

How do you precisely describe the intuition that there are more real numbers than integers? When do we say that two infinite sets A and B have the same $size⁷$

Def. Given two sets A and B, we say that they have the same cardinality and write $|A|$ -181 if there is a bijection from A to $B -$

For example,
$$
1\mathbb{Z} = 12\mathbb{Z}
$$
. Mapping each x in Z to 2x yields a bijection

$$
\{2y : y \in \mathbb{Z}\}\
$$

Try showing that $|Z| = |N|$.

A set A is countally infinite if $|A| = |N|$. Def. A set A is countable if it is finite or countably infinite.

> \mathbb{N}_{0}^{2} is countable. We can number them as $(0,0)$, $(1,0)$, $(0,1)$, $(2,0)$, $(1,1)$, $(0,1)$, ... 6
3 5
 $\frac{1}{2}$
1 2⁰ 4⁰ 7

Note that we can compare bijections to create new bijections
$$
\Rightarrow
$$
 \mathbb{Z}^2 is countable.

More generally, if A and B are countable, then AxB is countable. (Extends to cartesian product of a finite number of countable sets) Is Q countable? It suffices to get a bijection from \bigoplus to \mathbb{Z}^2 . How would we do this? Not all (a,b) correspond to a distinct \mathcal{Y}_b . We can easily construct an injective function: $D \rightarrow Z^2$ by mapping P_{q} in lowest form to (p,q) . \Rightarrow There is a one-one function from \bigoplus to $\mathbb N$. (composing with bijection) Let A and B be sets. We write $|A| \leq |B|$ if there is an injection from A to B . So $|\mathbb{D}| \leq |\mathbb{N}|$. We also have $|N| \le |R|$. (identity mapping) Can we conclude that there is a bijection?

Det.

<u>Theo</u>. [Cantor-Schröder-Bernstein] There is a byection from A to B if and only if there is an injection from A to B and an injection from B to A. That is, $|A| = |B|$ iff $|A| \leq |B|$ and $|B| \leq |A|$. Idea of Let $f: A \rightarrow B$ and $g:B \rightarrow A$ be one-one. proof . Consider a directed graph where edges correspond to functional values. (a→fla) and b→g(b)) We just want a perfect matching.. Consider infinite chains obtained by following the arrows. one-one = each nade is in a unique chain. A chain either starts at an A node, starts at a B node, or starts nowhere (doubly infinite/cyclic) - types A.B., and C. In case C, just pick all the edges in one direction, say from A to B. In case A, just pick all the edges from A to B. In case B, just pick all the edges from B to A.

This gives a bijection.

So, we have that $|\phi| = |N|$.

Def.

Example. The set S of all finite length strings made of [A-Z] is Countaby infinite.

> The mapping $S \rightarrow N$ wherein we consider each element of S as a number in base 27 is one-one. We should omit zero and consider $[A-z]$ as the non-zero digits. The mapping $IN \rightarrow S$, $n \mapsto A^n$ is also one-one. \Rightarrow SI = INI.

- Let S be the set of all infinitely long binary strings. Prove that $|T| = |R|$. Show that $|R^2| = |R|$. (bijection by interleaving infinite strings)
- $|A| \leq |B|$ if there is an injection from A to B. Equivalently, using the Axiom of Choice, there is a surjection from B to A.
- A is encountable if it is infinite but not countably infinite. Equivalently, there is no surjection from M to A .

How do we show that something is uncountable?

 w is uncountable. Lapower set Take any hoction $f: N \rightarrow P(N)$ We can think of any element of P(N) as a countably infinite binary $string.$ Make a binary table where $T_{ij} = 1$ iff $j \in f(i)$

Now, consider the diagonal of the table and flip it. That is, consider the set s where
$$
i \in S
$$
 iff $i \notin f(i)$. Due to the nature of our construction, $S = f(i)$ for any i . (it differs at the i^{th} position.) \n \Rightarrow f is not a surjection. \n \Rightarrow P(N) is uncountable. \nThis method of proof is known as \n C and \nskip- i is hyperalisation. \n C and \nskip- i is hyperalisation. \n A symmetry.

More generally, there is no onto function
$$
f: A \rightarrow P(A)
$$
 for any
set A:
(Similarly consider the set S = $\{x \in A : x \notin f(x)\}$)

Since $|\mathcal{R}| = |\mathcal{P}(N)|$, \mathcal{R} is uncountable.

We denote by
$$
\aleph_0
$$
 the cardinality of N and by \aleph_k the cardinality
of $P(P(\cdots P(N))\cdots)$.
 $(\aleph_0 = |R|)$

Are there intermediate infinities between \aleph_k and \aleph_{k+1} ? This is known as the continuum hypothesis.