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§1. Different Types of Algorithms

1.1. Asymptotic Notation

1.1.1. Big-O Notation

Consider the following basic algorithm we use to check primality (checking if any 2 ≤ i ≤
√
n divides n):

Algorithm 1: Algorithm to check if a number is prime

Input: A non-negative integer n
Output: If n is prime, output true else false

1 flag← true
2 for i = 2 to

√
n do

3 if i divides n then
4 flag← false

5 return flag

Is the above a polynomial time algorithm?
No! It is polynomial in n, but not polynomial in the input size log n.1

While analyzing algorithms in general, it is important to look at the input size, the number of bits that constitute
the input.

Definition 1.1 (Big-O notation). T (n) is said to be O(f(n)) if there is some c > 0 and N ∈ N such that for all
n > N , T (n) ≤ cf(n).

This notation is often abused to say, for example, that
√
n = O(n) (instead of the correct

√
n ∈ O(n)).

Definition 1.2 (Big-Ω notation). T (n) is said to be Ω(f(n)) if there is some c > 0 and N ∈ N such that for all
n > N , T (n) ≥ cf(n).

Finally, we have

Definition 1.3 (Θ notation). T (n) is said to be Θ(f(n)) if there are some c1, c2 > 0 and N ∈ N such that for all
n > N , c1f(n) ≤ T (n) ≤ c2f(n).

Equivalently, T (n) ∈ Θ(f(n)) if and only if T (n) ∈ O(f(n)) and T (n) ∈ Ω(f(n)).

1.1.2. A Few Examples

We give a few examples with the aim of hopefully making the above notation more clear.

1. O(n). Given an array A containing n integers (0-indexed), find the value of the maximum element in the array.
Consider Algorithm 2 that takes O(n) time.

The bits used to represent each A[i] is logm. We are assuming that comparison takes constant time. Technically
the following algorithm is O(n logm), but we often blur the details slightly. To be completely correct, we should
say that the algorithm performs O(n) comparisons.

2. O(n log n). Given an array A containing n elements (0-indexed), sort the array.
The merge sort algorithm performs O(n log n) comparisons. We do not explicitly write out the algorithm.

3. O(n2). Given n points p1 = (x1, y1), . . . , pn = (xn, yn) in the plane, output a pair i, j such that the distance
between pi and pj is minimum.

The algorithm is described in Algorithm 3.

This problem can in fact be solved in O(n log n) time, as we shall see in Section 1.3.2.

1A polynomial time algorithm was described in [AKS02].
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Algorithm 2: Algorithm to find the maximum element in an array

Input: An array A containing n integers
Output: The maximum element in A

1 max← A[0]
2 for i = 1 to n− 1 do
3 if A[i] > max then
4 max← A[i]

5 return max

Algorithm 3: Algorithm to find a closest pair of points

Input: n ≥ 2 points p1 = (x1, y1), . . . , pn = (xn, yn)
Output: i, j ∈ [n] such that the distance between pi and pj is minimum

1 i1, i2 ← 0, 1
2 min← (x1 − x2)2 + (y1 − y2)2

3 for i = 1 to n do
4 for j = i+ 1 to n do
5 d← (xi − xj)2 + (yi − yj)2
6 if d < min then
7 min← d
8 i1, i2 ← i, j

9 return i1, i2

4. O(nk). Given a graph G = (V,E), find a S ⊆ V such that |S| = k and there is no edge between any two nodes
in S.
The above is known as the “independent set problem”. The counterpart with an edge between any two nodes
is known as the “clique problem”.
This is easily done by just checking every subset of size k, of which there are

(
n
k

)
O(k2) = O(nkk2) (there are

O(k2) comparisons for each subset). Since k is constant, this is just O(nk).

So for constant k, this is technically polynomial, but for reasonably large k, this is terrible. In fact, if we want
to find the largest clique/independent set in a graph, then a polynomial time algorithm (in n) is not known at
all. Indeed, this is an “NP-hard” problem, which we shall read more about later.

1.2. Greedy Algorithms

Greed is good, and sometimes, it’s even optimal.

What is a greedy algorithm? It essentially builds a solution in tiny steps, performing some sort of local optimization,
which ends up optimizing the problem requirement globally.
It is quite clear that greedy algorithms needn’t always work, we must pick a local criterion that fits our requirements.

1.2.1. Interval Scheduling

Consider the “interval-scheduling problem”. We have a supercomputer on which jobs need to be scheduled. We are
given n jobs specified by their start and finish times. That is, for i ∈ [n], we are given Ji = (s(i), f(i)). We wish to
schedule as many jobs as possible on the computer. That is, given J = {Ji = (s(i), f(i)) : i ∈ [n]}, find a largest
subset S ⊆ J such that no two intervals in S overlap.
We want maximality in terms of cardinality of S (the number of jobs scheduled), not the total time covered.
Consider the following greedy algorithms.

1. Choose a job with the earliest starting time. This basically says that we never want to leave the computer idle.
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It is easily seen that this need not work, since the job that starts soonest can take a very long time, resulting
in non-optimality.
More concretely, let J = {(0, 3), (1, 2), (2, 3)}.

2. Choose the smallest available job. This needn’t work either, since the smallest job could overshadow multiple
(longer) jobs that intersect it.
For example, let J = {(1, 5), (4, 6), (6, 10)}.

3. Choose the job with the earliest ending time. This does work. The idea behind this is that it tries to keep as
many resources free as possible. One can try playing around with a few examples to convince oneself that it
does work.
But how would we prove that it works?

Let A be the set selected by the (last) greedy algorithm above and OPT denote an optimal solution. We wish to
show that |A| = |OPT|.
Let A = {a1, . . . , ak} and OPT = {b1, . . . , bm}.
Lemma. For r ∈ [k], f(ar) ≤ f(br).

Proof. This is easily shown via induction. For r = 1, it holds by the definition of A. For r > 1, we have (by
induction) f(ar−1) ≤ f(br−1) ≤ s(br). Then since br itself can be chosen by the algorithm, we must have that
f(ar) ≤ f(br). �

This also implies that A is optimal since at each step, the job corresponding to OPT can be picked by A. Try showing
why this implies |A| = |OPT|.2
What is the running time of this algorithm? We first sort the jobs according to their finish times, which takes
O(n log n) comparisons. We then have to scan through all the jobs in this sorted list, which takes O(n) time. The
total running time is thus O(n log n).

1.2.2. Minimal Spanning Subgraph

Now, we consider the “Minimal Spanning Subgraph” problem. Given an undirected connected graph G = (V,E)
and a cost function c : E → Z+, find a subset T ⊆ E such that T spans all the vertices, T is connected, and it is the
set with the least cost among such sets.
It is easy to show that this T must be a tree. Indeed, suppose instead that it is connected, spanning and has a cycle
C. If we delete the costliest edge e on C, then on removing e from T , T remains connected and spanning, but the
weight goes strictly down (since c maps into Z+).
The brute force approach is to just iterate over all distinct spanning trees, but this is obviously quite terrible
(exponential).
As it turns out, nearly any greedy strategy we come up with will work for this problem. We give four such algorithms.

(i) Choose an edge α such that c(α) is minimal. Each subsequent edge is chosen to be the cheapest among the
remaining edges of G while ensuring that we do not form any cycles.

(ii) At each step, delete a costliest edge that does not destroy the connectedness of the graph.

(iii) Pick a vertex x1 of G. Having found vertices x1, . . . , xk and an edge xixj , i < j, for each vertex j with j ≤ k,
select a cheapest edge of the form xix, say xixk+1, where 1 ≤ i ≤ k and xk+1 6∈ {x1, . . . , xk}. The process
terminates after we have selected n− 1 edges.

(iv) This only works if all the edge costs are distinct. First, for each vertex, select the cheapest edge. After
this, repeatedly select a cheapest edge between two distinct connected components until the graph becomes
connected.

The first algorithm is also known as Kruskal’s algorithm. More concretely, what it does is shown in Algorithm 4.
The set thus formed clearly has no cycles by construction. Spanningness follows due to its maximality. Proving that
it is a minimal spanning tree is quite easy in the case where all costs are distinct using the following property of any
minimal spanning tree.

2Attempt to prove that at any step of the algorithm, if Si is the current set, then there is an optimal solution OPT ⊇ Si. Why does
the required follow from this?
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Algorithm 4: Kruskal’s Algorithm

Input: A connected graph G = (V,E) with |V | = n, |E| = m, and a cost function c : E → Z+

Output: A minimal spanning subgraph of G
1 sort(E,c) // sort the elements of E in non-decreasing cost

2 T ← ∅
3 for 1 ≤ i ≤ m do
4 if T ∪ {ei} doesn’t have a cycle then
5 T ← T ∪ {ei}

6 return T

Lemma (Cut Property). Let ∅ 6= S ( V . Let e = vw be the minimal cost edge such that v ∈ S and w ∈ V \ S.
Then every minimal spanning tree of the graph must contain e.

To show that the required follows if we have the cut property, let T be a minimal spanning tree and T ′ the set output
by the algorithm at some intermediate step.
Let e = vw be the first edge added to T ′ in the subsequent steps and S be the neighbourhood of v in T ′. Since the
algorithm was able to add e to T ′, there is no edge in T ′ connecting any node in S to any node in V \ S (we do not
create cycles). We already know that e must be the lowest cost such edge. Then by the cut property, e must be
present in T !
The only issue arises when v is not connected to any vertex in T ′, but this case is easily resolved.
Therefore, T must be minimum spanning.

Let us next show that T is connected. Suppose otherwise. There must then be a non-empty S such that no edge
from S to V \ S is in T . However, as G is connected, there is a minimum cost edge that connects S and V \ S and
by the cut-property, this edge must be in T .

Proof of the cut-property. Suppose we have set S and edge e as in the cut-property. let T be a spanning tree that
does not contain e. Then adding e to T creates a cycle. Let P be a path in T that connects v to w. Let v′ be the
last vertex along this path in S and w′ the first in V \ S. Let e′ = v′w′.
Defining T ′ = T \ {e′} ∪ {e}, we see that T ′ has lower cost than T , thus completing the proof. �

Observe that the second algorithm given above is essentially Kruskal’s algorithm in reverse.

The third algorithm given above arises quite naturally from the cut property – it is known as Prim’s algorithm.

