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§1. Introduction

Definition 1.1. A subset S of a Euclidean space is said to be convex if for any u1, . . . , ur ∈ S and non-negative
λ1, . . . , λr such that λ1 + · · ·+ λr = 1, the affine combination

∑r
i=1 λiui is in S as well.

We primarily consider convex bodies, that is, compact and convex subsets of Euclidean spaces here. To put it more
succinctly, a convex body is something that “behaves a bit like a Euclidean ball”.
A few simple examples of convex bodies on Rn are:

� the cube [−1, 1]n. Here, the ratio of the radii of the circumscribed ball to the inscribed ball is
√
n, so it is not

much like a Euclidean ball. We sometimes denote it by Bn
∞ since it is the unit ball under the ℓ∞ norm.

� the n-dimensional regular solid simplex which is the convex hull of n+1 equally spaced points. Here, the ratio
of the radii of the circumscribed ball to the inscribed ball is n. This ratio is “maximal” in some sense.

� the n-dimensional “octahedron” or cross-polytope which is the convex hull of the 2n points (±1, 0, . . . , 0),
(0,±1, 0, . . . , 0), . . . , (0, 0, . . . , 0,±1). Note that this is the unit ball on the ℓ1 norm on Rn so we denote it as
Bn

1 . Here, the ratio of the radii of the circumscribed ball to the inscribed ball is
√
n.

More generally, a k-simplex is a k-dimensional polytope (Definition 1.4) which is the convex hull of its k+1 vertices.

Definition 1.2. A cone in Rn is the convex hull of a single point and a convex body of dimension n− 1. In Rn, the
volume of a cone of “height” h over a base of (n− 1)-dimensional volume B is Bh/n.

Since Bn
1 is made up of 2n pieces similar to the piece with non-negative coordinates, which is a cone of height 1

with base analogous to the similar piece in Rn−1, the volume of the non-negative section is 1/n!. Therefore, the
vol(Bn

1 ) = 2n/n!.

1.1. The Euclidean Ball

The fourth and final example is the Euclidean ball itself, namely

Bn
2 =

x ∈ Rn :
n∑

i=1

x2i ≤ 1

 .

1.1.1. Finding the Volume

Let us now attempt to calculate vn = vol(Bn
2 ). Note that we can easily get the “surface area” of the ball from the

volume by splitting it into “thin” cones from 0 and observing that the volume of each cone is equal to 1/n times its
base area. Therefore, the surface area of the ball is nvn.
We perform integration in spherical polar coordinates using two variables - r, which denotes the distance from 0 and
θ, which is a point on the unit ball that represents the direction of the point. We obviously have x = rθ. The point
θ carries the information of n− 1 coordinates.
We can then write the integral of a general function on Rn by∫

Rn

f =

∫ ∞

r=0

∫
Sn−1

f(rθ)rn−1 dθ dr (1.1)

Here, dθ represents the area measure on the sphere. From our earlier observation, its total mass is nvn. The rn−1

factor appears because the sphere of radius r has rn−1 times that of the sphere of radius 1.
An important thing to note about the measure corresponding to dθ is that it is rotation-invariant. If A is a subset
of the sphere and U is orthogonal to A, then UA has the same measure as A. Therefore, we often simplify integrals
such as 1.1 by pulling out the nvn factor to get
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∫
Rn

f = nvn

∫ ∞

r=0

∫
Sn−1

f(rθ)rn−1 dσn−1(θ) dr (1.2)

where σn−1 is the rotation-invariant measure on Rn−1 of total mass 1. Now, to evaluate vn, we choose a suitable f
such that the integrals on either side can easily be calculated, namely

f : x 7→ exp

−1

2

n∑
i=1

x2i

 .

Then the integral on the left of 1.2 is∫
Rn

f =

∫
Rn

n∏
i=1

exp

(
−x

2
i

2

)
=

n∏
i=1

∫ ∞

−∞
exp

(
−x

2
i

2

)
=
(√

2π
)n

and the integral on the right is

nvn

∫ ∞

0

∫
Sn−1

e−r2/2rn−1 dσn−1 dr = nvn

∫ ∞

0

e−r2/2rn−1 dr = vn2
n/2Γ

(
n

2
+ 1

)
.

Equating the two,

vn =
πn/2

Γ
(
n
2 + 1

)
Using Stirling’s Formula, we can approximate this slightly better as

vn ≈ πn/2

√
2πe−n/2

(
n

2

)(n+1)/2
≈
(
2πe

n

)n/2

.

This is quite small for large n. The radius of a ball of volume 1 would be approximately
√
n/2πe, which is very

large!

1.1.2. Some Surprising Results in Concentration

This is possibly the first hint one should take that following your intuition is probably not a good idea when dealing
with high dimensional spaces.

Let us now restrict ourselves to considering the ball of volume 1.
What is the (n − 1)-dimensional volume of a slice through the center of the ball? Since the slice is an (n − 1)
dimensional ball, it is equal to

vn−1r
n−1 = vn−1

(
1

vn

)(n−1)/n

.

This is approximately equal to
√
e (using Stirling’s formula once again). More generally, the volume of the slice that

is at distance x from the center of the ball is equal to

√
e

(√
r2 − x2

r

)n−1

=
√
e

(
1− x2

r2

)(n−1)/2

≈
√
e

(
1− 2πex2

n

)(n−1)/2

≈
√
e exp(−πex2)

Note that this is normally distributed but the variance 1/2πe does not depend on n! So despite the fact that the
radius grows as

√
n, the distribution of the volume stays the same. For example, nearly all the volume (around 96%)

is concentrated in the slab with ∥x1∥ ≤ 1/2.
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This might lead us to believe that since the volume is concentrated around any such equator1 around a subspace, the
volume should be concentrated around the intersection of all such equators, which seems to suggest that it should
be concentrated around the center. However, for large n, we obviously know that most of the volume should be
concentrated on the surface of the sphere2. These two points seem to be directly contradictory! However, as might
be expected, this is once again because our intuition fails when dealing with high-dimensional spaces.
The measure of unit ball is “concentrated” both near the surface and around the equator, for any equator. To
make more sense of this3, while each xi is small, the overall distance from 0 is quite large since the small individual
coordinates are compensated by the large dimension n. The former leads to the point being close to the equator and
the latter leads to the point being close to the surface of the ball.

Another fun4 thing to think about is the following. Consider the cube [−1, 1]n. Construct a ball of radius 1/2 at
each of the 2n vertices (±1, . . . ,±1). Now, construct the ball with center ( 12 , . . . ,

1
2 ) that touches each of these 2n

balls. Then note that for n = 4, this ball touches (the center of each face of) the cube, and for n ≥ 5, it actually
goes outside the cube!

To conclude, let us write the volume of a general convex body K in spherical polar coordinates. Assume that K has
0 in its interior and for each direction θ ∈ Sn−1, let r(θ) be the radius of K (in that direction). Then,

vol(K) = nvn

∫
Sn−1

∫ r(θ)

0

sn−1 dsdσ = vn

∫
Sn−1

r(θ)n dσ. (1.3)

Definition 1.3. A convex body K is said to be (centrally) symmetric if −x ∈ K whenever x ∈ K.

Any symmetric body (other than the trivial {0}) is the unit ball under some ∥·∥K on Rn (for example, the octahedron
was the unit ball under the ℓ1 norm). For a general symmetric body K, the volume is given by

vol(K) = vn

∫
Sn−1

∥θ∥−n
K dσn−1(θ) (1.4)

1.2. The Cube and other Polytopes

So for example. since the volume of the cube [−1, 1]n is 2n, we can use it to estimate the average radius of the cube
as

vn

∫
Sn−1

r(θ)n = 2n =⇒
∫
Sn−1

r(θ)n ≈

(√
2n

πe

)n

so the average radius is approximately

√
2n

πe

That is, the volume of the cube is far more concentrated towards the corners (where the radius is closer to
√
n),

rather than the middles of facets (where the radius is closer to 1).
It can actually be shown5 that the fraction of volume of the intersection of the cube and the ball is less than
exp(−4n/45), which further emphasizes the point that nearly all the volume lies in the corners.

Definition 1.4. A body which is bounded by a finite number of flat facets is called a polytope.

A polytope is essentially the intersection of a finite number of half-spaces Note that the cube is a polytope with 2n
facets.

Earlier, we remarked that the cube is not much like a Euclidean ball. So a question that might come to mind is: If
K is a polytope with m facets, how close can K be to the Euclidean ball?

1since we could have equally well taken something other than x1.
2the volume of a ball of radius dr (d < 1) is dn ≪ 1 times that of a ball of radius r.
3The answers to this mathoverflow question might further aid understanding
4subject to debate
5Consider the random variable zi = x2

i where xi is drawn uniformly randomly from [−1, 1]. Show that E[zi] = 1/3 and Var[zi] = 4/45
and use the Chernoff bound to get a bound on Pr[

∑
i zi ≤ 1].

https://mathoverflow.net/questions/210291/how-to-explain-the-concentration-of-measure-phenomenon-intuitively
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1.2.1. Banach-Mazur Distance and Spherical Caps

Let us define this “closeness” more concretely.

Definition 1.5 (Banach-Mazur Distance). The Banach-Mazur distance d(K,L) between symmetric convex bodies
K and L is the least positive d for which there is a linear image L̃ of L such that L̃ ⊆ K ⊆ dL̃.

Henceforth, we refer to the Banach-Mazur distance as just distance.
This corresponds to the how we thought of inscribing/circumscribing a ball earlier, since the ratio of the two radii
we considered is just this distance.
If we wanted to make this distance a metric, then we should consider log d instead of d (the current distance is
multiplicative and for any K, d(K,K) = 1).

From what we mentioned earlier, we know that the distance between the cube and the Euclidean ball in Rn is at
most

√
n. We shall prove later that it is indeed equal to

√
n.

As might be expected, if we want a polytope that approximates the ball very well, we would need a very large number
of facets.

Definition 1.6. For a fixed unit vector v and some ε ∈ [0, 1), the set

C(ε, v) = {θ ∈ Sn−1 : ⟨θ, v⟩ ≥ ε}

is called the ε-cap about v or more generally, a spherical cap (or just cap).
It is often better to write a cap in terms of its radius rather than in terms of ε. The cap of radius r about v is

{θ ∈ Sn−1 : ∥θ − v∥ ≤ r}

It is easy to see that a cap of radius r is a (1− r2

2 )-cap.
As we shall see in the proof of Theorem 1.3, it is useful to know some upper and lower bounds on the area of an
ε-cap.

Lemma 1.1 (Lower bound on the area of spherical caps). For r ∈ [0, 2], a cap of radius r on Sn−1 has measure
(under σn−1) at least

1
2 (r/2)

n−1.

Proof. Suppose n ≥ 2 and let α = 2 sin−1(r/2). We can assume that α ∈ [0, π2 ] since we can prove the other case
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similarly. Then the measure of the cap is given by

A(n, α) =

∫ α

0

(n− 1)vn−1

nvn
(sin θ)n−2 dθ

=
(n− 1)Γ

(
n
2 + 1

)
nΓ
(
n−1
2 + 1

)√
π

∫ α

0

sinn−2(θ) dθ

=
Γ
(
n
2

)
Γ
(
n−1
2

)√
π

∫ α

0

sinn−2(θ) dθ

≥ 1√
π

∫ α

0

(
2θ

π

)n−2

dθ

=
1√
π
·
(
2

π

)n−2
αn−1

n− 1

=
4√

π(n− 1)

(
4

π

)n−2

· 1
2

(
α/2

)n−1

≥ 4√
π(n− 1)

(
4

π

)n−2

· 1
2
(r/2)n−1

=

√
π

n− 1

(
4

π

)n−1

· 1
2
(r/2)n−1

It is easily shown that √
π

n− 1

(
4

π

)n−1

≥ 1

for all n ≥ 2, thus proving the inequality. ■

Lemma 1.2 (Upper bound on the area of spherical caps). For ε ∈ [0, 1), the cap C(ε, u) on Sn−1 has measure

(under σn−1) at most e−nε2/2.

Proof. Let α = cos−1(ε). We may assume that α ∈ [0, π/2]. Instead of finding the fraction of area of the spherical
cap, we shall instead find the fraction of volume subtended at the center by the cap.
When ε ≤ 1√

2
, note that the entire volume is contained in the ball of radius

√
1− ε2 centered at εu. The fraction of

volume of this ball is equal to
(√

1− ε2
)n

≤ e−nε2/2.

On the other hand, when ε > 1√
2
, this entire volume is contained in the ball of radius 1

2ε centered at 1
2εu. The

fraction of volume of this ball is equal to (2ε)−n ≤ e−nε2/2. ■

1.2.2. Bounds on Almost-Spherical Polytopes

Theorem 1.3. Let K be a symmetric polytope in Rn with d(K,Bn
2 ) = d. Then K has at least exp(n/2d2) facets.

On the other hand, for each n, there is a polytope with 4n facets whose distance from the ball is at most 2.

Before proving the above theorem, let us reformulate what a symmetric polytope is in another way. Suppose you
have a symmetric polytope K with m pairs of facets. Then it is basically the intersection of m slabs in Rn each of
the form {x : |⟨x, vi⟩| ≤ 1} for some vi ∈ Rn. That is,

K = {x : |⟨x, vi⟩| ≤ 1 for 1 ≤ i ≤ m} (1.5)

We can then consider a linear map from K → Rm given by

T : x 7→ (⟨x, v1⟩, . . . , ⟨x, vm⟩)
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This maps Rn to a subspace of Rm. By the formulation of K given in 1.5 , the intersection of this subspace with
the unit cube is just the image of K under T ! This is just an n-dimensional slice of [−1, 1]m. Even conversely, any
n-dimensional slice of [−1, 1]m is a convex body with at most m pairs of facets.

Proof. For the proof, let us write what it means for each vi (following the above notation) if Bn
2 ⊆ K ⊆ dBn

2 .

� The first inclusion just says that each vi is of length at most 1 (otherwise, one could consider vi/ ∥vi∥, which
would be in Bn

2 but not in K).

� The latter says that if ∥x∥ > d, then there is some i for which ⟨x, vi⟩ > 1. That is, for any unit vector θ, there
is some i such that

⟨θ, vi⟩ ≥
1

d
.

Since we want to minimize m while satisfying the above two conditions, we can clearly do no better than have
∥vi∥ = 1 for each i. We want that every θ ∈ Sn−1 is in one of the m (1/d)-caps about the (vi).

� Obviously, to do this, we should attempt to estimate the area of a general ε-cap (ε = 1/d here). Given
Lemma 1.2, we get that

m ≥ 1

exp(−nε2/2)
= exp

(
n

2d2

)
.

� To show that there exists a polytope with the given number of facets, it is enough to find 2 · 4n−1 points
v1, . . . , vm such that the caps of radius 1 centered at these points covers the sphere. Such a set is called a 1-net.
Now, suppose we choose a set of points on the sphere such that any two of them are at least distance 1 apart.
Such a set is called a 1-separated set.

Note that the caps of radius 1/2 centered at each of the points in a 1-separated set are disjoint. Since the
measure of a cap of radius 1/2 is at least 4−n (by Lemma 1.1), the number of points in a 1-separated set is at
most 4n.
It is then enough to choose a “maximal” 1-separated set (a 1-separated set S such that S∪x is not 1-separated
for any x ∈ Sn−1) since it is then automatically a 1-net!

Therefore, there is a 1-net (and thus a corresponding polytope) with at most 4n points.

■

1.3. Fritz John’s Theorem

At the very beginning, we had mentioned that the distance of the cube [−1, 1]n and the regular solid simplex are at
distance at most

√
n and n from the ball respectively. However, how would one go about proving that the distances

are exactly
√
n and n?

1.3.1. The Statement of the Theorem

Fritz John’s Theorem aids us in this pursuit.
He considered ellipsoids inside convex bodies. If (ei) is an orthonormal basis of Rn and (αi) are positive numbers,
then the ellipsoid defined by x :

n∑
i=1

⟨x, ej⟩2

α2
j

≤ 1


has volume equal to vn

∏
i αi. The theorem states that there is a unique maximal ellipsoid contained in any convex

body, and further, he characterized this ellipsoid! Also, if K is a symmetric convex body and E is its maximal
ellipsoid, then K ⊆

√
nE !

We can then use this characterization combined with an affine transformation to prove that the distance between
the cube and the ball is

√
n.

We state John’s Theorem after performing the affine transformation, since it is easier to understand what’s going on
then. Roughly, it says that there should be several points of contact between the ball and the boundary of K.
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Theorem 1.4 (Fritz John’s Theorem). Each convex body K contains a unique ellipsoid of maximal volume. This
ellipsoid is Bn

2 iff Bn
2 ⊆ K and for some m, there are unit vectors (ui)

m
1 on the boundary of K and positive numbers

(ci)
m
1 such that ∑

i

ciui = 0 (1.6)

and for each x ∈ Rn, ∑
i

ci⟨x, ui⟩2 = ∥x∥2 . (1.7)

1.3.2. Some Consequences of Fritz John’s Theorem

Before proving the theorem, let us discuss some of its implications.

The first condition essentially says that the (ui) are not all on one side of the body6. Intuitively, this makes sense
because if the points were concentrated towards one side of the body, then we could move the ball a little bit in the
opposite direction and then expand it a little to get a larger ellipsoid.
The second says that the (ui) are something like an orthonormal basis, in that we can resolve the norm as a weighted
sum of squares of inner products.
Equation (1.7) is equivalent to saying that for all x ∈ Rn,

x =
∑
i

ci⟨x, ui⟩ui.

This ensures that the points do not lie close to a (proper) subspace of Rn. This makes sense intuitively as well since
if they did, we could contract the ellipsoid a bit in this direction and expand it orthogonally.

Equation (1.7) is written more compactly as ∑
i

ciui ⊗ ui = In. (1.8)

Here, ui⊗ui represents the (rank-1) orthogonal projection onto the span of ui, the map given by x 7→ ⟨x, ui⟩ui. Note
that this map is just equal to uiu

⊤
i . This implies that the trace of this projection is equal to ∥ui∥2 = 17. Equating

the traces of either side of Equation (1.8), we get ∑
i

ci = n. (1.9)

Finally, note that if K is a symmetric convex body, then the first condition is obsolete since we can just find any
(ui) satisfying the second condition and replacing each ui with +ui and −ui with each having half the original weight.

Let us now consider a couple of examples to better understand the implications of the theorem.

� For the cube [0, 1]n, the maximal ellipsoid is Bn
2 as one would expect. The points of contact are the standard

basis vectors (ei)
n
1 of Rn with their negatives, and they do indeed satisfy∑

i

ei ⊗ ei = In.

6more than simple linear independence since the ci are positive.
7We could have also got this more directly by using the fact that the trace of (a matrix in some basis corresponding to) a linear

transformation is the sum of its eigenvalues. For an orthogonal projection, this is just equal to the rank of the target space (which is 1
in this case).
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� A slightly more nuanced example is that of the regular solid simplex. Unfortunately, there is no simple or
standard way to represent the n-dimensional simplex in n dimensions. It is, however, far more natural to
represent it in Rn+1 by considering the convex hull of the n+ 1 standard basis vectors (ei)

n+1
1 . We also scale

it up by a factor of
√
n(n+ 1) (so that the ball contained is Bn

2 ) such that the n + 1 points (pi) we take the
convex hull of to get the simplex are given by

pi =
√
n(n+ 1)ei.

This simplex can be parametrized as

K =

x ∈ Rn+1 :
n+1∑
i=1

xi =
√
n(n+ 1) and xi ≥ 0 for each i

 .

Similar to the cube, the contact points of the maximal ellipsoid are the centers of each of the facets. More
precisely, these n+ 1 endpoints are given by

ui =

√
n(n+ 1)

n

n+1∑
j=1

ej − ei

 .

Affinely shifting the hyperplane such that it passes through the origin (making x0 =

√
n(n+1)

n+1

∑
i ei the new

origin) and setting the constants ci as c =
n

n+1 for each i, for any x in the (unshifted) body,

∑
i

n(n+ 1)ci⟨x− x0, ui − x0⟩2 = c
∑
i

n+1∑
j=1

xj
n

− xi
n

− 2

n+ 1
+

1

n+ 1

2 (
⟨x, x0⟩ = ⟨x0, ui⟩ = ⟨x0, x0⟩ =

1

n+ 1

)

= n2
∑
i

(
xi
n

− 1

n(n+ 1)

)2

= ∥x− x0∥2 .

It is easily shown that
∑

i ci(ui − x0) = 0 and that each (ui − x0) is of unit norm, thus proving that the
ball touching the centers of the facets (which is an affine shift of Bn

2 ) is the maximal ellipsoid inside the n-
dimensional simplex.

Now, let us prove one of the claims that we made at the beginning of the section.

Theorem 1.5. Suppose that K is a symmetric convex body and Bn
2 is the maximal ellipsoid contained in K. Then

K ⊆
√
nBn

2 .
Suppose that K is a convex body and Bn

2 is the maximal ellipsoid contained in K. Then K ⊆ nBn
2 .

Note that while we have stated the above assuming that Bn
2 is the maximal ellipsoid, any convex body in general

can be brought to this form by performing an affine shift.

Proof.

� Let x be an arbitrary point in the symmetric body K. Our aim is to show that ∥x∥ ≤
√
n. Let (ui)

m
1 be the

points as described in Fritz John’s Theorem. We may assume that if u is in this set, then so is −u.
Now, note that for any i, the tangent plane to K at ui must coincide with the tangent plane to Bn

2 at ui
(otherwise, we would get a contradiction to Bn

2 ⊆ K). Then, since K is convex, any point in the body must
be in the half-space defined by this tangent that contains 0 – this means that ⟨x, ui⟩ ≤ 1 for each i.
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Then, for each i, we have ⟨x, ui⟩ ≤ 1 and ⟨x,−ui⟩ ≤ 1 (since we’ve assumed that if u is in the (ui), then so is
−u). That is, |⟨x, ui⟩| ≤ 1 for each i.
Using the above along with Equation (1.7) and Equation (1.9), we now have

∥x∥2 =
∑
i

ci⟨x, ui⟩2 ≤
∑
i

ci = n,

which is exactly what we set out to prove!

� Let x be an arbitary point in the convex body. From the first part, we already have that ⟨x, ui⟩ ≤ 1 for each
i. We also have ⟨x, ui⟩ ≥ −∥x∥ (since ∥ui∥ = 1). Then,

0 ≤
∑
i

ci
(
1− ⟨x, ui⟩

) (
∥x∥+ ⟨x, ui⟩

)
=⇒

∑
i

ci⟨x, ui⟩2 ≤
∑
i

ci ∥x∥+ (1− ∥x∥)

〈
x,
∑
i

ciui

〉
=⇒

∑
i

ci⟨x, ui⟩2 ≤
∑
i

ci ∥x∥ (since
∑
i

ciui = 0)

=⇒ ∥x∥ ≤ n. (by Equation (1.7) and Equation (1.9))

■

Let us now prove Fritz John’s Theorem.

1.3.3. The Proof

Lemma 1.6 (Fritz John’s Theorem Pt. 1). Let K be a convex body and for some integer m, let there be unit
vectors (ui)

m
1 in ∂K and positive reals (ci)

m
1 satisfying Equation (1.6) and Equation (1.7). Then Bn

2 is the unique
maximal ellipsoid contained in K.

Proof. Let

E =

x ∈ Rn :
n∑

i=1

⟨x, ej⟩2

α2
j

≤ 1


be an ellipsoid in K for some orthonormal basis (ej) and positive (αj). We must show that

�

∏
j αj ≤ 1 (this implies that Bn

2 is a maximal ellipsoid) and

� if
∏

j αj = 1, then for every j, αj = 1 (this implies that Bn
2 is the maximal ellipsoid).

Now, consider the dual of E given by

E∗ =

y ∈ Rn :
n∑

i=1

α2
j ⟨x, ej⟩2 ≤ 1


Observe that we can more concisely describe E∗ as {y ∈ Rn : ⟨y, x⟩ ≤ 1 for all x ∈ E} (Why?).8

Now, note that since E ⊆ K, for any x ∈ E and any i, ⟨x, ui⟩ ≤ 1 (as proved in the first part of Theorem 1.5). This

8This becomes far easier to show when we apply a suitable linear transformation to reduce the problem to the case where E = Bn
2 .
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implies that for every i, ui ∈ E∗! We then have∑
j

α2
j =

∑
j

α2
j

∥∥ej∥∥2
=
∑
j

α2
j

∑
i

ci⟨ui, ej⟩2

=
∑
i

ci∑
j

α2
j ⟨ui, ej⟩2


≤
∑
i

ci = n (since ui ∈ E∗)

Then, using the AM-GM inequality, ∏
j

αj ≤

 1

n

∑
j

α2
j

n/2

≤ 1.

This proves the first part. The second part follows directly as well, since if equality holds in the above equation,
then every α2

i must be the same (the condition for equality to hold in the AM-GM inequality). ■

This is the easier of the two directions in Fritz John’s Theorem. We now prove the harder.

Lemma 1.7 (Separation Theorem). Let X and Y be two disjoint closed convex bodies in Rn with at least one of
them bounded. Then there exists some v ∈ Rn such that for all x ∈ X, ⟨x, v⟩ < b and for all y ∈ Y , ⟨y, v⟩ > b.

We leave the proof of the above to the reader.

Lemma 1.8 (Fritz John’s Theorem Pt. 2). Let K be a convex body such that Bn
2 is a maximal ellipsoid contained in

K. Then, for some integer m, there exist unit vectors (ui)
m
1 in ∂K and positive reals (ci)

m
1 satisfying Equation (1.6)

and Equation (1.8).

Proof. We want to show that there exist unit vectors (ui) in ∂K and positive constants (ci) such that

1

n
In =

∑
i

(
ci
n

)
(ui ⊗ ui)

Since
∑

i ci = n, we essentially aim to show that 1
nIn is in the convex hull of the (ui ⊗ ui) (in the space of matrices).

To this end, define
T = Conv

(
{u⊗ u : u is a unit vector in ∂K}

)
.

We refer to such u as contact points. We want to show that 1
nIn ∈ T . Suppose that it is not (we shall finally show

that this implies Bn
2 is not a maximal ellipsoid). Then Lemma 1.7 implies that there exists a matrix H = (hi,j) such

that the linear map φ from the set of matrices to R defined by

(ai,j) 7→
∑
i,j

hi,jai,j

satisfies

φ

(
In
n

)
< φ(u⊗ u)

for all contact points u. Now, since the matrices on either side are symmetric, we may assume that H is symmetric
as well (Why?). And since the matrices on either side have trace equal to 1, adding any constant to the diagonal
elements of H leaves the inequality unchanged. Therefore, we may suppose that the trace of H is 0. But this just
says that φ(In) = 0!
Therefore, we have essentially found a matrix H such that for any contact point u,

u⊤Hu > 0. (check that φ(u⊗ u) = u⊤Hu)
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Now, for δ > 0, consider the ellipsoid defined by

Eδ =
{
x ∈ Rn : x⊤(In + δH)x ≤ 1

}
.

We claim that Eδ is strictly inside K for sufficiently small δ. Note that for each contact point u,

u⊤(In + δH)u = 1 + δ
(
u⊤Hu

)
> 1

so no contact point (of Bn
2 ) is in Eδ. For each contact point u, consider a neighbourhood nu such that for all x ∈ nu,

x⊤(In + δH)x > 0 – we know that such a neighbourhood exists due to the continuity of x 7→ x⊤(In + δH)x. Let N
be the union of all these neighbourhoods.
We now want to show that for any x ∈ ∂K \N , x⊤(In+ δH)x > 1. To this end, let λmin be the minimum eigenvalue

of H. For any x ∈ ∂K \N , x⊤Hx ≥ λmin ∥x∥2. That is, for all such x,

x⊤(In + δH)x ≥ (1 + δλmin) ∥x∥2 .

Observe that infx∈∂K\N ∥x∥2 > 1.9 We may also assume that λmin < 0, since the claim holds trivially otherwise (we

have ∥x∥2 > 1). Then, we may set δ as a positive real which is less than 1
|λmin|

(
1− 1

infx∈∂K\N∥x∥2

)
. Then for all

x ∈ ∂K \N ,

(1 + δλmin) ∥x∥2 > ∥x∥2
1−

(
1− 1

infy∈∂K\N ∥y∥2

) ≥ 1

Therefore, Eδ does not intersect ∂K and is strictly inside K for sufficiently small δ!

Now, we claim that Eδ has volume at least equal to that of Bn
2 . Indeed, its volume is given by vn/

∏
λi, where (λi)

are the eigenvalues of (In + δH). Since the sum of the eigenvalues is equal to the trace of In + δH, which is n, we
can use the AM-GM inequality to get ∏

i

λi ≤

 1

n

∑
i

λi

n

= 1,

which is exactly what we want, because equality holds iff the eigenvalues are all 1, that is, the ellipsoid is Bn
2 (so

this leads to a contradiction). ■

Note that we can concatenate the proofs of Lemma 1.8 and Lemma 1.6 to show that a maximal ellipsoid is the
maximal ellipsoid (contained in a convex body).

There is an analogue of Fritz John’s Theorem that characterizes the minimal ellipsoid that contains a given body –
this is near-direct from the notion of duality that we used in the proof of Lemma 1.6. So for example, it follows from
this analogue that the minimal ellipsoid that contains [−1, 1]n is the ball of radius

√
n. This also enables us to say

that d([−1, 1]n, Bn
2 ) is exactly equal to

√
n.

There are various extensions of this result. Recall how towards the beginning of these notes we had mentioned how a
general convex body K is essentially a unit ball under some norm. Fritz John’s Theorem essentially describes linear
maps from the Euclidean space to a normed space (under which the unit ball is K) that have largest determinant
under the constraint that the Euclidean ball is mapped into K. There is a more general theory that (attempts to)
solve this problem under different constraints.

9if it was equal to 1, then for any ε > 0, we would be able to find an x such that ∥x∥2 < 1 + ε (we trivially have that ∥x∥2 ≥ 1).
However, this is not possible because ∂K is compact, we have removed a neighbourhood around each contact point u, and contact points
are the only points in ∂K which have norm 1.
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§2. Volume Inequalities

2.1. Spherical Sections of Symmetric Bodies

Consider the n-dimensional cross-polytope Bn
1 . The maximal ellipsoid in Bn

1 is the Euclidean ball of radius 1/
√
n. If

we take some orthogonal transformation U , then obviously, UBn
1 contains the ball as well, and so does Bn

1 ∩UBn
1 . But

what if we instead consider the minimal ball that contains Bn
1 ∩ UBn

1 ? We have the following remarkable theorem,
which we prove later.

Theorem 2.1 (Kas̆in’s Theorem). For each n, there is an orthogonal transformation U such that Bn
1 ∩ UBn

1 is
contained in the (Euclidean) ball of radius 32/

√
n.

The important thing to note here is the fact that just by intersecting just two copies of the cross-polytope, we manage
to reduce the radius of the minimal circumscribing ball by a factor of

√
n! Indeed, this intersection is what we call

“approximately spherical” since its distance from the Euclidean ball is then at most 32. The constant factor of 32
can be improved upon as well.

For the same orthogonal transformation U , Conv(Q∪UQ) is at distance at most 32 from the Euclidean ball as well
(where Q is [−1, 1]n).

How would one go about constructing such a transformation? The points of contact between the ball of radius 1/
√
n

are those of the form
(
± 1

n , . . . ,±
1
n

)
.

The points furthest away are those near the corners of the cross-polytope. So we would want to take a transformation
whose facets “chop off” these corners.

Recall that in the beginning, we had explained that the volume of the cross-polytope is 2n/n!, so if r(θ) is the radius
of Bn

1 in the direction θ, then ∫
Sn−1

r(θ)n dσ =
2n

n!vn
≤
(

2√
n

)n

. (2.1)

This feature wherein r(θ) is not expected to be much more than 2/
√
n is captured in the following definition.

Definition 2.1 (Volume Ratio). Let K be a convex body in Rn. Then the volume ratio of K is defined as

vr(K) =

(
vol(K)

vol(E)

)1/n

where E is the maximal ellipsoid contained in K.

Equation (2.1) then says that vr(Bn
1 ) ≤ 2 for all n. Let us now prove (a slightly more general version of) Kas̆in’s

Theorem, scaling everything up by n for the sake of convenience.
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Theorem 2.2. Let K be a symmetric convex body in Rn that contains Bn
2 . Let

R =

(
vol(K)

vol(Bn
2 )

)1/n

.

Then there is an orthogonal transformation U of Rn such that

K ∩ UK ⊆ 8R2Bn
2 .

Proof. Denote by ∥·∥K the norm under which K is the unit ball. Observe that since Bn
2 ⊆ K, ∥x∥K ≤ ∥x∥ for all

x ∈ Rn. Note that if U is an orthogonal transformation, then the norm corresponding to K ∩ UK is the maximum
of that corresponding to K and UK (at that point). Therefore, because the norm corresponding to 8R2Bn

2 is 1
8R2

times the Euclidean norm, we just want to find an orthogonal transformation U such that for all θ ∈ Sn−1,

max(∥Uθ∥K , ∥θ∥K) ≥ 1

8R2
.

It suffices to show that for all θ ∈ Sn−1,
∥Uθ∥K + ∥θ∥K

2
≥ 1

8R2
. (2.2)

Now, note that the function N given by x 7→ ∥Ux∥K+∥x∥K

2 is a norm on Rn. Also, it satisfies N(x) ≤ ∥x∥ for all x.
We aim to show that N is “large” everywhere. Let ϕ be a point on the sphere such that N(ϕ) = t. Then if
∥θ − ϕ∥ ≤ t, then

N(θ) ≤ N(ϕ) +N(θ − ϕ) ≤ t+ ∥θ − ϕ∥ ≤ 2t.

That is, for θ in a spherical cap of radius t about ϕ, N(θ) is at most 2t. Lemma 1.1 implies that such a cap has

measure at least 1
2

(
t
2

)n−1 ≥
(
t
2

)n
. Then, considering the integral over only the spherical cap, we have∫

Sn−1

1

N(θ)2n
dσ ≥ 1

(2t)2n

(
t

2

)n

=
1

23ntn
. (2.3)

Now, we claim that there is an orthogonal transformation U such that∫
Sn−1

1

N(θ)2n
dσ ≤ R2n. (2.4)

Because N(θ)2 ≥ ∥θ∥K ∥Uθ∥K , it suffices to show the existence of an orthogonal transformation U such that∫
Sn−1

1

∥θ∥nK ∥Uθ∥nK
dσ ≤ R2n.

We prove this probabilistically. Consider the average over all orthogonal transformations U of some function f on
the sphere. This should just be the average of the value of f over the entire sphere. That is,

avgU f(Uθ) =

∫
Sn−1

f(ϕ) dσ(ϕ).

Setting f as the function given by

θ 7→ 1

∥θ∥nK
,
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we have the following:

avgU

(∫
Sn−1

1

∥Uθ∥nK ∥θ∥nK
dσ(θ)

)
=

∫
Sn−1

(
avgU

1

∥Uθ∥nK

)
1

∥θ∥nK
dσ(θ)

=

∫
Sn−1

(∫
Sn−1

1

∥ϕ∥nK
dσ(ϕ)

)
1

∥θ∥nK
dσ(θ)

=

(∫
Sn−1

1

∥θ∥nK
dσ(θ)

)2

= R2n,

where the last equality follows from Equation (1.4). Since the average of the integral over orthogonal transforma-
tions is at most R2n, there must be some orthogonal transformation U such that the integral is at most R2n and
Equation (2.4) holds! Then, combining Equation (2.3) and Equation (2.4), we get

1

23ntn
≤ R2n =⇒ t ≥ 1

8R2
.

That is, for any ϕ ∈ Sn−1, ∥ϕ∥K ≥ 1
8R2 , which is exactly what we set out to show in Equation (2.2)! ■

Due to the probabilistic nature of the above proof, we do not actually get an orthogonal transformation U . However,
a question that might come to mind is - do there exist symmetric bodies for which we can explicitly construct U?
Consider the simple case of the cross-polytope. As mentioned towards the beginning of this section, we would like to
“chop off” the corners. A relatively obvious method to do this that comes to mind is to construct a transformation
such that the direction of each of the new corners coincides with the directions of the centers of the original facets.
In 2 dimensions, such an orthogonal transformation just means we rotate B2

1 by 45◦.

However, does such an orthogonal transformation exist for the cross-polytope in any general dimension? Stating
it more rigorously, we want to determine for each n if there is an orthogonal transformation U such that for each
standard basis vector ei of Rn, Uei is

√
n times one of the vectors of the form (± 1

n , . . . ,±
1
n ).

That is, we are looking for an n×n orthogonal matrix with each entry as ± 1√
n
. Such a matrix without the

√
n factor

(it then merely requires that the rows are orthogonal) is known as a Hadamard matrix. For n ≤ 2, there obviously
exist Hadamard matrices (

1
)
and

(
+1 +1
+1 −1

)
.

It may be shown that if a Hadamard matrix of dimension n > 2 exists, then n is a multiple of 4.10 However, it is
unknown which multiples of 4 Hadamard matrices do indeed exist for. It is known that they do exist for n a power
of 2, but even these (known as Walsh matrices) don’t give good estimates. There are good reasons11 for believing
that we cannot explicitly find an orthogonal transformation that would give the right estimates.

Now, with the aid of Theorem 2.2, proving Theorem 2.1 is near-straightforward.
Recall how in the beginning of this section, we had stated that for the same orthogonal transformation U that is
mentioned in Theorem 2.2, Conv(Q ∪ UQ) is at distance 32 from the Euclidean ball, where Q = [−1, 1]n. However,
we cannot get an approximately spherical body by taking the intersection as we have in Theorem 2.2.
Dually, we cannot get an approximately spherical body by taking the convex hull of a union for a cross-polytope.
Both of these ideas (of taking the convex hull and the intersection) are combined in the following fascinating result
of Milman’s.

10Let H be a Hadamard matrix. We may assume that all the elements in the first row are +1. Let a, b, c and d be the number of
columns starting with (+,+,+), (+,+,−), (+,−,+) and (+,−,−) respectively. We trivially have a+ b+ c+ d = n. Using the pairwise
orthogonality of the first 3 rows, we get 3 other conditions which enable us to conclude that n = 4a.

11see Ramsey Theory.
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Theorem 2.3 (QS-Theorem). There is a constantM such that for all symmetric convex bodiesK (of any dimension),
there are linear maps Q and S and an ellipsoid E such that if K̃ = Conv(K ∪QK), then

E ⊆ K̃ ∩ SK̃ ⊆ME .

Note that M is a universal constant independent of everything. Here the “QS” means “quotient of a subspace”.



High-Dimensional Convex Geometry 18 / 106 Amit Rajaraman

2.2. The Prékopa-Leindler Inequality

2.2.1. Brunn’s Theorem

Consider some convex body K in R2 and the map v : R → R such that r maps to the length (the Lebesgue measure
in R) of the intersection of the line x = r with the body K. We can think of this as “collapsing” the body onto the
x-axis like a deck of cards. To understand this better, consider the following image which represents the graph of v
for K.12

It may be shown that for any convex body K in R2, the corresponding function v is concave on its support.

How would one go about generalizing this v to a higher dimensional K, say in 3 dimensions? As might be expected,
the function v : R → R maps r to the Lebesgue measure (in R2) of the intersection of x = r with the body K.
Does this v need to be concave? No, it does not! Consider a cone - say the one given by

{(x, y, z) ∈ R3 : y2 + z2 ≤ x2, x ≥ 0}.

Then since the area of the intersection grows as x2, the function is quite obviously not concave. However, the cone
is a “maximal” convex body in some sense, it is just barely convex and the curved surface is composed of lines. One
might now note that the function r 7→

√
v(r) for the cone is indeed (barely) concave! Brunn perhaps noticed this

pattern and proved an analogous result for higher dimensions.

Theorem 2.4 (Brunn’s Theorem). Let K be a convex body in Rn, u a unit vector in Rn, and for each r, define

Hr = {x ∈ Rn : ⟨x, u⟩ = r}.

Then, the function
v : r 7→ vol(Hr ∩K)1/(n−1)

is concave on its support.

A consequence of this theorem is that given any centrally symmetric body in Rn, the (n− 1)-dimensional slice with
the largest area orthogonal to some fixed unit vector u is that through the origin!

2.2.2. The Brunn-Minkowski Inequality

Brunn’s Theorem was turned from an idle observation to an extremely powerful tool by Minkowski in the form of
the Brunn-Minkowski inequality. We omit the proof of Brunn’s Theorem as it is obvious from this inequality, which

12Source: An Introduction to Modern Convex Geometry by Keith Ball.
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we state shortly.

Before we do this, let us introduce some notation. If X and Y are sets in Rn and α, β ∈ R, then we write

αX + βY = {αx+ βy : x ∈ X, y ∈ Y }.

This method of using addition in Rn to define the addition of sets in Rn is known as Minkowski addition.
In the context of Brunn’s Theorem, consider three parallel slices Ar,As, and At of a body K in Rn at positions r,
s, and t. These slices can be thought of as subsets of Rn−1. Further suppose that r < s < t and we have λ ∈ (0, 1)
such that s = λr + (1− λ)t. Note that due to the convexity of K,

As ⊇ λAr + (1− λ)At.

All Brunn’s Theorem says is that

vol(As)
1/(n−1) ≥ λ vol(Ar)

1/(n−1) + (1− λ) vol(At)
1/(n−1).

This has reduced the original problem, which was in Rn, to one in Rn−1. More generally, we have the following.

Theorem 2.5 (Brunn-Minkowski Inequality). Let A and B be two non-empty compact subsets of Rn. Then for any
λ ∈ [0, 1],

vol(λA+ (1− λ)B)1/n ≥ λ vol(A)1/n + (1− λ) vol(B)1/n. (2.5)

It is quite obvious that given the above inequality, Brunn’s Theorem is true. Here, the non-emptiness of A and B
correspond to the fact that we restrict v to the support in Brunn’s Theorem.

It is not too difficult to show that Equation (2.5) is equivalent to

vol(A+B)1/n ≥ vol(A)1/n + vol(B)1/n (2.6)

We omit the proof of the Brunn-Minkowski inequality and instead show how it follows from the far more powerful,
near-magical Prékopa-Leindler inequality.
Before we do this however, let us show how the popular isoperimetric inequality follows from the Brunn-Minkowski
inequality.

Theorem 2.6 (Isoperimetric Inequality). Among bodies of a given volume, Euclidean balls have the least surface
area.

Proof. Let C be a compact body of volume equal to that of Bn
2 . The ((n − 1)-dimensional) “surface area” of C is

equal to

vol(∂C) = lim
ε→0

vol(C + εBn
2 )− vol(C)

ε
.

Equation (2.6) implies that

vol(C + εBn
2 ) ≥

(
vol(C)1/n + ε vol(Bn

2 )
1/n
)n

≥ vol(C) + nε vol(Bn
2 )

1/n vol(C)(n−1)/n.

Then,

vol(∂C) ≥ lim
ε→0

nε vol(Bn
2 )

1/n vol(C)(n−1)/n

ε

= n vol(Bn
2 ) = vol(∂Bn

2 ). ■
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It may also be shown using the Brunn-Minkowski Inequality and the weighted AM-GM inequality that for any
compact subsets A,B of Rn,

vol(λA+ (1− λ)B) ≥ vol(A)λ vol(B)1−λ (2.7)

The above equation is more commonly known as the multiplicative Brunn-Minkowski inequality, while Equation (2.5)
is known as the additive Brunn-Minkowski inequality. It may also be shown that while this is weaker than the Brunn-
Minkowski inequality for particular subsets A and B, the two are equivalent if we know Equation (2.7) for all A and
B.

Multiplicative Brunn-Minkowski implies additive Brunn-Minkowski. Fix some λ ∈ [0, 1] and let

λ′ =

λ

vol(B)1/n

λ

vol(B)1/n
+

1− λ

vol(A)1/n

.

Applying Equation (2.7), we get

vol

(
λ′

A

vol(A)1/n
+ (1− λ′)

B

vol(B)1/n

)
≥ 1.

Also,

λ′
A

vol(A)1/n
+ (1− λ′)

B

vol(B)1/n
=

λA+ (1− λ)B

λ vol(A)1/n + (1− λ) vol(B)1/n
.

Therefore,

vol(λA+ (1− λ)B) ≥
(
λ vol(A)1/n + (1− λ) vol(B)1/n

)n
,

which is just additive Brunn-Minkowski. ■

This form is slightly more advantageous because there is no mention of the dimension n or the non-emptiness of A
and B.

2.2.3. The Prékopa-Leindler inequality

The Prékopa-Leindler inequality that we mentioned earlier is essentially a generalization of the Brunn-Minkowski
inequality to a more functional form, similar to how the Cauchy-Bunyakovasky-Schwarz inequality is a functional
analogue of the Cauchy-Schwarz inequality.

To get a little more intuition for how the Brunn-Minkowski inequality is connected to the Prékopa-Leindler inequality,
define f as the indicator function on A, g as the indicator function on B, and m as the indicator function on
λA+ (1− λ)B, .13 Then Equation (2.7) says∫

Rn

m ≥
(∫

Rn

f

)λ(∫
Rn

g

)1−λ

.

What is the relation between m, f , and g that perhaps leads to this inequality being true? If for some x and y,
f(x) = 1 and g(y) = 1, then we have m(λx+ (1− λ)y) = 1 as well. Therefore, for any x, y ∈ Rn

m(λx+ (1− λ)y) ≥ f(x)λg(y)1−λ.

It turns out that this condition is enough to conclude Equation (2.7)!

13the indicator function on X for X ⊆ Rn is the map from Rn to {0, 1} such that f(x) = 1 if x ∈ X and 0 otherwise.
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Theorem 2.7 (Prékopa-Leindler inequality). Let f , g and m be non-negative measurable functions on Rn and
λ ∈ (0, 1) such that for all x, y ∈ Rn,

m(λx+ (1− λ)y) ≥ f(x)λg(y)1−λ. (2.8)

Then, ∫
Rn

m ≥
(∫

Rn

f

)λ(∫
Rn

g

)1−λ

.

The astute reader might notice that this is something of a reversed Hölder’s inequality, which says that if we have
non-negative functions f and g and define m by m(z) = f(z)λg(z)1−λ for each z, then∫

m ≤
(∫

f

)λ(∫
g

)1−λ

. (2.9)

The difference is that in the Prékopa-Leindler inequality, we have

m(λx+ (1− λ)y) ≥ sup
x,y

f(x)λg(x)1−λ,

whereas in Hölder’s, we only consider the pair (x, y) = (z, z).

Proof of one-dimensional Brunn-Minkowski inequality. Suppose A and B are non-empty measurable subsets of R.
We use ∥·∥ to represent the Lebesgue measure on R.
We can assume that A and B are compact14. We can now shift both sets and assume that A ∩ B = {0}. However,
in this case, we have A ∪B ⊆ A+B and so, due to the almost-disjointedness of A and B,

∥A+B∥ ