant strategies. In the quasilinear domain, we are often
more interested in the allocation rule than the whole SCF (which also includes the payment).

Example 29. Suppose that there are two players N = {1, 2} and Θ1 = Θ2 = {θH , θL} and f : Θ1 ×Θ2 → A.
For (f, p) to be DSIC,

v1(f(θ
H , θ2), θ

H)− p(θH , θ2) ≥ v1(f(θ
L, θ2), θ

H)− pi(θ
L, θ2)

v1(f(θ
L, θ2), θ

L)− p(θL, θ2) ≥ v1(f(θ
H , θ2), θ

L)− pi(θ
H , θ2)

and similar inequalities for the second player.

Now, suppose that (f, p) is incentive compatible. Consider another payment

qi(θ) = pi(θ) + hi(θ−i)

for all θ ∈ Θ, i ∈ N for some function(s) hi. Then, observe that (f, q) is incentive compatible as well!
Therefore, if we find a single payment that implements an allocation rule, we get an entire family of payments that
implement the allocation rule. A converse question we can ask is: when do payments that implement f differ only
by a factor of hi(θ−i)?

Example 30. Suppose the allocation is the same for two type profiles θ = (θi, θ−i) and θ̃ = (θ̃i, θ−i) and
f(θ) = f(θ̃) = a. if p implements f , then Definition 5.46 immediately yields that pi(θ) = pi(θ̃).

Let us now move to Pareto efficiency in the quasilinear domain.

Definition 5.47 (Pareto optimality). A mechanism (f, p) is said to be Pareto optimal if at every type profile θ ∈ Θ,
there exists no allocation b ̸= f(θ) and payments (π1, . . . , πn)with∑i πi ≥

∑
i pi(θ) such that

vi(b, θi)− πi ≥ vi(f(θ), θi)− pi(θ)

for all i ∈ N , with the inequality being strict for some i.

The reason for having∑i πi ≥
∑

i pi(θ) is that otherwise, we can always put an excessive subsidy to every agent and
make everyone better off.
Recall allocative efficiency from Example 27.

Theorem 5.48. A mechanism (f, p) is Pareto optimal if and only if it is allocatively efficient.

Proof.
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• Suppose that (f, p) is not allocatively efficient. Then, there exists b ̸= f(θ) such that∑
i

vi(b, θi) >
∑
i∈N

vi(f(θ), θi)

for some θ. Let δ > 0 be the difference between the two as above. Consider the payment

πi = vi(b, θi)− vi(f(θ), θi) + pi(θ)− (δ/n).

Then, (
vi(b, θi)− πi

)
−
(
vi(f(θ), θi)− pi(θ)

)
= (δ/n) > 0

and∑i πi =
∑

i pi(θ), showing that (f, p) is not Pareto optimal.
• Suppose that (f, p) is not Pareto optimal. Let θ, π, b ̸= f(θ) such that∑

i

πi ≥
∑
i

pi(θ)

and
vi(b, θi)− πi ≥ vi(f(θ), θi)− pi(θ)

for all i ∈ N , with the inequality being strict for some i.
Summing the second inequality over i,∑

i

(vi(b, θi)− πi) >
∑
i

(vi(f(θ), θi)− pi(θ))∑
i

vi(b, θi)−
∑
i

vi(f(θ), θi) >
∑
i

πi −
∑
i

pi(θ) ≥ 0,

showing that (f, p) is not allocatively efficient.
■

So, for any Pareto optimal mechanism (f eff, p), we have

f eff(θ) ∈ argmax
a∈A

∑
i∈N

vi(a, θi).

This seems to suggest that any sensible mechanism has this (more or less) fixed allocation part. We must now come
up with a sensible payment part to make it DSIC.

Definition 5.49 (Groves payment). Given a Pareto optimal function f eff, consider the Groves payment defined for
each i by

pGi (θ) = hi(θ−i)−
∑
j ̸=i

vj(f
eff(θ), θj)

where hi : Θ−i → R is any arbitrary function.
A Groves mechanism is a pair (f eff, pG), where f eff is Pareto optimal and pG is a Groves payment (for f eff).

Perhaps surprisingly, this is a truthful mechanism!

Theorem 5.50. Any Groves mechanism is DSIC.
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Proof. Arbitrarily choose player i, θ = (θi, θ−i), and θ̃ = (θ̃i, θ−i), and set a = f eff(θ) and ã = f eff(θ̃). By definition,

vi(a, θi) +
∑
j ̸=i

vj(a, θj) ≥ vi(ã, θi) +
∑
j ̸=i

vj(ã, θj).

The utility of player iwhen they report θi is

vi(a, θi)− pi(θ) = vi(a, θi)− hi(θ−i) +
∑
j ̸=i

vj(a, θj)

≥ vi(ã, θi)− hi(θ−i) +
∑
j ̸=i

vj(ã, θj)

= vi(ã, θi)− pi(θ̃),

proving the result. ■

Definition 5.51 (VCG mechanism). Given a Pareto optimal function f eff, the pivotal mechanism or VCG mechanism is
the Groves mechanism (f eff, pVCG)with

hi(θ−i) = max
a∈A

∑
j ̸=i

vj(a, θj).

That is,
pVCGi (θ) = max

a∈A

∑
j ̸=i

(vj(a, θj)− vj(f
eff(θ), θj)).

Clearly, pVCGi (θ) ≥ 0 for all θ ∈ Θ, i ∈ N , that is, it is a no subsidy payment rule (and in particular, a no deficit
payment rule). The first part is essentially the values of others in the absence of agent i. When agent i is introduced,
the others get less than they could have in i’s absence, and the expression above can be thought of as the “damages”
caused by agent i which are compensated for by this payment. In other words,

vi(f
eff(θ), θi)− pVCGi (θ) =

∑
j∈N

vj(f
eff(θ), θj)︸ ︷︷ ︸

social welfare in presence of i

− max
a∈A

∑
j ̸=i

vj(a, θj)︸ ︷︷ ︸
maximum social welfare in absence of i

,

is the marginal contribution of i to social welfare.
Let us try to understand this better with a couple of examples.
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Example 31. Consider single object allocation where an agent’s type θj is equal to the amount they value
the object, and the value is equal to θj if they get the item and 0 otherwise. Suppose that there are 4 agents
with valuations 10, 8, 9, 5. Allocative efficiency means that the item is allocated to that agent with the highest
valuation, namely 10. We have

pVCGi (θ) = max
a∈A

∑
j ̸=i

(vj(a, θj)− vj(f
eff(θ), θj)).

For the agent with valuation 10, this is equal to the second highest bid 9. Indeed, the first summation is
maximized when a assigns the item to the agent with the second highest bid 9, and the second summation is
equal to 0. For all other agents, both summations are equal to the higest bid 10.
Therefore, under the VCG mechanism, the only agent who pays is the first agent, and he pays the second
highest bid 9. This makes sense since the utility of agent i is equal to 10 − 9 = 1, which is the amount they
“profit” by paying less than the amount they value the item.
The VCG mechanism for single object allocation behaves is precisely a second price auction!
Let us look at another example, wherein a committee must decide to build one of a football stadium, a library,
or a museum. The members of the committee A,B,C value each of these as follows.

Football Library Museum
A 0 70 50
B 95 10 50
C 10 50 50

Due to allocative efficiency, the VCG mechanism decides to build the museum. If B is removed, it is instead
decided to build the librarywhich has corresponding value 70+50 = 120. So,B pays an amount of 120−100 =
20. Similarly, A pays (95 + 10)− 100 = 5, and C pays (50 + 50)− 100 = 0.
Note that agent C pays nothing! They can be thought of as a non-pivotal agent, and removing the player does
not change the outcome of the game.

Agents whose presence changes the outcome are referred to as pivotal agents. These are precisely those players who
have to pay some nonzero amount of money.
Over the next several examples, we more precisely look at combinatorial auctions from Example 26.

Example 32 (Combinatorial auctions I: An example). Let us look at another example of selling multiple
objects 1 and 2.

∅ {1} {2} {1, 2}
θ1 0 8 6 12
θ2 0 9 4 14

The above table indicates each player value vi(a, θi) =: θi(a) under various actions. Note that the meaning
of the table here is not as directly interpreted as that in the previous example – an allocation is a pair of non-
intersecting subsets of {1, 2}. That is, we can decide to allocate {1} to one agent and {2} to another (but we
cannot allocate item 1 to both agents).
In fact, this is what happens. Due to allocative efficiency, the VCG mechanism allocates {1} to player 2 and
{2} to player 1. If player 1 is removed, we give the entire bundle to player 2 for value 14, so player 1 pays
14 − 9 = 5 and similarly, player 2 pays 12 − 6 = 6. The payoffs of the two players here are 6 − 5 = 1 and
9− 6 = 3.
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Example 33 (Combinatorial auctions II: Introduction). In a combinatorial auction, there is a fixed setM of ob-
jects, andΩ = 2M is set of “bundles”. The set of allocationsA is comprised of all elements a = (a0, a1, . . . , an)
of Ωn such that ai ∩ aj = ∅ for i ̸= j andM =

⋃n
i=0 ai. Here, a0 is the set of unallocated objects.

Each player’s type/value is given by a function θi : Ω → R. We assume that θi(S) ≥ 0 for all S ∈ Ω, that is,
objects are “goods” and not trash.
We further assume that θi(∅) = 0 and also that valuations are “selfish”, that is, θi(a) = θi(ai) and agent i’s
valuation does not depend on what the others get.

We claim that in the allocation of goods, the VCG payment for an agent who gets no object in an efficient
allocation is equal to 0.
Fix some a∗ ∈ argmaxa∈A

∑
j∈N θj(a) with a∗i = 0. Also let a∗−i = argmaxa∈A

∑
j∈N\{i} θj(a). Because a is

the defined argmax, we have

pVCGi (θ) =
∑

j∈N\{i}

θj(a
∗
−i)−

∑
j∈N\{i}

θj(a
∗) ≤ 0,

so pVCGi (θ) = 0 because it is non-negative.

Definition 5.52 (Individual rationality). A mechanism (f, p) is individually rational if for all θ ∈ Θ, i ∈ N ,

vi(f(θ), θi)− pi(θ) ≥ 0.

Intuitively, what this says is that no player decides to participate if they are going to incur a negative payoff.

Example 34 (Combinatorial auctions III: Individual rationality). Next, we claim that in combinatorial auc-
tions, the VCG mechanism is individually rational. Fix i ∈ N and define a∗, a∗−i as in the previous example.
We have

θi(a
∗)− pVCGi (θ) =

∑
j

θj(a
∗)−

∑
j ̸=i

θj(a
∗
−i)

=
∑
j

θj(a
∗)−

∑
j ̸=i

θj(a
∗
−i)

=
∑
j

θj(a
∗)−

∑
j

θj(a
∗
−i)︸ ︷︷ ︸

≥0 by definition of a∗

+ θi(a
∗
−i)︸ ︷︷ ︸

≥0

≥ 0.

Let us illustrate the concepts in the previous two examples using a more specific example, that of advertising on the
internet.
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Example 35 (Combinatorial auctions IV: Introduction to internet advertising). Internet advertising is very
lucrative for numerous reasons:

1. it is quite easy to gather a lot of user data,
2. using this data it is possible to classify buyers into categories and measure their interests,
3. due to the low latency, we can have real-time automated bidding and make decisions on the fly.

Some examples of such advertisements are
1. Sponsored search ads: advertisers bid on the keywords entered by users.
2. Contextual ads: depending on the content of the page, we see a related message.
3. Display ads: this is akin to more traditional forms of advertising like banner advertisements in news-

papers.
Modern internet advertising is handled via “ad exchanges”, which act as an intermediary between the pub-
lisher and the client/advertiser. Small businesses customize their ads using these exchanges.
The decision of who gets ad positions on a page is done using position auctions.

1. In early position auctions, ads were ordered via bid-per-impression, charging agents based on the bids
they place. Newspaper ads is an example of this, but puts all the risk on the advertiser since they are
placing the bid without knowing for sure that anyone will see the ad.

2. Later, we switched to the pay-per-click model, where we rank it based on the number of clicks. This
shares the risk with the publisher, since they are paid depending on the number of clicks. If ads are
shown but not clicked, the publisher earns nothing.

3. Today, we rank ad spots based on the product on the probability of click (called click-through rate) and
bid value. That is, we rank it based on the expected revenue.
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Example 36 (Combinatorial auctions V: A deep-dive into internet advertising). Suppose there are N
advertisers {1, . . . , n} and m slots {1, 2, . . . ,m} with m ≥ n and every ad is shown. Also assume that 1 is
the “best” position and m the “worst” (where best and worst are defined more precisely a few paragraphs
later).

Let us assume that clicks generate value for the advertisers, and all clicks are valued equally irrespective
of where the ad is displayed. The position only affects the click-through rate for that ad. This allows us to
decouple the value effect and the position effect.
The expected value of agent i ∈ N when their ad is shown at position j ∈ M is vij = CTRij vi, where CTR
is the click-through rate for i at j and vi is the click value for i. CTRij has two components: the quality
component ei and the position component pj , so vij = pj · (eivi). We have assumed that the position effect is
decreasing with position, that is, p1 = 1 and pj > pj+1 for j = 1, . . . ,m− 1.
Note that vi is the only private information of the advertisers, and both pj , ei are measurable. Search engines
estimate ei as êi. If the bidders bid bi, we rank the ads in decreasing order of êibi.

In this setting, we just have a combinatorial auction where the allocation determines which ad spots each
client gets. We get that

vi(a, θi) = pai
(êiθi)

for an allocation a = (a1, . . . , an), where pai
=
∑

j∈ai
pj and the reported click value is θi. Because of alloca-

tive efficiency, we pick an allocation a∗ ∈ argmaxa∈A

∑
i∈N vi(a, θi).

We claim that an allocation of slots is efficient iff it is the rank-by-expected-revenue mechanism we have de-
scribed. This is rather easily proved as the above is just that maximizing a weighted sum.
The slot allocation problem is merely a sorting problem, and is computationally tractable. Now, we must use
payments to make it DSIC. A natural candidate is the VCG mechanism, which is (at its core) what is used in
ad auctions on Facebook!
Given reported bids (θ1, . . . , θn), assume that ê1θ1 ≥ ê2θ2 ≥ · · · ≥ ênθn. Assume that the allocation a∗ is such
that a∗i = i.
Consider a∗−i = argmaxa∈A

∑
j ̸=i vj(a, θj). Removing agent i means that players after i get an earlier slot.

Then,

pVCGi (θ) =
∑
j ̸=i

vj(a
∗
−i, θj)−

∑
j ̸=i

vj(a
∗, θj)

=

n−1∑
j=i

pj · (êj+1θj+1)−
n−1∑
j=i

pj · (êj+1θj+1)

=

n−1∑
j=i

(pj − pj+1)êj+1θj+1.

In particular, pVCGn (b) = 0. This is the total expected payment. To convert this to the pay-per-click we are
interested in, we look at pVCGi (b)/piêi.

Now, let us look at a couple of advantages and disadvantages of the VCG mechanism. Some clear advantages are:
1. It is DSIC.
2. It is a no subsidy mechanism if items are goods.
3. It never charges a losing agent.
4. It is individually rational to participate, so nobody loses money (at least in the combinatorial auction setting).

On the other hand, some criticisms are:
1. It is too transparent and provides no privacy. As a consequence of being a truthful mechanism, it reveals true

valuations. Competing companies might not like such information to be made public. Additionally, malicious
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auctioneers can introduce fake bidders to extract a higher payment from the bidders – this is relevant in the
case where the highest bid is far higher than the second-highest bid.

2. It is very susceptible to collusion. For example, consider the following public goods setting, with the payments
indicated.

F M payment
A 200 0 150
B 100 0 50
C 0 250 0

If the first two players collude, they might bid higher, pay much less, and increase their utility!

F M payment
A 250 0 100
B 150 0 0
C 0 250 0

3. It is not frugal, and payments can be very large. The VCG is guaranteed to be no deficit, but it can charge a
payment much higher than the cost.

4. Revenue does not weakly increase with the number of players. Consider the following public good settings,
with valuations as indicated.

F M payment
A 0 90 0
B 100 0 90

Now suppose we add a third player to make the game the following.

F M payment
A 0 90 0
B 100 0 0
C 100 0 0

Nobody is pivotal here.
5. It is not budget balanced. While it is a no deficit mechanism, it nearly always keeps a surplus, which is often

quite large. The issue here is that the money cannot be redistributed among the same players because this will
change payoffs and violate DSIC. If the players are partitioned into two groups and the surplus of one group
is redistributed over the other group, it is budget balanced but the overall efficiency is compromised.

The final point suggests that the surplus has to be taken away or eliminated somehow. To understand this tradeoff
better, we refer the reader to [NS19]. Despite these limitations, the VCG mechanism is quite elegant and has many
use cases.

Now, let us try to generalize the VCG mechanism to come up with a larger class of DSIC mechanisms in the quasi-
linear domain. To do this, we use the affine maximizer rule defined in Example 27 as

fAM(θ) = argmax
a∈A

∑
i∈N

wiθi(a) + κ(a)

 ,

where the wi ≥ 0 are not all zero, and κ : A→ R is any arbitrary function, known as the translation.
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When κ ≡ 0 and all the wi are equal, we get allocative efficiency again. When κ ≡ 0 and wd = 1 for some d and
wi = 0 for i ̸= d, we get a dictatorial allocation.
If all thewi are not identical, then themechanism is not anonymous. If κ is non-constant, thenwe are giving different
importance to different allocations.
In this wider class of affine maximizers, one can try to characterize the mechanisms that satisfy some property.

Definition 5.53. An affine maximizer rule fAM with weights (wi)i∈N and translation κ is said to satisfy independence
of non-influential agents (INA) if for all i ∈ N with wi = 0,

fAM(θi, θ−i) = fAM(θ′i, θ−i)

for all θi, θ′i, θ−i.

This says that tie-breaking is not done on the basis of any weight zero agents.
If INA were not satisfied, the affine maximizer could be manipulated by a weight 0 agent.

Theorem 5.54. An affine maximizer rule satisfying INA is implementable in dominant strategy.

Proof. We need to construct a payment function pAM such that (fAM, pAM) is DSIC. Define

pAM
i (θi, θ−i) =


1
wi

(
hi(θ−i)−

(∑
j ̸=i wjθj(f

AM(θ)) + κ(fAM(θ))
))

, wi > 0,

0, wi = 0.

This is quite similar to the Groves payment. If wi > 0, the payoff is

θi(f
AM(θi, θ−i))− pAM

i (θi, θ−i) =
1

wi

∑
j∈N

wjθj(f
AM(θi, θ−i)) + κ(fAM(θ))− hi(θ−i)


≥ 1

wi

∑
j∈N

wjθj(f
AM(θ′i, θ−i)) + κ(fAM(θ′i, θ−i))− hi(θ−i)


= θi(f

AM(θ′i, θ−i))− pAM
i (θ′i, θ−i),

where the second step is by the definition of the affine maximizer rule. The case where wi = 0 follows due to
INA. ■

Now, consider the scenario where Θi has all valuation functions θi : A→ R with no restriction on the functions. In
this unrestricted space, we can characterize the class of DSIC mechanisms in the quasilinear domain.

Theorem 5.55 (Roberts). Let A be finite with |A| ≥ 3. If the type space is unrestricted, any onto and dominant
strategy implementable allocation rule is an affine maximizer.

We omit the proof of the above, but the interested reader can find one at [LMN09].
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5.4.4. Indivisible object allocation

In the single indivisible object allocation setting, recall that due to the truthfulness of VCG, Example 31 implies that
the second-price auction mechanism is truthful.

The setup is as follows. Each agent i has a type set Ti ⊆ R, and ti ∈ Ti denotes the value of agent i if they win the
object. An allocation a is a vector that represents the probability of winning the object, so the set of allocations is

∆A = {a ∈ [0, 1]n :
n∑

i=1

ai = 1}.

The allocation rule is some f : T1 × T2 × · · · × Tn → ∆A. The valuation is said to be in the product form if it is given
by vi(a, ti) equal to ai · ti, namely the expected valuation. That is, fi(ti, t−i) is the probability of winning the object
for agent i when the type profile is (ti, t−i).

In the second-price auction, also called the Vickrey auction, the types are vi, and defining t
(2)
−i = maxj ̸=i vj , agent i

wins if vi > t
(2)
−i and loses if vi < t

(2)
−i . Some tiebreaking rule decides the equality case. Because the payment is t(2)−i

for the winner i, the utility is zero if there is a tie. That is,

ui =

{
0, vi ≤ t

(2)
−i ,

vi − t
(2)
−i , vi > t

(2)
−i .

Observe the following.
1. As a function of vi when all the other vj are fixed, the utility is convex.
2. Wherever differentiable, the utility’s derivative coincides with the allocation probability.

We now describe some known results from convex analysis.
Fact 1. Convex functions are continuous on the interior of their domain.
Definition 5.56. Let g : I → R be convex. For any x ∈ I , x∗ is a subgradient of g at x∗ if

g(z) ≥ g(x) + x∗ · (z − x)

for all z ∈ I .
Fact 2. Let g : I → R be convex. For every x ∈ I , a subgradient of g exists. Further, if x is in the interior of I and g is
differentiable at x, g′(x) is the unique subgradient at x.
Fact 3. Let I ′ ⊆ I be the set of points where g is differentiable. Then, I \ I ′ is of measure 0.
“Measure zero” means that there is no interval contained in this set.
Fact 4. Further, the set of subgradients at a point forms a convex set. More precisely, it is equal to [g′−(x), g

′
+(x)].

Denote the set of subgradients of g at x ∈ I as ∂g(x). Then, we have that ∂g(x) is non-empty and convex at all x ∈ I ,
and if g is differentiable at x, it is a singleton {g′(x)}.
Similar to the non-decreasingness of the derivative of a differentiable convex function, we get the following.
Lemma 5.57. Let g : I → R be a convex function. Let φ : I → R a subgradient function, that is, φ(z) ∈ ∂g(z) for all
z ∈ I . Then, φ is non-decreasing, that is, for all x, y ∈ I with x > y, φ(x) ≥ φ(y).
Lemma 5.58. Let g : I → R be a convex function. Then, for any x, y ∈ I ,

g(x) = g(y) +

∫ x

y

φ(z) dz,

where φ : I → R is a subgradient function of g.
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Definition 5.59. An allocation rule is non-decreasing if for every agent i ∈ N and si, ti ∈ Ti with ti > si and t−i ∈ T−i,

fi(ti, t−i) ≥ fi(si, t−i).

Theorem 5.60 (Myerson). Suppose Ti = [0, bi] for all i ∈ N , and the valuations are in the product form. A mecha-
nism (f, p) is DSIC iff
(a) f is non-decreasing and
(b) payments are given by

pi(ti, t−i) = pi(0, t−i) + tifi(ti, t−i)−
∫ ti

0

fi(x, t−i) dx

for all ti, t−i, i.

Proof. Let us first prove the forward direction. The utility of agent i is
ui(ti, t−i) = tifi(ti, t−i)− pi(ti, t−i).

Due to DSIC-ness,
ui(ti, t−i) = tif(ti, t−i)− pi(ti, t−i)

≥ tif(si, t−i)− pi(si, t−i)

= sifi(si, t−i)− pi(si, t−i) + fi(si, t−i)(ti − si)

= ui(si, t−i) + fi(si, t−i)(ti − si).

Fixing t−i, define g(ti) = ui(ti, t−i) and φ(ti) = fi(ti, t−i). Then, the above just says that
g(ti) ≥ g(si) + φ(si)(ti − si),

so φ is a subgradient function of g. Next, let us show that g is convex. Pick xi, zi ∈ Ti, and let yi = λxi + (1 − λ)zi
for some λ ∈ [0, 1]. As seen above,

g(xi) ≥ g(yi) + φ(yi)(xi − yi) and
g(zi) ≥ g(yi) + φ(yi)(zi − yi).

Taking a convex combination of the two equations above,
λg(xi) + (1− λ)g(zi) ≥ g(yi) + φ(yi) (λxi + (1− λzi)− yi)︸ ︷︷ ︸

0

,

so g is convex. Lemma 5.57 proves the first part, and Lemma 5.58 proves the second.

The backward direction is straightforward. Assuming for simplicity that pi(0, t−i) = 0,
(
tifi(ti, t−i)− pi(ti, t−i)

)
−
(
tifi(si, t−i)− pi(si, t−i)

)
= (si − ti)fi(si, t−i) +

∫ ti

si

fi(x, t−i) dx ≥ 0. ■

Corollary 5.61. An allocation rule in the single object allocation setting is implementable in dominant strategy iff it
is non-decreasing.
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Example 37 (Single object allocationmechanisms). Let us look at some truthful single object allocationmech-
anisms.

1. The constant allocation mechanism is non-decreasing and the payment is some constant.
2. The dictatorial allocation mechanism gives the object only to the dictator, which is non-decreasing, and

the payment is some constant again.

3. In a second-price auction, pi(0, t−i) and fi(·, t−i) is a step function with the step at t(2)−i .
4. Efficient allocationwith a reserve price is also non-decreasing. This is amodification of the second-price

auction such that if the highest value is below some reserve price r, nobody gets the object. Similar to
the second-price auction, here, fi(·, t−i) is a step function with the step at max{t(2)−i , r}.

5. Let us look at an uncommon allocation rule that might be difficult to arrive at without Myerson’s rule.
Suppose N = {1, 2} and A = {a0, a1, a2} (a0 meaning unsold, and ai for i ̸= 0 meaning that the object
is given to i). Given a type profile t, the seller computesmax{2, t21, t32}, and selects that ai corresponding
to the maximum, breaking ties as 0 > 1 > 2. Player 1 gets the object if t1 >

√
max{2, t32} and player 2

gets the object if t2 > 3
√

max{2, t21}. Both of these are non-decreasing step functions.

Definition 5.62. A mechanism (f, p) is ex-post individually rational if

tifi(ti, t−i)− pi(ti, t−i) ≥ 0

for all t ∈ T and i ∈ N .

That is, even after all agents have revealed their types, participation is weakly preferred. We refer to the above as
just individually rational.

Lemma 5.63. Let (f, p) be a DSIC mechanism in the single object allocation setting.
(a) (f, p) is individually rational iff pi(0, t−i) ≤ 0 for all t−i ∈ T−i and i ∈ N .
(b) (f, p) is individually rational and is no-subsidy iff pi(0, t−i) = 0 for all t−i ∈ T−i and i ∈ N .

Proof.

(a) Using individual rationality in the ti = 0 case gives the forward direction of the first part. For the converse,
using DSIC-ness, the payoff of i is

tifi(ti, t−i)− pi(ti, t−i) = −pi(0, t−i) +

∫ ti

0

fi(x, t−i) dx ≥ 0.

(b) This is direct since we have pi(0, t−i) ≤ 0 from the first part, and pi(0, t−i) ≥ 0 due to no-subsidy. ■

Let us next describe some non-Vickrey auctions, with a focus on budget balanced mechanisms (recall what this
means from Example 28) or something close to one.
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Example 38.

1. The object goes to the highest bidder, and the payment is such that everyone is compensated some
amount.
The highest two bidders are compensated 1/n of the third highest bid, and everyone else receives 1/n
of the second highest bid. Assuming without loss of generality that t1 > t2 > · · · > tn, agent 1 pays

− 1

n
t3 + t1 −

∫ t1

0

f1(x, t−1) dx = t2 −
1

n
t3,

agent 2 pays −t3/n, and everyone else pays −t2/n. The total payment is

t2 −
1

n
t3 −

1

n
t3 −

n− 2

n
t2 =

2

n
(t2 − t3),

which tends to 0 for large n.
2. Allocate the object with probability (1− 1

n

) to the highest bidder, and with probability 1
n to the second

highest bidder. We also set pi(0, t−i) =
−1
n t

(2)
−i . Then, agent 1 pays

− 1

n
t3 +

(
1− 1

n

)
t1 −

1

n
(t2 − t3)︸ ︷︷ ︸∫ t2
t3

1
n dx

−
(
1− 1

n

)
(t1 − t2)︸ ︷︷ ︸∫ t1

t2
(1− 1

n ) dx

=

(
1− 2

n

)
t2,

agent 2 pays
− 1

n
t3 +

1

n
t2 −

1

n
(t2 − t3) = 0,

and everyone else pays −t2/n. The sum of all these is 0.

5.5. Optimal mechanism design

Wenow come to another question: howdowemaximize the revenue of the auctioneer? We beginwith the indivisible
object allocation setting from the previous subsubsection.
Before getting to the details, we must set up some notation.
Let Ti = [0, bi] for each i and G a common prior over T with density g. We let G−i(s−i|si) to be the conditional
distribution over T−i given that i’s type is si, having density g−i(s−i|si). g−i is derived using Bayes’ rule.
Any mechanism (f, p1, . . . , pn) induces an expected allocation and payment rule (α, π). Here,

αi(si|ti) =
∫
s−i∈T−i

fi(si, s−i)g−i(s−i|ti) ds−i,

where si is the reported type, ti is the true type, fi is the probabilistic allocation as before, and g−i encodes the
probabilistic knowledge of the types of the other agents in the common prior. The conditioning on ti means that we
are conditioning on the true type being ti. The expected payment is

πi(si|ti) =
∫
s−i∈T−i

pi(si, s−i)g−i(s−i|ti) ds−i.

The expected utility of agent i on reporting si is

tiαi(si|ti)− πi(si|ti).
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Definition 5.64 (Bayesian Incentive Compatibility). A mechanism (f, p) is Bayesian incentive compatible (BIC) if for
all i ∈ N , si, ti ∈ Ti,

tiαi(ti|ti)− πi(ti|ti) ≥ tiαi(si|ti)− πi(si|ti).

f is Bayesian implementable if there exists some p such that (f, p) is BIC.

Now, let us assume that the priors are independent. That is, agent i’s value is drawn from a distribution Gi with
density gi independently from the other agents, so

g(s1, s2, . . . , sn) =
∏
i∈N

gi(si)

and
g(s−i|ti) =

∏
j ̸=i

gj(sj).

We use the shorthand α(ti) = α(ti|ti).

Definition 5.65. An allocation rule is non-decreasing in expectation (NDE) if for all i ∈ N, si, ti ∈ Ti with si < ti,
αi(si) ≤ αi(ti).

It is easily seen that non-decreasing rules are non-decreasing in expectation.
Similar to Myerson’s characterization, we get the following Bayesian version.

Theorem 5.66. A mechanism (f, p) in the independent prior setting is BIC iff
1. f is non-decreasing in expectation and
2. pi satisfies

πi(ti) = πi(0) + tiαi(ti)−
∫ ti

0

αi(x) dx.

The proof is very similar to that of Myerson, and we omit it.

Example 39 (NDE rules neednot beND). Let us look at one rule that isNDEbut not non-decreasing. Suppose
there are two players with 5 types each, and all 5 types are equally likely.

2 2 2 2 2
2 2 2 2 1
2 2 2 1 2
2 2 2 1 1
2 2 1 2 1


Here, the ijth entry depicts who wins if player 2 chooses type i and player 1 chooses type j. Suppose the
true types are t1 = t2 = 3. For player 1, the allocation is indeed non-decreasing in expectation since α1(t

′
1)

is equal to 0, 0, 1/5, 2/5, 3/5 for t′1 = 1, 2, 3, 4, 5. We can similarly check it for player 2. However, it is not
non-decreasing because f(4, 3) = 1 and f(5, 3) = 0 although 5 > 4.

Individual rationality now becomes the following.
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Definition 5.67. A mechanism (f, p) is interim individually rational (IIR) if for every bidder i ∈ N, ti ∈ Ti,

tiαi(ti)− πi(ti) ≥ 0.

Similar to Lemma 5.63, we get the following.

Lemma 5.68. A BIC mechanism (f, p) is IIR iff for all i ∈ N ,

πi(0) ≤ 0.

The proof is again quite similar.

Let us return to our question of revenue maximization. Suppose we have a single agent for now, with type set
T = [0, β]. Our mechanism is (f, p), where f : [0, β] → [0, 1] and p : [0, β] → R. Incentive compatibility (BIC and
DSIC are equivalent since there is only one agent) gives that

tf(t)− p(t) ≥ tf(s)− p(s)

for all t, s ∈ T . Individual rationality gives that

tf(t)− p(t) ≥ 0

for all t ∈ T . The expected revenue earned by a mechanism is

πM =

∫ β

0

p(t)g(t) dt.

Weneed to find amechanismM∗ in the class of incentive-compatible and individually rationalmechanisms such that
πM∗ ≥ πM for allM . CallM∗ the optimal mechanism. By the characterization lemmas Theorem 5.60 and lemma 5.63,
we have

p(t) = p(0) + tf(t)−
∫ t

0

f(x) dx and

p(0) ≤ 0.

In order to maximize revenue, p(0) = 0. So, the payment formula is

p(t) = tf(t)−
∫ t

0

f(x) dx.

The expected revenue is

πf =

∫ β

0

(
tf(t)−

∫ t

0

f(x) dx

)
g(t) dt,

which we want to maximize by choosing an appropriate f .



CS 6001 : Game Theory and Mechanism Design 59 / 64 Amit Rajaraman

Now, we have

πf =

∫ β

0

(
tf(t)−

∫ t

0

f(x) dx

)
g(t) dt

=

∫ β

0

tf(t)g(t) dt−
∫ β

0

(∫ t

0

f(x) dx

)
g(t) dt

=

∫ β

0

tf(t)g(t) dt−
∫ β

0

(∫ β

x

g(t) dt

)
f(x) dx

=

∫ β

0

tf(t)g(t) dt−
∫ β

0

(∫ β

t

g(x) dx

)
f(t) dt

=

∫ β

0

tf(t)g(t)− f(t)

(∫ β

t

g(x) dx

)dt

=

∫ β

0

(
tf(t)g(t)− f(t)(1−G(t))

)
dt

πf =

∫ β

0

(
t− 1−G(t)

g(t)

)
g(t)f(t) dt.

We want to figure out the f that maximizes

max
non-decreasing f

∫ β

0

(
t− 1−G(t)

g(t)

)
g(t)f(t) dt. (5.4)

Let us assume that G satisfies the monotone hazard rate condition, which means that g(x)
1−G(x) is non-decreasing in x.

Standard distributions such as the uniform and exponential distributions satisfy this.
Fact 5. If G satisfies the MHR condition, there is a unique solution to

x =
1−G(x)

g(x)
.

Indeed, the right-hand side is non-increasing and the left is strictly increasing. Set

w(x) = x− 1−G(x)

g(x)
,

and let w(x∗) = 0. Then, w(x) > 0 for x > x∗ and w(x) < 0 for x < x∗. The unrestricted solution to eq. (5.4) is
therefore

f(t) =


0, t < x∗,

1, t > x∗,

α, t = x∗,

(5.5)

where α ∈ [0, 1]. Note that this is basically just a step function. This f is also non-decreasing and is therefore the
optimal solution of eq. (5.4).

Theorem 5.69. In the single agent single object allocation setting, a mechanism (f, p) under the MHR condition on
the prior is optimal iff

1. f is given by Equation (5.5).
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2. For all t ∈ T ,
p(t) =

{
x∗, t ≥ x∗,

0, otherwise.

Let us now shift to the multiple agent setting. Call a mechanism optimal if it is BIC, IIR, and maximizes revenue.
Recalling Theorem 5.66 and lemma 5.68, the expected payment made by agent i is∫

Ti

πi(ti)gi(ti) dti,

where Ti = [0, bi]. Exactly as before, if we set

wi(ti) = ti −
1−Gi(ti)

gi(ti)
,

called the virtual valuation of player i, the expected payment simplifies to∫ bi

0

wi(ti)gi(ti)αi(ti).

Substituting αi, this gives the payment as ∫
T

wi(ti)fi(t)g(t) dt.

Therefore, the total revenue generated by all players is

∑
i∈N

∫
T

wi(ti)fi(t)g(t) dt =

∫
T

∑
i∈N

wi(ti)fi(t)

 g(t) dt

which we wish to maximize, subject to f being NDE. As before, if we try to solve the unconstrained optimization
problem, we get

fi(t) =

{
1, wi(ti) ≥ wj(tj) for all j and wi(ti) ≥ 0,

0, otherwise, (5.6)

However, this can result in fs that are not NDE. See [Mye81] for details. So, like the MHR constraint earlier, we
enforce something here as well.

Definition 5.70. A virtual valuation vi is regular if for all si, ti ∈ Ti with si < ti, wi(si) < wi(ti).

This is weaker than MHR.
Regularity says that wi(ti) > wi(si) for all ti > si. As a result, the optimal allocation rule eq. (5.6) also satisfies

fi(ti, t−i) ≥ fi(si, t−i),

so f is non-decreasing, and NDE in particular.
Note that this f is deterministic (in the sense that it either allocates the whole object or nothing). Therefore, not only
is it BIC and IIR, it is DSIC and IR.

Theorem 5.71. Suppose every agent’s valuation is regular. Define the mechanism (f, p) as follows.
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1. If wi(ti) < 0 for all i ∈ N , fi(t) = 0 for all i ∈ N .
2. Otherwise,

fi(t) =

{
1, wi(ti) ≥ wj(tj) for all j
0, otherwise,

with ties being broken arbitrarily.
3. Payments are given by

pi(t) =

{
0, fi(t) = 0,

max{w−1
i (0), κ∗

i (t−i)}, fi(t) = 1.

Then, (f, p) is an optimal mechanism.

Above, w−1
i (0) is the value of ti such that wi(ti) = 0 and

κ∗
i (t−i) = inf{ti : fi(ti, t−i) = 1},

the smallest value of ti where i starts to win.
This can be thought of as something like a second-price auction with a reserve price.

Example 40 (Uniform independent priors). Suppose there are two buyers with T1 = [0, 12] and T2 = [0, 18],
with a uniform independent prior. Then,

w1(t1) = t1 −
1−G1(t1)

g1(t1)
= t1 −

1− t1
12

1
12

= 2t1 − 12

and w2(t2) = 2t2 − 18. Then, we can tabulate some data as follows. Note that gradual change of when each
player’s virtual valuation becomes non-negative, and also when they start winning.

t1 t2 allocation p1 p2

4 8 unsold 0 0
2 12 2 0 9
6 6 1 6 0
9 9 1 6 0
8 15 2 0 11

Example 41 (Symmetric bidders). Suppose the valuations are drawn from the same distribution, so Ti = T ,
the gi are some common g, and all the common valuationswi are equal tow. Here, w(ti) > w(tj) iff ti > tj , so
the object goes to the higher bidder, and it is not sold if w−1(0) > ti. This is precisely a second-price auction
with a reserve price of w−1(0), and is efficient.

Finally, we discuss a few other optimal mechanisms.

Theorem 5.72 (Green-Laffont-Holmström). If the type space is “sufficiently rich”, every efficient DSIC mechanism
is a Groves mechanism.

Proof sketch. Suppose there are two alternativesA = {a, b}. Consider the welfares∑i ti(a) and
∑

i ti(b). We choose a
if the former is greater than the latter. Fix the valuations of the other agents to t−i, and fix the value of i at alternative
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b at ti(b). Then, there exists some threshold t∗i (a) such that for all ti(a) ≥ t∗i (a), a is the outcome, and for ti(a) < t∗i (a),
b is the outcome.
Using DSIC-ness for t∗i (a) + ϵ = ti(a), we get

t∗i (a) + ϵ− pia ≥ ti(b)− pib

and similarly,
ti(b)− pib ≥ t∗i (a)− δ − pia.

Because ϵ, δ are arbitrary, t∗i (a)− pia = ti(b)− pib. Because t∗i (a) is the reshold of the efficient outcome,

t∗i (a) +
∑
j ̸=i

tj(a) = ti(b) +
∑
j ̸=i

tj(b).

Combining these two,
pia − pib =

∑
j ̸=i

tj(b)− tj(a).

Therefore, the payment is of the form pix = hi(t−i)−
∑

j ̸=i tj(x). ■

Theorem 5.73 (Green-Laffont). No Groves mechanism is budget-balanced.

Corollary 5.74. If the type space is sufficiently rich, no efficient mechanism is both DSIC and budget-balanced.

Given this, we try to weaken the notion of DSIC-ness to just BIC-ness. Allocation is still the allocatively efficient one.
Payment, however, is defined via a prior as

δi(ti) = Et−i|ti

∑
j ̸=i

tj(a
∗(t)).

Consider the efficient mechanism defined by

a∗(t) ∈ argmax
a∈A

∑
i∈N

ti(a)

pdAGVAi =
1

n− 1

∑
j ̸=i

δj(tj)− δi(ti),

named after d’Aspremont, Gerard-Varet, Arrow, and is also known as the “expected VCG” mechanism. This imple-
mentation is BIC.

Et−i|ti [ti(a
∗(t))− pdAGVAi (t)] = Et−i|ti

∑
j∈N

tj(a
∗(t))

− Et−i|ti

[
1

n− 1
δj(tj)

]

≥ Et−i|ti

∑
j∈N

tj(a
∗(t′i, t−i))

− Et−i|ti

 1

n− 1

∑
j ̸=i

δj(tj)


= Et−i|ti [ti(a

∗(t′i, t−i))− pdAGVAi (t′i, t−i)].

It is also budget-balanced as ∑
i∈N

pdAGVAi =
1

n− 1

∑
i∈N

∑
j ̸=i

δj(tj)−
∑
i∈N

δi(ti) = 0.

However, it is not IIR.
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Theorem 5.75 (Myerson-Satterthwaite). In a bilateral trade (that involves two types of agents, seller and buyer), no
mechanism can be simultaneously BIC, efficient, IIR, and budget-balanced.
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