Algorithm 5: Prim’s Algorithm

Input: A connected graph G = (V,E) with |V | = n, |E| = m, and a cost function c : E → Z+

Output: A minimal spanning subgraph of G
1 T ← ∅, S ← {v} // v is an arbitrary node

2 while |S| < n do
3 Compute Es = {vw ∈ E : v ∈ S,w 6∈ S}
4 ẽ← argmine∈Es

c(e)
5 S ← S ∪ {w} // w is the vertex of ẽ that is in V \ S
6 T ← T ∪ {ẽ}
7 return T

Proving optimality of the set output by the above is easily shown using the cut-property.

As a slight detour from what we have done thus far, how would one implement Prim’s algorithm? We are given an
undirected graph G = (V,E) with edge costs given in an adjacency list and a source vertex s ∈ V .
We use a method similar to Djikstra’s algorithm. Add an arbitary start vertex to the queue with key value 0 and let
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all other key values to be ∞. At each step, we use a priority queue to extract the node with the minimum key value
from the queue. Explore the neighbourhood of the node, updating the key value. Here, the key value is the cost of
the smallest cost edge leading to a node. The only change here is the update step, everything else is as in Djikstra’s.
The time complexity of this is the same as Djikstra’s, namely O((m+ n) log n).

1.2.3. Huffman Coding

Given a file with data from an alphabet, convert it to a binary alphabet using as few bits as possible while keeping
it uniquely decodable. For example, if we had Σ = {a, b, c, d, e}, using 3 bits would definitely get the job done since
dlog2(5)e = 3.
Suppose further that a, b, c, d, e occur with frequencies 100, 3, 5, 45, 20 respectively. Using 3 bits for each would result
in a total of 519 bits.
What if instead, we use fewer bits for letters that occur frequently? For example, what if we encode it as

{a 7→ 0), b 7→ 100, c 7→ 010, d 7→ 1, e 7→ 01}?

This would only use 209 bits, which is obviously a huge improvement. However, this is not uniquely decodable
(consider 0101).

Prefix-free encoding. It turns out that we must encode the letters such that each has a unique prefix (to ensure
unique decoding). Consider

{a 7→ 1, b 7→ 0000, c 7→ 0001, d 7→ 01, e 7→ 001}.

This enables unique decoding and uses 282 bits, which is obviously far better than 519. It uses fewer bits for low
frequency letters, but a quite high number of bits for low frequency letters. Is it optimal? It is important to note
that we desire optimality for this specific set of frequencies.

Greedy Strategy I. Sort the frequencies in non-increasing order (f1 ≥ · · · ≥ fn). Use an i-length prefix-free
string for fi. It is quite easy to see that this fails spectacularly if all the frequencies are equal – in this case, the
näıve encoding where each character takes log n bits is optimal.

Greedy Strategy II. This is a top-down strategy. Divide the letters into two sets of almost equal frequencies.
Recursively code the two sets, giving a shorter prefix to the more frequent of the two sets. It turns out that this
isn’t optimal either.
This algorithm essentially creates a tree such that the nodes are subsets of the alphabet, leaves are single letters, and
the depth of a leaf is the length of the code word associated with it. Specifying the tree specifies the code generated
by this strategy (Why?).
The issue with this strategy is that we don’t completely specify what “almost equal frequencies” mean, it is under-
specified.

Greedy Strategy III. Since the top-down strategy doesn’t work, perhaps we can try a bottom-up strategy. To
construct the tree mentioned in the previous paragraph, start with the two least frequently occurring elements, say
f, f ′. Assign a string (suffix) 0 to one and 1 to the other. Combine the two frequencies to create a new letter with
frequency f + f ′. Repeat until all letters are assigned strings.
This strategy is optimal.
How do we prove correctness? For a tree T corresponding to a prefix-free encoding of Σ, we can associate it to a cost

c(T ) =
∑

1≤i≤n

fidT (ai),

where dT (ai) is the depth of ai in T .
Observe that any optimal tree must be a full binary tree (any internal node has 2 children) – if not, we can shift
leaves lower down to a higher position and decrease the cost.

Lemma. Consider the two letters x and y with the smallest frequencies. There is an optimal code tree T ∗ in which
these two letters are sibling leaves at the lowest level.
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Algorithm 6: Huffman Coding

Input: An alphabet Σ = {a1, . . . , an} and a frequency fi for each ai.
Output: A binary encoding of the letters for optimal compression

1 for 1 ≤ i ≤ n do
2 Create a leaf node for ai
3 Insert it into the min-heap H with fi as the key

4 while H has > 1 elements do
5 Extract the two nodes with lowest key value from H, say u, v with keys fu, fv
6 Create a new internal node w and fw ← fu + fv
7 Let u be w’s left child and v its right child
8 Insert w into H with key fw.

9 return H

Proof. Let a and b be two letters at the lowest level of an optimal tree T that are siblings of each other. Let their
frequencies be fa and fb. Assume fx ≤ fy and fa ≤ fb. We may further assume that fx < fa.
Let T ′ be a tree formed from T by exchanging a and x. We know that dT (a) ≥ dT (x) and dT (b) ≥ dT (y). By
definition, we have c(T ) ≤ c(T ′). This implies that

c(T ′) ≤ c(T )− (dT (x)fx + dT (a)fa − dT ′(x)fx − dT ′(a)fa) = c(T )− (dT (x)(fx − fa) + dT (a)(fa − fx)) < c(T ),

thus yielding a contradiction and proving the claim.
Now, we have x and b as neighbours at the lowest level. We may assume fy < fb. Switching y and b as before, we
get the required. �

We shall next show that if a step in the algorithm is correct, the next step is also correct (the above lemma says that
the first step is correct). That is,

Lemma. Let T be a tree corresponding to an optimal encoding of Σ. Let x, y be sibling leaves of T and z their
parent in T . Let fz = fx + fy, T ′ = T \ {x, y}, and Σ′ = Σ \ {x, y} ∪ {z}. Then T ′ corresponds to an optimal
encoding of Σ′.

Proof. We have
c(T ′) = c(T )− dT (x)(fx + fy) + (dT (x)− 1)fz = c(T )− fz.

Non-optimality of T ′ is seen to result in non-optimality of T (if it is not optimal, then substituting z back with x
and y in an optimal solution results in an encoding of Σ with cost strictly less than that of T ), thus proving the
claim. �

Why does correctness follow? At each step, we are restricting ourselves to a smaller set while maintaining the
presence of an optimal solution with the current (partial) mapping. At the end, the current mapping is a complete
mapping, thus implying optimality.

1.3. Divide and Conquer Algorithms

The basic paradigm is as follows:

� A task needs to be solved on an instance of size n.

� Divide it into, say, k parts of size n/k each.

� Invoke recursion to solve each of these sub-problems.

� Combine the smaller answers to get the larger answer.
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We divide, delegate, and combine. Once we have the answers, we get the time complexity as

T (n) = kT (n+ k) + time to combine.

This can be unrolled using the Master Theorem:

Theorem 1.1 (Master Theorem). Let T (n) = aT (n/b) + Θ(nc), where a, b, c ∈ N, a ≥ 1, b > 1, and c ≥ 0. Then

� T (n) = Θ(nc) if a < bc,

� T (n) = Θ(nc log n) if a = bc, and

� T (n) = Θ(nlogb a) if a > bc.

More generally, if T (n) = aT (n/b) + f(n), where a, b ∈ N, a ≥ 1, and b > 1, then

� T (n) = Θ(f(n)) if f(n) = Ω(nlogb a+ε) for all ε > 0,

� T (n) = Θ(nlogb a log n) if f(n) = Θ(nlogb a), and

� T (n) = Θ(nlogb a) if f(n) = O(nlogb a−ε) for all ε > 0.

A popular example of the divide and conquer paradigm is merge-sort. To sort an array, we divide it into two halves,
sort the two halves separately, and merge the two (sorted) halves in sorted order. The overall time complexity is
O(n log n).

While in greedy algorithms the proof mainly comprised of showing that they return the correct answer, here the
main issue is in showing that the algorithm actually runs – that the recombination is justified at each step.

1.3.1. Integer Multiplication

The input is two n-digit (non-negative) numbers x and y in decimal notation and we need to compute x× y.

The basic algorithm studied in grade school is quite simple. What is the time complexity of this algorithm? It is
quadratic in the number of digits (O(n2)). Here, the assumption is that adding two single digit numbers, multiply-
ing two single digit numbers, or inserting a zero at the end of a number each take O(1) time. We stick with this
assumption for the remainder of this section.

Is it possible to do better? The main algorithm we shall see in this section is known as Karatsuba’s Algorithm.
Motivated by the divide-and-conquer paradigm, perhaps we could split each of the n-digit numbers into two numbers,
each of (n/2) digits. So for example, we split 1234 as 12 and 34.
In general, suppose we split x and y as a, b and c, d respectively. We compute X = a × c and Y = b × d. We then
compute Z = (a+ b) · (c+ d) and W = Z −X − Y . Finally, return 10n ·X + 10n/2 ·W + Y . Indeed,

x× y = (10n/2a+ b)× (10n/2c+ d)

= 10n(a× c) + 10n/2(a× d+ b× c) + b× d
= 10n ·X + 10n/2 ·W + Y,

so the algorithm is correct (we must use an inductive argument to conclude since calculating each of X,Z, Y use the
same algorithm).
Is this an improvement over the näıve grade school algorithm? To perform the task for size n, we perform the task
of size (n/2) 3 times (for X,Y, Z) so

T (n) = 3T (n/2) +O(n).

We have assumed that addition/subtraction take O(n).
Using the master theorem, it is easy to conclude that T (n) = O(nlog 3) = O(n1.584).
Note that if we instead calculate a× d and b× c separately (instead of calculating Z), there are 4 tasks of size n/2



CS 218: Design and Analysis of Algorithms 9 Amit Rajaraman

at each step which results in an overall time of O(n2).

Later, Andrei Toom broke the numbers into 3 parts and showed that 5 multiplications are enough. This gives
T (n) = 5T (n/3) +O(n), resulting in a time complexity of O(nlog3 5) = O(n1.465).

Stephen Cook attempted to generalize this idea even further. Breaking it into r parts reduces it to O(C(r)nlogr(2r−1)),
where C(r) is some constant depending on r.
Later, Schönhage and Strassen managed to breach the n1+ε barrier and got it down to O(n log n log log n). They
also conjectured that O(n log n) is the best possible running time.
Martin Fürer got it down to O(n2log

∗ n log n) in 2007.
In 2019, Harvey and Hoeven managed to get the “perfect” method which takes O(n log n). Soon after, a team at
Aarhus University managed to prove that assuming the (unproven) Valiant’s conjecture, this is indeed the best we
can do.

1.3.2. Closest points in a plane

Suppose we have n points p1 = (x1, y1), . . . , pn = (xn, yn). We want to find i, j such that the distance between pi
and pj is minimum.

There is obviously a näıve O(n2) algorithm which does pairwise comparisons. Can we do better?

In the one-dimensional case, we can sort the points in O(n log n) and then iterate through the points in O(n) to find
the closest pair, which takes an overall time of O(n log n).
How would we extend this to two dimensions? There is no ordering for the points in R2, so a similar idea will not work.

Divide the points into two halves. Recursively find the closest pair in each half. Finally, combine. The problematic
part here is the recombination, which we want to take O(n).
If we just compare every pair across halves however, it takes Ω(n2).

Suppose we split it into two halves based on the x-coordinates. Recursively compute the closest pair in each of the
two halves. Let the minimum of these two distances be d. If the first division does not separate the closest pair, then
d is the answer.
How many “cross-pairs” need to be checked though? Observe that we don’t need to check anything for the points
that are farther than d from the central separating line (Why?). But in the worst case, we might still need to check
several points.

Lemma. Let Sy = (q1, . . . , qm) be the points in the distance d region sorted in decreasing order of their y coordinates.
If the distance between qi and qj is less than d, then j − i ≤ 11.

Proof. Consider the distance d region split into (closed) squares of side length (d/2). In each row, there are 4 squares.
Note that in each box, there is at most 1 point (if there was more than one, the minimum distance in one of the
halves would be less than d). Suppose that there are more than 11 indices between i and j. Then at least 2 full rows
separate the boxes containing qi and qj . However, this would imply that the distance between qi and qj is ≥ d, thus
yielding a contradiction and proving the claim. �

It is worth noting that the constant can be better than 11, but this is just a constant factor change and doesn’t
change the actual running time of the algorithm.
This then gives an O(n log n) algorithm. Computing the first half of Px (or Py) takes O(n), and computing the
answers by comparing the distances with the middle band takes O(n). Therefore,

t(n) ≤ 2t(n/2) +O(n) and the running time is T (n) = t(n) +O(n log n),

where the extra O(n log n) comes from having to sort the points based on x and y coordinate ahead of time.
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1.3.3. Univariate polynomial multiplication

The input is two univariate polynomials A,B of degree n− 1, which are described by coefficient vectors (ai) and (bi)
of length n. The desired output is C(x) = A(x)B(x) as a coefficient vector (ci) of length 2n− 1.
This problem is also known as the “convolution problem”.
It is seen that

ck =
∑
i,j<n
i+j=k

aibj ,

so a näıve O(n2) algorithm is easy to come up with. Note that here, we sweep the time taken to actually multiply
integers under the rug, assuming that they can be done in constant time.
This problem feels quite similar in spirit to the integer polynomial multiplication algorithm that we have already
seen. While something faintly similar to Karatsuba’s would work, we need to make several significant changes to
modify it into this (more general) context.
Inspired by what we got in Karatsuba’s, can we do better than O(n2)?

Rather than multiplying A and B symbolically, consider evaluation of these polynomials. First, choose 2n values
α1, . . . , α2n, evaluate A and B at these points and then compute C(αj) = A(αj)B(αj) for each j. Next, recover
C(x) from the evaluations by interpolating.
We have skimmed over most details here.
Since integer multiplication is assumed to take constant time, computing all the C(αj) given A(αj) and B(αj) takes
only O(n) time.
However, evaluating a polynomial at a single value takes Ω(n) time and we need to do so O(n) times! This gives
a total time of O(n2), which we still can’t afford. We can’t just separately evaluate each of the A(αj) and B(αj)
hoping for it to work fast.

What is a more systematic and fast way of calculating A(αi) and B(αi)? Perhaps we could somehow use values
already calculated to speed up the current calculation.
Split the polynomial A into two parts:

A0(x) = a0 + a2x+ a4x
2 + · · ·+ an−2x

(n−2)/2

and
A1(x) = a1 + a3x+ a5x

2 + · · ·+ an−1x
(n−2)/2.

Observe that A(x) = A0(x2) + xA1(x2) and the degree of each is around half the degree of A. Also observe that if
we know A0 and A1, we can evaluate A in a constant number of operations.
The 2n values we choose should be related to each other to make the evaluations reusable. Consider the kth roots
of unity given by ωj,k = e(2πi)j/k for 0 ≤ j ≤ k − 1. For our 2n evaluations, we shall use the 2nth roots of unity.
The useful thing to note is that ω2

j,2n = ωj,n.

Using this in our equation,
A(ωj,2n) = A0(ωj,n) + ωj,2nA1(ωj,n).

This is exactly what we desire from a divide and conquer algorithm! To calculate the value of A at the 2nth roots
of unity, we reduce it to evaluating the value of two polynomials of half the degree at the nth roots of unity.
Since it takes constant time to combine the evaluations, the recursion is just

T (n− 1) = 2T

(
n− 2

2

)
+O(n) = O(n log n).

This rough idea is known as the Fast Fourier Transform and is extremely powerful (in fact, it is used in the faster
algorithms in integer multiplication as well).
The final step in the algorithm, recovering C from its evaluations at 2n− 1 points, can be done in O(n log n) using
Lagrange interpolation.
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We essentially have the following.
1 α1 · · · α2n−1

1

1 α2 · · · α2n−1
2

...
...

. . .
...

1 α2n−1 · · · α2n−1
2n−1




c0
c1
...

c2n−1

 =


C(α1)
C(α2)

...
C(αn)

 .

In general, solving this set of equations takes O(n3) by inverting the Vandermonde matrix on the left. However, we
do not have any arbitrary points. Can we do better?
We shall reduce the problem of interpolation of C to the evaluation of another polynomial D.

Lemma. Let C(x) =
∑2n−1
s=0 csx

s and D(x) =
∑2n−1
s=0 dsx

s, where for each s, ds = C(ωs,2n). Then for each s,

cs =
1

2n
D(ω2n−s,2n).

This allows us to evaluate the (cs) in O(n log n) time by evaluating D at the required points (using the methods we
have already seen).

1.4. Dynamic Programming

1.4.1. The Paradigm

Dynamic programming has a very standard template.

1. Figure out the types of sub-problems.

2. Define a recursive procedure.

3. Decide on the memoization strategy3, which involves keeping a memo of things we’ve done so far.

4. Check that the sub-problem dependencies are acyclic (we don’t get stuck in cycles in the recursion).

5. Analyze the time complexity using the recursion.

This is hopefully made more clear by the following several examples.

1.4.2. Fibonacci Numbers

Say we wish to find the kth Fibonacci number Fk.

The näıve algorithm where we recursively calculate Fk−1 and Fk−2 takes running time

T (k) = T (k − 1) + T (k − 2) + 1 = O(2n).

This algorithm is obviously extremely inefficient. Observe that each Fr is calculated multiple times, resulting in a

3No, there is no typo here.
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lot of redundancy. Since we’ve already calculated it, we don’t really need to recurse. How do we implement this?

Algorithm 7: Calculating the kth Fibonacci number

1 Fibo(r)
2 if Table contains Fibo(r) then
3 return the table value

4 if r = 0 or r = 1 then
5 val← k
6 Store val as the kth entry

7 else
8 val← Fibo(r − 1) + Fibo(r − 2)
9 Store val as the rth entry in the table

10 return val

11 return Fibo (k)

1.4.3. Weighted Interval Scheduling

This problem is quite similar to the usual interval scheduling problem we studied, except that instead of maximizing
the cardinality of the chosen set, we want to maximize the sum of the weights of the chosen set.
There is no nice greedy heuristic for this, can we design a recursive algorithm that works well?

Sort the jobs in decreasing order of finishing time. For each i, denote by p(i) the last job j with j < i that does not
conflict with i.
Suppose we iterate backwards and we are currently at index j. Then if the jth job is in an optimal solution OPT,
then no job i with j > i > p(n) cannot belong to OPT. If j 6∈ OPT, then we can recurse on {1, . . . , j − 1}.

Algorithm 8: Weighted Interval Scheduling Problem

Input: A set of n tasks, each with a start time s(i), finish time f(i), and weight w(i) ordered in
non-increasing finish time.

Output: An optimal solution to the weighted interval scheduling problem
1 WtIntSc(i)
2 if i = 0 then
3 return i
4 else
5 if Table(i) is non-empty then
6 return
7 else
8 Table(i)

9

10 Table(i)← max{w(i) + WtIntSc(p(i)), WtIntSc(i− 1)}
11 return WtIntSc (n)

Correctness is easily quite shown using strong induction on i – that WtIntSc(i) omputes the optimal solution for
the subproblem containing tasks {1, . . . , i}, where the jobs are ordered according to their finish times.

The sorting takes O(n log n) time. Computing the p(i) takes O(n log n) using binary search. The number of calls
made to the subroutine WtIntSc is O(n). Therefore, the overall time is O(n log n).

1.4.4. String-Related Problems

There are numerous interesting problems that are related to strings/sequences which can be solved using dynamic
programming.
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1. Figure out the parenthesization of an expression that minimizes the overall cost of evaluating the expression.

2. Given a string of positive numbers, find the longest increasing subsequence.

3. Given a long string of letters, find a way (if one exists) to segment the string into chunks such that the segmented
string is a statement that makes sense (in a particular language).

4. Given two strings, find the longest subsequence common to both.

5. Given two string x and y, find the smallest number of updates (deletions, insertions, and swaps) needed to
convert x into y.

In string-related problems, the sub-problem tends to be something of the form suff[1, i], pre[i, n], or sometimes
substring[i, j].
Let us look at the parenthesization problem for example. Suppose we have a n × 1 matrix A, a 1 × n matrix B,
and a n× 1 matrix C and we want to compute A×B × C. If we parenthesize it as (A×B)× C, it will cost O(n2)
operations. If we compute it as A × (B × C) on the other hand, it will cost O(n) operations. In general, we want
the intermediate steps to result in small matrices.
Suppose we have a string of matrices A1, . . . , An, where each Ai is of size ci × ri.

1. Figure out the types of sub-problems. If we guess the topmost multiplication (the outermost one) of an optimal
solution, then the sub-problems are the two smaller multiplications. So if we split it as (A1×· · ·×Ak)×(Ak+1×
· · · × An), the two expressions are the sub-problems. Subdividing further, the sub-problems are intervals. Let
us denote Ai × · · · ×Aj as A[i,j].

2. Define a recursive procedure. Denote by para(i, j) the problem of computing the minimum cost parenthesization
of A[i,j]. We see that

para(i, j) = min
i≤k<j

{para(i, k) + para(k + 1, j) + cost(i, k, j)} ,

where cost(i, k, j) is the cost of computing the product of a ci × rk matrix (A[i,k]) and a ck+1 × rj matrix
(A[k+1,j]).

3. Decide on the memoization strategy. This can be done on the fly since cost(i, j, k) can be computed in O(1)
time. We recursively store the computed values of para(i, j), starting from small intervals and building up to
larger intervals.

4. Check that the problems are acyclic. There is nothing much to argue here, the para routine uses smaller
intervals for larger intervals.

5. Analyze the time complexity using the recursion. The total number of sub-problems in O(n2). For each sub-
problem, the time required is the time needed to compute a minimum over a set of values. Interval [i, j] takes
O(j − i) = O(n) time. Therefore, the total time required is O(n3).

1.4.5. The Shortest Path Problem

Given a directed graph G = (V,E) and a weight function w : E → Z and two designated vertices s, t ∈ V , find the
length of the shortest path from s to t.

This is slightly different from the usual problem that Djikstra’s algorithm solves because weights can be negative.
What happens if the graph has cycles? It is possible to have a cycle with overall negative weight, so we could just
loop in the cycle for an arbitrary amount of time, thus resulting in arbitrarily low (very negative) cost. Such a cycle
is known as a “negative cycle”.
Therefore, let us restrict ourselves to directed acyclic graphs for now (a more logical restriction would be to one only
without negative cycles, but let us stick with this).

Can we apply Djikstra’s algorithm directly? No, we cannot. Consider the graph with V = {a, b, c}, E = { #»ac,
#»

ab,
#»

bc},
s = a, t = c, and w = { #»ac 7→ 1,

#»

ab 7→ 2,
#»

bc 7→ −5}.
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It is solved using Bellman and Ford’s Algorithm.
Let OPT(v, t) be the minimum weight of v to t path. We want to compute OPT(s, t). Observe that

OPT(s, t) = min
u: #»su∈E

{w( # »su) + OPT(u, t)}.

This easily yields itself to a dynamic programming algorithm, with the above being the central recursion.
The memoization strategy involves remembering previously computed OPT(u, t). The problems are acyclic because
the graph is acyclic.
What is the time complexity? There are at most |V | sub-problems and each sub-problem takes time O(|V |) (we need
to find the minimum of at most |V | − 1 elements). So the algorithm is overall O(|V |+ |E|).

Now what happens if the algorithm has cycles, but no negative weight cycles? Is it possible to modify the above
existing algorithm? Maybe we can use some sort of “time-stamp” idea.
For each i, denote by OPT(v, i) the minimum weight path from v to t that uses at most i edges. We want to compute
OPT(s, n− 1) (because all cycles are non-negative cycles).
The recursion is given by

OPT(v, i) = min

{
OPT(v, i− 1), min

u: # »vu∈E
{w( # »su) + OPT(u, i− 1)}

}
. (1.1)

The memoization strategy involves creating a table M with n rows and n columns, where the (v, i)th entry contains
the weight of OPT(v, i).
The sub-problem dependencies are acyclic because i decreases at every step.

Algorithm 9: Bellman and Ford’s Algorithm

Input: A set of n tasks, each with a start time s(i), finish time f(i), and weight w(i) ordered in
non-increasing finish time.

Output: An optimal solution to the weighted interval scheduling problem
1 ShortestPath(G, s, t)
2 M [t, 0]← 0
3 for v ∈ V \ {t} and i ∈ [n− 1] do
4 M [v, i]←∞
5 for i = 1 to n− 1 do
6 for v ∈ V do
7 Compute M [v, i] using Equation (1.1)

8 return M [s, n− 1]

The table has O(n2) entries and each entry is filled in O(n). Therefore, the total running time is O(n3).

A problem related to the one we have studied here is Cycle(G, t), where given a directed graph G = (V,E), a function
w : E → Z, and a designated vertex t ∈ V , we output yes iff there is a negative cycle with a path reaching t.
Another is Cycle(G), where we return yes iff there is a negative cycle in the graph.

Cycle(G, t) and Cycle(G) are closely interrelated. If we solve Cycle(G, t), then we claim to be able to solve Cycle(G).
This is known as a reduction, which we shall look at in more detail later on.
Given a graph G = (V,E), add a new vertex t0 to it. Add directed edges from every v ∈ V to t0 of weight 0.
Let this graph be G′. Then solving Cycle(G′, t0) is equivalent to solving Cycle(G)! This reduction is symbolically
represented as Cycle(G) ≤ Cycle(G′, t0).
It only remains to solve Cycle(G, t).

Lemma. There is no negative cycle in G with a path to t iff OPT(v, i) = OPT(v, n− 1) for every v ∈ V and i ≥ n.

Above, OPT is the same as what we defined in Bellman and Ford’s Algorithm. The proof for the above is quite clear.
If a node v can reach t and is part of a negative cycle, then increasing i, OPT(v, i) can be made arbitrarily small.

Lemma. There is no negative cycle in G with a path to t iff OPT(v, n) = OPT(v, n− 1) for each v ∈ V .
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1.5. Exercises

Exercise 1.1. Let A be an array of n distinct numbers. A number at location 1 < i < n is said to be a maxima
in the array if A[i − 1] < A[i] and A[i] > A[i + 1]. Also, A[1] is a maxima if A[2] < A[1] and A[n] is a maxima if
A[n] > A[n− 1]. Find a maxima in the array in time O(log n).

Solution

The basic idea behind this algorithm is to, at each step, greedily check the half of the array that contains the
greater element among the two neighbours of the current element. It is described more precisely in Algorithm 10.
We encourage the reader to prove the correctness of this algorithm.

Algorithm 10: Solution 1.1

Input: An array A containing n elements (1-indexed)
Output: A maxima in A

1 greedyStep(B)
2 if size(B) = 1 then
3 return B[0]

4 mid← size(B)/2
5 if B[mid] > B[mid + 1] and B[mid] > B[mid− 1] then
6 return B[mid]

7 else if B[mid] ≤ B[mid− 1] then
8 return greedyStep(B[1 : mid/2])

9 else if B[mid] ≤ B[mid + 1] then
10 return greedyStep(B[1 + mid/2 : size(B)])

11 return greedyStep(A)

Exercise 1.2. Let G = (V,E) be an undirected graph. Consider the following greedy algorithm:

Algorithm 11: Exercise 1.2

Input: A connected graph G = (V,E) with |V | = n, |E| = m, and a cost function c : E → Z+

1 M ← ∅. Let V (M) be the set of vertices in M .
2 foreach uv ∈ E do
3 if V (M) ∩ {u, v} = ∅ then
4 M ←M ∪ {uv}

5 return M

(a) Give a graph G such that the above algorithm may not output a perfect matching in G even if it has a perfect
matching.

(b) Give a graph that has a perfect matching M and a maximal matching M ′ such that M ′ 6= M .

(c) Prove that the above algorithm finds a maximal matching.

Solution

For parts (a) and (b), consider the graphG = (V,E) with V = {1, 2, 3, 4} and E = {{1, 2}, {2, 3}, {3, 4}, {4, 1}, {1, 3}}.
Then {{1, 3}} is a maximal matching but not a perfect matching and {{1, 2}, {3, 4}} is a maximal matching.
The former may be output by the algorithm depending on which edge is chosen.
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Part (c) is easily shown. If the output is not a maximal matching, then there is some edge e = vw such that
E ∩ {v, w} = ∅ (by definition). However, this contradicts the termination of the algorithm, thus proving the
required.

Exercise 1.3. Consider the following modified interval scheduling problem. There are n jobs, each with a start and
finish time (s(i), f(i)) and in addition, they have a (positive) weight w(i). The problem is to maximize the total
weight of the jobs scheduled on a (single) machine. For the sake of brevity, we denote the set of jobs J by a set of
tuples with the ith tuple being (s(i), f(i), w(i)).

(a) Show that the algorithm for the usual interval scheduling need not give an optimal solution for this problem.

(b) Suppose a greedy algorithm picks the largest weight job with the earliest finishing time among the available jobs
at each step. Prove/disprove that this strategy works.

(c) We say that jobs J and J ′ overlap, denoted J‖J ′, if J ∩ J ′ 6= ∅. For a job Ji, define Oi =
∑
i′:Ji′∩Ji

w(i′), called
the overlap-weight of Ji. Consider a greedy algorithm that schedules a job with the smallest overlap-weight
among the available jobs at each step. Prove/disprove that this algorithm gives the optimal solution.

Solution

(a) Consider the set of jobs J = {(1, 2, 5), (1, 3, 10)}. Then the algorithm chooses only the first job, while the
optimal solution picks the second.

(b) Consider the set of jobs J = {(1, 2, 5), (2, 3, 5), (1, 3, 8)}. Then this algorithm chooses only the third job,
whereas the optimal solution picks the first two.

(c) The algorithm is incorrect. Consider the counterexample

J = {(0, 1, 1), (1, 2, 1), (0, 2, 3)}.

Then the algorithm chooses jobs 1 and 2, whereas the (unique) optimal solution picks job 3.
The reader might be tempted to think that the algorithm would work if in the definition of Oi, we only
consider those i′ 6= i. However, this doesn’t work either. Indeed, consider

J = {(1, 3, 5), (1, 2, 1), (2, 4, 5), (3, 5, 5), (4, 5, 1)}.

The algorithm chooses jobs 2, 3, and 5, whereas the (unique) optimal solution chooses jobs 1 and 4.
This idea is made more natural on rewriting the problem as finding A ⊆ [n] that minimizes w

(⋃
i∈AO(i)

)
,

where O(i) = {i′ ∈ [n] : i′ 6= i and Ji′‖Ji} and w(S) =
∑
s∈S w(s) for any S ⊆ [n]. The issue arises because

a single j might appear in multiple O(i). It is worth noting that there is a dynamic programming algorithm
to solve this problem (which we shall study later).

Exercise 1.4. You are given a set S of n pairs of numbers (`1, c1), (`2, c2), . . . , (`n, cn) and some C (all positive).
You are required to find a subset T of [n] such that

∑
i∈T ci ≤ C while maximizing the sum

∑
i∈T `i. Consider the

algorithm to do the same that picks jobs with the largest values of `i/ci. This is described in Algorithm 12.

(a) Show that this algorithm need not find the optimal subset.

(b) Can you suggest any other greedy strategy to come up with the optimal subset in the above setting?

(c) Suppose that a “fractional” part of each of the n pairs can be taken. Choosing a fraction fi of the item ci adds
cost cifi. Give an optimal algorithm in this case. That is, we want to maximize

∑
i∈[n] fi`i constrained by∑

i∈[n] fici ≤ C.

The above problem is more often known as the “knapsack problem”.
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Algorithm 12: Exercise 1.4

Input: A set S of n tuples (`i, ci) (each positive) and some C > 0
Output: T ⊆ [n] that maximizes

∑
i∈S `i subject to the constraint

∑
i∈S ci ≤ C

1 merge-sort(S, `i/ci) // Arrange in non-increasing order of (`i/ci)

2 S ← ∅, cost← 0
3 for 1 ≤ i ≤ n do
4 if cost + ci ≤ C then
5 S ← S ∪ {i}
6 cost← cost + ci

7 return S

Solution

(a) Consider the set of tuples {(6, 2), (9, 3), (6, 3), (8, 4)} with C = 7. The algorithm returns the set {(6, 2), (9, 3)}
with

∑
i `i = 15 whereas the optimal solution is {(9, 3), (8, 4)} with

∑
i `i = 17.

(b) No, not yet.

(c) In the context of part (b), this just means that instead of choosing an xi ∈ {0, 1} for each i, we choose
fi ∈ [0, 1] for each i. The algorithm is very similar in spirit to that given in the problem statement (of (a)).
It is described explicitly in Algorithm 13. Correctness is easily proved.

Algorithm 13: Solution 1.4(c)

Input: An set S of n tuples (`i, ci) (each positive) and some C > 0
Output: An fi ∈ [0, 1] for each i that maximizes

∑
i∈S fi`i subject to the constraint

∑
i∈S fici ≤ C

1 merge-sort(S, `i/ci)
2 S ← ∅, cost← 0
3 fi ← 0 for each i
4 for 1 ≤ i ≤ n do
5 if cost + ci ≤ C then
6 fi ← 1
7 cost← cost + ci
8 else
9 fi ← (C − cost)/ci

10 break

11 return (fi)

Exercise 1.5. (Dis)prove that when all the edges in an undirected graph have distinct costs, the minimum spanning
tree in the graph is unique.

Solution

Suppose instead there are two distinct MSTs T, T ′. Let e be the least costly edge that is in exactly one of
the trees. Suppose it is in T . T ′ ∪ {e} must contain an edge e′ that is not in T which is in the newly formed
cycle. Then by the MST nature of T ′ and the fact that all edges have distinct costs, c(e) > c(e′) (otherwise,
T ′ ∪ {e} \ {e′} is a strictly cheaper tree). We similarly get c(e′) > c(e), thus resulting in a contradiction and
proving the required.

Exercise 1.6. Suppose we have a computer and some n jobs. For the ith job, there are two parts with durations
t1(i), t2(i) > 0. The part of duration t1(i) must be performed on the computer (only one such part can be scheduled
at a time) whereas the part of duration t2(i) can be performed at any point after the first part of the same job is
done (multiple such parts can be scheduled simultaneously). Give an algorithm that designs an ordering for the jobs
to be sent to the computer such that the overall time taken to complete all jobs is minimized.
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Solution

The problem can be stated alternatively as: given n and two functions t1, t2 : [n] → R+, find a permutation σ
of [n] such that

Qσ = max
k∈[n]

t2(σ(k)) +
∑

1≤i≤k

t1(σ(i))


is minimized. (σ(i) denotes the position that is at the ith index after permuting)
Assume without loss of generality that the jobs are ordered in non-increasing order of t2. We claim that then,
the identity permutation suffices. Let Q be the value of Qσ for the identity permutation and k ∈ [n] attain the
maximum involved. Let σ be any permutation of [n].
Claim. If Qσ ≤ Q, then for every 1 ≤ i ≤ k, 1 ≤ σ(i) ≤ k. This implies that the first k positions permute
among themselves in any optimal solution.
Suppose otherwise and let r = max{j ∈ [n] : σ(j) = i for some 1 ≤ i ≤ k} > k. Then,

Qσ ≥ t2(σ(r)) +
∑

1≤i≤r

t1(σ(i)) > t2(k) +
∑

1≤i≤k

t1(i) = Q,

thus proving the claim.
Now, let σ be a permutation such that Qσ ≤ Q. Then by the above claim and since the t2 are in non-increasing
order, t2(σ(k)) ≥ t2(k). Then

Qσ ≥ t2(σ(k)) +
∑

1≤i≤k

t1(σ(i)) = t2(σ(k)) +
∑

1≤i≤k

t1(i) ≥ Q,

thus implying that the identity permutation is optimal.

Exercise 1.7. Given a set of n intervals, design a greedy algorithm to find the smallest subset of intervals such that
every interval is contained in the union of the intervals of the subset.

Solution

First, we order the intervals as {(a1, b1), (a2, b2), . . . , (an, bn)} such that if j > i, either aj > ai or aj = ai and
bj < bi (not >). We denote (ai, bi) by Ai.
The algorithm performs a linear scan of the Ai. At the first step, choose A1. At some step of the algorithm, let
the last interval chosen be Ak. Among the intervals Ai with ai < bk and bi > bk, choose that interval with the
largest bi. In case there is no such interval, then just choose the first interval encountered with ai ≥ ak.
It is easy to see that any interval is contained in the union of these intervals.

To show correctness, it suffices to consider the first case of the algorithm alone (Why? It splits into smaller
disjoint problems). Let Si be the set of indices chosen by the algorithm so far when we are at index i. We shall
show that for any i, there is an optimal solution OPTi such that Si ⊆ OPTi. For i = 0, it is trivial since ∅ is a
subset of any optimal solution OPT. Suppose it is true for some r − 1 ≥ 0. If the algorithm does not choose r,
then OPTr = OPTr−1 will work. Now, let r be chosen and k be the most recently chosen index. It is easily shown
that OPTr−1 must contain some j such that aj < bk < bj (How?). We can then set OPTr = OPTr−1 \{j}∪{k},
thus proving the claim.
The required follows by the above claim (because the output of the algorithm is a valid solution).

Exercise 1.8. Given a permutation of the numbers 1 through n, count the number of pairs (i, j) such that all
numbers that occur between i and j in the permutation have value between i and j.

Solution

It is relatively straightforward to come up with an O(n2) algorithm for this. It is possible to come up with a
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O(n log n) algorithm as well, which is what we describe here.
Denote the number at index i of the permutation by σi.
As a preprocessing step, for each index i, we compute the largest j such that σj > σi and j < i. This can be
accomplished in O(n), as can be seen in this For index i, denote this number as li.
We iterate upwards from 1 through n, and at each step, we increment our answer by the number of “blocks”
that end at the current index. To do so, maintain an array of indices (which we update as we progress) such
that for any index j in the array, we have not found an element that is less than j yet. That is, if we are at
index i, let

A = (j ∈ [i] : there is no j < k ≤ i such that σk < σj) .

At each step, we first update A. First of all, note that the elements of A are arranged in increasing order (the
(σj) are in increasing order). Indeed, if not, then we have found an element less than j to the right, so it should
not be in the array at all. To update A, find the rightmost (smallest) element in the array that is greater than
σi and remove all the indices before it – this can be done in O(log n) using binary search.
To update the answer at the current step, find the greater index ji that is smaller than li. Increment the answer
by |A| − |A ∩ [ji]|.

https://stackoverflow.com/questions/9493853/given-an-array-find-out-the-next-smaller-element-for-each-element#Stack Overflow answer..


CS 218: Design and Analysis of Algorithms 20 Amit Rajaraman

§2. Flow

2.1. Introduction

Where there are graphs, we tend to see flow networks quite a lot.

Definition 2.1 (Flow Network). A directed graph G = (V,E) together with a capacity function c : E → Z+, a
designated source s, and a designated sink t is known as a flow network.

We shall assume that there are no edges entering s and no edges leaving t.
We can think of s as a source of water, with the intermediate edges being pipes that have some limit to how much
they can carry and the intermediate nodes being junctions that transmit water, and t as a reservoir.
The main question we wish to answer is:

What is the maximum rate that can be sent from the source to the sink without violating any capacity
constraints?

This is modelled more concretely using the following definition.

Definition 2.2 (Flow). A flow in a flow network is a function f : E → R≥0 that satisfies

� Capacity constraints: For each e ∈ E, f(e) ≤ c(e).

� Flow conservation: For each v ∈ V \ {s, t},∑
# »uv∈E

f( # »uv) =
∑

#  »vw∈E
f( #  »vw).

The value of the flow f , denoted |f |, is given by

|f | =
∑
#»sv∈E

f( #»sv).

The flow conservation rule written above is also known as Kirchhoff’s law. For the sake of brevity, we denote

f←(v) =
∑

# »uv∈E
f( # »uv) and

f→(v) =
∑

#  »vw∈E
f( #  »vw).

We then have |f | = f→(s).
For any U ⊆ V , we use f←(U) and f→(U) to denote the flow from V \U to U and U to V \U respectively. That is,

f→(U) =
∑

u∈U,v∈V \U
# »uv∈E

f( # »uv).

Lemma 2.1. For any flow f on a flow network with source s and sink t,

|f | =
∑
#»sv∈E

f( #»sv) = f→(s) =
∑
#»
vt∈E

f(
#»
vt) = f←(t).
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Proof. We have

|f | = f→(s) +
∑

v∈V \{s,t}

(f→(v)− f←(v))

=
∑

v∈V \{t}

(f→(v)− f←(v)) (f←(s) = 0)

= f→(V \ {t})− f←(V \ {t})
= f←(t)− f→(t) = f←(t). (there are no outgoing edges from the sink)

�

2.2. Max-Flow

In the maximum flow problem (shortened as max-flow), we are given a flow network G = (V,E) along with a capacity
function c : E → N. The output should be the maximum valued flow that can be transferred in the network.4

Definition 2.3. Given a directed graph G = (V,E) with source s, sink t, and a capacity function c : E → N, an
(s, t)-cut or just cut is given by S, T ⊆ V such that

� s ∈ S, t ∈ T ,

� S ∪ T = V , and S ∩ T = ∅.

Given an (s, t)-cut (S, T ), we define its capacity by

cap(S, T ) =
∑

u∈S,v∈T
# »uv∈E

c( # »uv).

That is, the capacity of the cut is essentially the capacity of the edges across the cut.
In the minimum cut problem (shortened as min-cut), we are given a flow network G = (V,E) along with a capacity
function c : E → N. The output is the cut that has minimum capacity.
The max-flow and min-cut problems are in fact very closely related. When a minimization problem and maximization
problem are related, we usually refer to it as a min-max relationship.
For a flow f and some edge e, we say that f saturates e if f(e) = c(e) and avoids e if f(e) = 0.

Lemma 2.2. Let f be any flow in a flow network G. Let (S, T ) be any (s, t)-cut in G. Then |f | ≤ cap(S, T ). In
particular, the value of the maximum flow is at most the capacity of the minimum cut. Moreover, |f | = cap(S, T ) if
and only if f saturates every edge from S to T and avoids every edge from T to S.

4This is well-defined even in the case of a real flow since the set of flow values is bounded above by the sum of capacities, so has a
supremum. Further, this bound is attained, as can be shown by considering a sequence of flows that converge (in value) to the maximum
flow value. We can then show that the flow in each edge must converge as well for some subsequence, thus implying the required since
the capacity constraint has a weak inequality and not a strong one.
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Proof. We have

|f | = f→(s)

= f→(S)− f←(S)

≤ f→(S)

=
∑
u∈S
v∈T

f( # »uv) (here, f( # »uv) = 0 if # »uv 6∈ E)

≤
∑
u∈S
v∈T

c( # »uv) = cap(S, T ).

The second part is easily seen from the above series of inequalities, where equality holds iff f←(S) = 0 and for each
u ∈ S, v ∈ T , f( # »uv) = c( # »uv). �

Let us try to come up with an algorithm to solve the max-flow problem.
Let us start with f(e) = 0 for all e ∈ E. We then try to “push” some flow along an s-t path allowed by the capacity
constraints. We then ask if this is the maximum flow possible. We try to push more flow along another path.
However, we might face a problem wherein a previous flow restricts the new flow we are trying to push. We then
want to “undo” the previous flow. How do we formalize this notion?

Definition 2.4 (Residual Graph). Given a graph G with capacity function c : E → N and a flow f , a residual graph
G with respect to f , denoted Gf is such that

� its vertex set is the same as that of G.

� if e is an edge in G such that f(e) < c(e), then Gf has the edge e with capacity c(e)− f(e).

� if e = # »uv is such that f(e) > 0, we add an edge # »vu in Gf with capacity f(e) on it. This is called a backward
edge.

In the above, “undoing” a flow just means sending flow along a backward edge and adding more flow corresponds to
sending a flow along a normal edge (with a lowered capacity). This behaves as an intermediate step to finding the
optimal flow.
For each edge of G, note that there at most two edges in Gf . So, the size of Gf is at most twice that of G.
Let π be any s-t path in Gf . Denote by θ(π, f) the smallest residual capacity (smallest capacity among the relevant
edges in the residual graph) along π in Gf .
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Algorithm 14: Finding an Augmenting Path

1 Aug(π, f)
2 b← θ(π, f)
3 foreach e = # »uv ∈ π do
4 if e is a forward edge then
5 increase f( # »uv) in G by b
6 else
7 decrease f( # »vu) in G by b

Algorithm 15: Ford and Fulkerson’s Algorithm

1 for e ∈ E do
2 f(e)← 0

3 Compute Gf
4 while there is an s-t path π in Gf do
5 f ′ ← Aug(π, f)
6 f ← f ′

7 Compute Gf

8 return f

Algorithm 15 finds a flow with the maximum flow value in the network!
There are a couple of questions we must answer.

� Why does the algorithm terminate?

� Why is the algorithm even correct in the first place?

� What is the time complexity?

� Does it matter which s-t path we choose in the residual graph?

� Could we extend this to the case where capacities are not integers?

Also, what is the relationship between max-flow and min-cut?

Termination. Note that at each step of the algorithm, the new flow f ′ satisfies |f ′| = |f | + θ(π, f). Since the
capacities are always integral (even in the residual graph), the flow value increases by at least 1 at each step. It is
also easy to see that the maximum flow is at most Cmax, which is the sum of the capacity of every edge.
Therefore, the algorithm terminates.

Lemma 2.3. The running time of the algorithm is bounded by O(Cmax|E|).
Proof. In each loop, we require O(m) time to maintain the residual graph. The time to find the s-t path π takes
O(m+ n) and augmenting takes O(n) (there are at most n− 1 vertices on π). Since the loop runs for at most Cmax

iterations, the bound follows.
In fact, we can bound it better as O(f |E|), where f is the maximal flow value. �

Lemma 2.4. The Ford and Fulkerson algorithm returns a flow with maximum value.

Correctness. Denote by f be the flow returned by the Ford-Fulkerson algorithm. Let

A = {v ∈ V : there is a path to v from s in Gf }

and B = V \A. Observe that s ∈ A. Further, when the algorithm terminates, there is no path from s to t in Gf, so
t ∈ B. Since the two sets are disjoint, (A,B) is a cut on G (this makes sense because the two graphs have the same
vertex set).
To show optimality, it suffices to show (using Lemma 2.2) that f saturates every edge from A to B and avoids every
edge from B to A.
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� Suppose instead that there is an edge # »uv ∈ E such that u ∈ A, v ∈ B, and f( # »uv) < c( # »uv). However, then, # »uv
is a forward edge in Gf, so v ∈ A. This is a contradiction and therefore, f saturates every edge from A to B.

� On the other hand, suppose there is an edge # »uv ∈ E with u ∈ B and v ∈ A with f( # »uv) > 0. Then # »vu will be a
backward edge in Gf, so u ∈ A. This is again a contradiction, so f saturates every edge from B to A.

Our analysis shows that the (A,B) cut has capacity equal to |f|. Therefore, |f| is the maximal flow in G and further,
cap(A,B) is the minimum capacity cut in G (this follows from the fact that we have attained this flow value, so it
cannot exceed the capacity of any cut).

Importance of chosen paths. The chosen path turns out to be quite important. An example to highlight this
fact can be found here.

Non-integral capacities. It is not too difficult to show that there is no problem if the costs are rational – the
flow increases by at least 1/q, where q is the maximum denominator of any cost when written as a fraction.
However, it need not terminate when the capacities are irrational. Further, it need not even converge to the correct
value. A counterexample to show this can be found here.
However, there have been far more efficient algorithms for determining max-flow.
The Edmond-Karp algorithm augments along the path π with largest θ(π, f). This in fact runs inO(|E|2 log |E| log |f |).
Augmenting along the shortest path (in terms of number of edges) gives rise to an algorithm that runs in O(|V ||E|2).
Following this, there were numerous algorithms. Most recently, the “compact networks” method proposed by Orlin
in 2012 runs in O(|V ||E|) using dynamic trees.
It is possible to get much faster algorithms if the capacities are all unit. For example, there exists anO(min{|V |2/3, |E|1/2}|E|)
algorithm.

2.3. Applications

Let us look at some applications of the max-flow min-cut theorem, which states that the value of the max-flow is
equal to the capacity of the min-cut.

2.3.1. Edge Disjoint Paths

Let G = (V,E) be a directed graph and s, t ∈ V be designated vertices. Two s-t paths π and π′ are said to be edge
disjoint if they do not share any edges.
The edge disjoint paths problem asks to determine the maximum number of disjoint paths between the source and
sink nodes s and t in a directed graph G.
We claim that this quantity is equal to the maximum flow in the graph if each edge is assigned a capacity of 1.

Lemma 2.5. The max flow value of G is at least k iff G has k edge disjoint paths.
It follows that the max flow value of G is k iff the maximum number of edge disjoint paths in G is k.

Proof. Suppose G has k edge disjoint paths. Consider the flow that sends a flow of 1 along each of these k disjoint
paths from s to t (f(e) = 1 if e belongs to one of the k paths). This gives a flow of value k.

On the other hand, suppose the max flow value of G is k. Then, there is an integral flow f of value k in G (the flow
output by the Ford and Fulkerson algorithm).
By tracing out the edges of flow 1, we can generate k edge disjoint paths. We prove this by induction on the number
of edges that carry non-zero flow on them.5

If there are 0 edges, then there are no disjoint paths and there is nothing to prove.
Say there are t > 0 edges with non-zero flow. Then, let π be an acyclic path from s to t that walks along 1-edges
(why does such a path exist?). Consider the flow f ′ that is the same as f except that f(e) = 0 for any e ∈ π. Now,
since |f ′| < |f | = t, we may consider the resulting edge disjoint paths. We wish to show that π and any of these
paths are disjoint. This is trivial however, by definition, and the claim follows. �

5More precisely, we are proving that given any flow in the graph, there is a decomposition of the edges with non-zero flow into a set
of edge-disjoint paths.

https://en.wikipedia.org/wiki/Ford%E2%80%93Fulkerson_algorithm#Integral_example
https://en.wikipedia.org/wiki/Ford%E2%80%93Fulkerson_algorithm#Non-terminating_example
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2.3.2. Network Connectivity

Let G = (V,E) be a directed graph and s, t be the source and sink. We say that F ⊆ E disconnects s from t if the
removal of F from the graph disconnects t and s.
The network connectivity problem asks to determine what the smallest F ⊆ E that disconnects s from t is.

Theorem 2.6 (Menger’s Theorem). The maximum number of edge-disjoint s-t paths in a graph is equal to the
minimum number of edges whose removal disconnects t from s.

Proof. Suppose the graph has capacities as defined in Section 2.3.1. The first quantity, as we have seen, is equal to
the max-flow. The quantity on the right on the other hand, is equal to the capacity of the min-cut (by definition).
The required follows. �

2.3.3. Maximum Bipartite Matching

Given an undirected bipartite graph G = (V,E) with V = X ∪ Y such all edges are between X and Y , the problem
asks to find a largest set M ⊆ E such that for any e, e′ ∈M , e, e′ do not share any common vertex.
This can be formulated as a max-flow problem. Create a directed graph G′ = (V ′, E′) with vertex set V ′ = V ∪{s, t}
for some fresh vertices s, t and edge set

E′ = { # »xy : x ∈ X, y ∈ Y, xy ∈ E} ∪ { # »sx : x ∈ X} ∪ { #»
yt : y ∈ Y }.

Further, assign a capacity of 1 to each edge.
The maximum bipartite matching is then just the value of a max-flow from s to t!
Before getting to the proof of the above, we give the following useful lemma.

Lemma 2.7. Let f be a flow in the flow network G with source s and sink t. Let (S, T ) be a cut in G. Then the
net flow across the cut, that is, the flow leaving S minus the flow entering S, equals |f |.

Proof. This is proved as

|f | = f→(s) +
∑

v∈S\{s}

f→(v)− f←(v)

=
∑
v∈S

f→(v)−
∑

v∈S\{s}

f←(v)

= f→(S)− f←(S). �

Lemma 2.8. Let G be a bipartite graph and G′ be the flow network defined above. Then,

� if M is a matching in G, there is an integer valued flow f in G′ such that |f | = |M |.

� if f is an integer valued flow in G′, there is a matching M in G such that |M | = |f |.

In particular, the max-flow value of G′ is equal to the size of a maximum matching of G.

Proof. The first part is direct, since we can construct a flow f such that for each edge e = # »xy ∈M with x ∈ X and
y ∈ Y , f( # »sx) = f( # »xy) = f(

#»
yt) = 1 and f(e) = 0 for the remaining edges e. The fact that f is a flow follows from

the fact that M is a matching, so the conservation constraints are satisfied. The capacity constraints are trivially
satisfied. Moreover, the value of f is equal to the cardinality of M , that is, |f | = |M |.

Let us now prove the other direction. Clearly, for each e ∈ E′, f(e) is 0 or 1. Define

M = {e ∈ E′ ∩ E : f(e) = 1}.

This is just the set of edges from X to Y that carry non-zero flow.
Observe that because f is a flow, each vertex in X or Y is present in at most one edge in M . Indeed, any vertex
in X (resp. Y ) has an incoming (resp. outgoing) flow of at most 1 and if it is present in more than one edge, the
outgoing (resp. incoming) flow would be greater than 1, contradicting the conservation constraint.
Therefore, M is a matching. Using Lemma 2.7 on the cut (X ∪ {s}, Y ∪ {t}), |f | = f→(S)− f←(S) = |M |, proving
the required. �

The above could have been proved in a more direct way using Lemma 2.5.
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2.3.4. Baseball Elimination

The last problem we discuss is the following (referred to as IPL Elimination in the course slides).

Suppose we have n teams. Each team has a certain number of wins wi initially, and for each {x, y}, there is a
quantity rxy ≥ 0 which represents the number of games teams x and y are left to play against each other (rxy = ryx
and rxx = 0). Is it possible for a certain team z to get first position after all the games are done (possibly being tied
with other teams)? Equivalently, if all teams except those which are at first position are eliminated, is z necessarily
eliminated?

We shall formulate this as a max-flow min-cut problem, creating a flow network Gz. First, let g∗z =
∑
x,y∈X\{z} gx,y.

Let X ′ = X \ {z}. Gz has vertex set

V = {s, t} ∪ {uxy : {x, y} ⊆ X ′} ∪ {ux : x ∈ X ′},

where s and t are the source and sink respectively. Gz has edge set

E = { #      »suxy : {x, y} ∈ X ′} ∪ { #   »
uxt : x ∈ X ′} ∪

⋃
{x,y}⊆X′

{ #          »uxyux,
#          »uxyuy}.

In the definition of the edge set, we refer to these three sets involved as Esource, Esink, and Emid respectively.
The capacity function c is defined as

c(e) =


gxy, e ∈ Esource,

∞, e ∈ Emid,

m− wx, e ∈ Esink,

where
m = wz +

∑
x∈X′

gzx.

is the total number of games z can have won at the end.
In case any of the capacities are negative, then the problem is trivial anyway since wx > m for some x, so z cannot
win.

Lemma 2.9. Gz has a flow of value g∗z iff z is not necessarily eliminated.

Proof. Suppose Gz has a flow of value g∗z . This means that it is possible to obtain outcomes where each of the other
teams win at most m games. This means that z is not eliminated.
On the other hand, suppose z is not necessarily eliminated. Using the outcomes of the games, it is possible to set
the flows in Esink such that no flow exceeds m − wu for any u at the end of all the games. This achieves a flow of
value g∗z . �

While not related directly to the algorithm given above, the following lemma, which can be proved from the max-flow
min-cut theorem, is interesting.

Lemma 2.10. Suppose team z is necessarily eliminated. Then the following hold:

� z can finish with at most m = wz +
∑
x∈X\{z} gzx wins.

� There exists a set Q ⊆ X such that ∑
x∈Q

wx +
∑

{x,y}⊆Q

gxy ≥ m|Q|.

2.4. Exercises

Exercise 2.1. Let f and f ′ be two feasible (s, t)-flows in a flow network G such that |f ′| > |f |. Prove that there is
a feasible (s, t)-flow with value |f ′| − |f | in the residual network Gf .
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Solution

Consider the flow g in Gf such that for each edge e = # »uv ∈ E, g(e) = max{f ′(e)− f(e), 0} and if f(e) > 0, then
g( # »vu) = max{0, f(e)− f ′(e)}.
It is easy to check that the capacity constraints are satisfied (using the fact that f ′ is a flow and is non-negative
on each edge).
The flow constraints are trivially satisfied as well, because f and f ′ satisfy them.
It is not too difficlt to show that the value of this flow is equal to g→(s) = f ′→(s)− f→(s) = |f ′| − |f |.

Exercise 2.2. Let # »uv be an arbitrary edge in an arbitrary flow network G. Prove that if there is a minimum cut
(s, t)-cut (S, T ) such that u ∈ S and v ∈ T , then there is no minimum cut (S′, T ′) such that u ∈ T ′ and v ∈ S′.

Solution

Suppose instead that there is a min-cut satisfying the given, and using the max-flow min-cut theorem, let f be
a flow with value equal to the capacity of a min-cut.
Using Lemma 2.2, f must saturate # »uv since it is an edge from S to T . At the same time, it must avoid this edge
since it is an edge from T ′ to S′, resulting in a contradiction and proving the claim.

Exercise 2.3. Let (S, T ) and (S′, T ′) be minimum (s, t)-cuts in some flow network G. Prove that (S ∩ S′, T ∪ T ′)
and (S ∪ S′, T ∩ T ′) are also minimum (s, t)-cuts in G.

Solution

We prove the required for (S ∪ S′, T ∩ T ′), the other side follows similarly. Let f be a max-flow. Any edge from
S ∪ S′ to T ∩ T ′ must be an edge from S to T ∩ T ′ (and thus T ) or an edge from S′ to T ∩ T ′ (and thus T ′). In
particular, using Lemma 2.2, f saturates every edge from S ∪ S′ to T ∩ T ′. On the other hand, any edge from
T ∩ T ′ to S ∪ S′ must be an edge from T to S or T ′ to S′, so f avoids it. It follows that the cut must be a
min-cut (because |f | is equal to the capacity of the cut).



CS 218: Design and Analysis of Algorithms 28 Amit Rajaraman

§3. NP Hardness and Reductions

Suppose we have n jobs that take time S1, . . . , Sn each and two processors P1 and P2. We wish to schedule the jobs
on these two processors such that the overall time taken (the time when the last job completes) is minimized. How
do we do this?

One idea is that we initially schedule S1 and S2 and when one of the jobs ends, we schedule the next job S3 on the
processor that is freed. We repeat this, scheduling jobs whenever processors become free.
This does not work – consider the set of times {1, 1, 100}. Our scheduling produces time 101 (we schedule the first
two jobs first), but it is quite easy to see that it can be done in time 100.

The issue seems to be that the ordering of the jobs is problematic. So instead, schedule the jobs in non-increasing
order and repeat the above algorithm. Does this work?
No, it does not. Consider the set of jobs {3, 3, 2, 2, 2} – our algorithm gives a time of 7 but a time of 6 can be attained.

It in fact turns out that it is impossible (or at least extremely hard) to get an efficient (polynomial time) algorithm
for this. It is quite surprising that we solved the interval-scheduling problem without too much difficulty, yet this is
incredibly hard.
How do we show that this problem is “hard” though? What does “hard” even mean?

3.1. Overview and some Definitions

Definition 3.1. A problem Π is said to be in the class P if there exists an algorithm A such that for any input x,
A finds the correct solution for x in ttime poly(|x|) time.

Searching, sorting, interval scheduling, primality testing, max-flow, finding a perfect matching in a bipartite graph
are just a few examples of important problems in P.
Before we get to the definition of NP, let us start with a few examples.

The 3-colorability problem. Given a graph G = (V,E), check if there exists a 3-coloring of G – a function
f : V → {1, 2, 3} such that for any e = uv ∈ E, f(u) 6= f(v).
One can think a bit and struggle to come up with an algorithm for the above. Now, suppose someone gives you a
c : V → {1, 2, 3}. Then in polynomial time, one can test whether or not this is a valid 3-colouring (by checking the
colours of the two vertices on every edge). That is, while it is difficult to come up with a solution for the algorithm,
it is easy to test whether a given input is a solution or not.

The k-clique problem. Given a graph G = (V,E), does G have a clique of size k?
A brute-force algorithm would require O(nk) time, which is polynomial for a fixed k. It is not polynomial if we have,
say, k =

√
n however.

As in the previous example, for a given subset S ⊆ V , we can easily test whether or not it is a k-clique (by checking
that it has cardinality k and if there is an edge between any two vertices in S).

The satisfiability problem. Given a CNF formula ϕ over variables x1, . . . , xn, does there exist an assignment ã
such that ã satisfies ϕ?
If ϕ is satisfiable, then there exists an assignment ã that “witnesses” this. As in the previous examples, it is difficult
to come up with an algorithm that finds a satisfying assignment (or determine satisfiability). It is easy to check if a
given assignment is satisfying, however.
This sort of property where checking is easy is what leads to the definition of NP.
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Definition 3.2. A problem Π is said to be in NP if there is a polynomial time algorithm T such that

� If input x is a positive instance of Π then there is a polynomial length proof y such that T on inputs x, y
outputs Yes.

� If input x is a negative instance of Π then for any polynomial length proof y, T (x, y) outputs No.

For example, in the 3-colorability problem, x would be the graph G = (V,E), y would be a function c : V → {1, 2, 3},
and T would be the algorithm that checks if c is a 3-coloring.
The “proof” just serves as the “witness” we mentioned earlier – an example that proves correctness.

Note that the problem Π itself is just a yes-no problem. The input x is a positive instance if the answer to Π for x
is yes and a negative instance if the answer is no.

The first important observation to make is that any problem in P is a problem in NP. For any y, we can take T as
the algorithm that just solves the problem and answers Yes or No. We ignore the proof and merely determine if x is
a positive or negative instance.
Therefore,

P ⊆ NP.

What if the problem itself is not a yes-no problem – perhaps a search or optimization problem?
A problem where the answer is just yes or no is referred to as a decision problem. For example, 3-colorability and
primality testing.
In a search problem, we are asked to find a solution. For example, finding a path between a pair of vertices, sorting,
and finding a 3-coloring.
In an optimization problem, we are asked to find a “best” solution with respect to some optimization parameter. For
example, max-flow, min-cut, longest common subsequence.

Any search problem has a decision problem variant. If a search problem asks to find a specific solution, the decision
variant asks whether there is a solution.
For example, finding a 3-colouring changes to asking whether a 3-coloring asks.
Observe that if we can solve a search problem, we can solve its decision variant as well.

Similarly, suppose we are given an optimization problem that asks to find a solution that maximizes/minimizes some
parameter. Then the decision variant asks if there is a solution that has parameter at least/at most v?
For example, finding a max-flow changes to asking if there is a flow of value at least v.
If we can solve an optimization problem, we can solve its decision variant as well.

Now, consider the decision variant of the scheduling problem we discussed earlier – given d1, . . . , dn and T , does
there exist a scheduling on two processors such that the total time is at most T? It is easy to see that this problem
is in NP. Given a scheduling (a proof), we can just find the total time it takes and thus verify if this is at most T .

3.2. Reductions, Hardness, and Completeness

Reduction essentially means using other algorithms for problems we wish to solve. For example, consider the problem
of determining the existence of a perfect matching in a graph G = (V,E).
On the other hand, consider the problem that finds a maximum matching in a graph G = (V,E).
It is not too difficult to see that the first problem can be “reduced” to the second – if we find a maximum matching
in the graph, we can check whether it has |V |/2 vertices and thus solve the first problem.
Can we come up with a reduction that goes the other way round? Before doing this in fact, can we reduce the
problem of finding the size of a maximum matching in a graph to the first problem? Yes, we can.

� If G has a perfect matching, then return |V |/2.
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� Let G1 be a graph with vertex set V ∪ {v}, where v is a fresh vertex that has an edge to every vertex in V .
If G1 has a perfect matching, then G has a matching of size (|V | − 1)/2 (Why?), which must be a maximum
matching if this is the case.

� Continuing on, create Gi+1 by adding a new vertex that is connected to every vertex of Gi. Then if k is the
minimum index such that Gk has a perfect matching, G has a matching of size (|V | − k)/2 – there cannot be
any edges within the new vertices in a perfect matching because this would imply the existence of a perfect
matching of Gi for some i < k (Why?). Further, this is a maximum matching. If there was a matching of size
(|V | − k + 2)/2, then Gk−2 must have a matching (Why?).

Since i can go up to n, we are calling the perfect matching algorithm only n times. This can be decreased to log n
by using a binary search-like scheme.
Now that we have done this, the original problem is not too difficult. Suppose the size of a maximum matching is l.
We can remove an edge and ask if the remaining graph has a matching of size l (that is, if the size of a maximum
matching is still equal to l). If no, we discard the edge. The remaining graph will just be a matching, which gives us
a maximum matching in the original graph.

Definition 3.3 (Reduction). A problem Π1 is said to be polynomial time reducible to another problem Π2, denoted
as Π1 ≤m Π2, if there exists a polynomial time computable function f such that for all inputs w, w ∈ Π1 if and only
if f(w) ∈ Π2.

Consider the problem SAT which, given a formula ϕ, returns yes iff there exists some assignment a such that ϕ(a) = 1.
Also consider the problem SAT which, given a formula ϕ, returns yes iff for every assignment a, ϕ(a) = 0.
Is SAT reducible to SAT? We do not know! This is because in the definition of a reduction, the function must map
between inputs – we are not allowed to do any processing after receiving the output for the other problem.

Definition 3.4. A problem Π is said to be NP-hard if for every problem Π′ ∈ NP, Π′ ≤m Π.

Definition 3.5. A problem Π is said to be NP-complete if Π is NP-hard and in NP.

It was shown in [Coo71, Lev73] that SAT is NP-complete.
Using the transitivity of the existence of reductions, even the 3-colorability problem and other similar problems are
NP-complete.
If we wish to show that some problem is NP-complete, then we can do so by proving that

1. It is in NP.

2. There is a reduction from SAT (or some other NP-hard problem) to the problem.

With our earlier comment about the complement of SAT, even in general, the complement of a NP-complete problem
is in a class called co-NP, and we do not know if these two classes are equal.

3.3. Coping with NP-hardness

How do we deal with hard problems?

1. Come up with some heuristics. There are no provable guarantees, but they work somewhat well in practice.

2. There may be efficient algorithms for some special cases.

3. Better than brute force algorithms, where we come up with algorithms that are not polynomial, but better
than a näıve brute-force algorithm.
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4. Approximation algorithms for optimization problems, where we merely want to approximate the answer. For
example, suppose we have a graph such that the size of the largest independent set is OPT. Then in an
approximation algorithm, we should be able to find an independent set that is of size not less that OPT/c for
some c ≥ 1 (this is known as a c-approximation algorithm). Similarly, for a minimization problem, we would
find a solution of size not more than c · OPT.

First, let us look at an approximation problem for the scheduling problem.
Given m processors p1, . . . , pm and n jobs j1, . . . , jn with durations d1, . . . , dn, find a scheduling for these jobs that
minimises the total completion time.
Let S be a schedule such that

� Ai is the set of jobs scheduled on processor i ∈ [m].

� Ti =
∑
j∈Ai

dj .

� The completion time is then maxi∈[m] Ti.

We want to minimize the completion time. Let S be a scheduling that does so, and let its completion time be T ∗.
While the optimization problem itself is NP-complete, the approximation version has a polynomial time algorithm.
Consider the algorithm that schedules the jth job on the machine with the smallest load so far (with the jobs initially
arranged in any arbitrary order), and T be the completion time achieved by this schedule.

Lemma 3.1. With the above notation, T ≤ 2 · T ∗, that is, the above described algorithm gives a 2-approximation.

Proof. Let T ′ = 1
2

(
maxj dj + 1

m

∑
j∈[n] dj

)
. We trivially have T ′ ≤ T ∗, since T ∗ is greater than each of the two

quantities involved in the average.
Choose i ∈ [m] such that T = Ti, and let j ∈ [n] be the last job scheduled on it. Then for any i′ 6= i, when j was
scheduled on i, Ti′ ≥ Ti − dj .
Therefore,

∑
k∈[n] Tk ≥ m(Ti − dj). That is,

T = Ti ≤ dj +
1

m

∑
k∈[n]

Tk ≤ 2T ′ ≤ 2T ∗,

proving the lemma. �

If we arrange the jobs in non-increasing order of durations, then the above algorithm gives a (3/2)-approximation.

A natural question to ask is whether there exist questions that are not only hard to solve (exactly), but also hard to
approximate. There is extensive literature on this side of things as well, but we do not look at these in this course.

Let us give one more example of an approximation algorithm, looking at the vertex cover problem.
Given a graph G = (V,E), a vertex cover is a set S ⊆ V such that any e ∈ E is incident on some v ∈ S. We wish to
find the smallest vertex cover of a graph.

Consider the algorithm that chooses an arbitrary unchosen edge e = uv at each step and, if neither u nor v is in our
current set C, adds both u and v to it.
The resulting set is in fact a 2-approximation for the vertex cover problem!

Lemma 3.2. Let C be the set output by the above algorithm and C∗ a minimum vertex cover. Then |C| ≤ 2 · |C∗|.

Proof. Let A be the set of edges chosen by the algorithm. Then A forms a matching, so we must have |C∗| ≥ |A|.
We also have 2 · |A| ≥ |C|, since we add at most two vertices to C for each edge in A, so 2|C∗| ≥ |C|, completing the
proof. �
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3.4. Exercises

Exercise 3.1. State true or false.

(a) There exist problems that are not known to be in P and are also not known to be NP.

(b) If Π ∈ P and Π′ ∈ NP, then Π ≤m Π′.

Solution

(a) True (as of the time of writing). The set PSPACE of problems is a superset of NP, but it is unknown whether
the containment is strict. An example of a PSPACE-complete problem (which is not known to be in NP) is:
Given a regular expression, determine if it defines the set of all strings in the alphabet.

(b) False. Consider the problem Π′ that returns No for any input. Consider any problem Π ∈ P that returns Yes
for at least one input. Then trivially, there is no function f such that for all inputs w, w ∈ Π iff f(w) ∈ Π′

(consider some input that gives yes for Π), proving the claim.

https://en.wikipedia.org/wiki/PSPACE
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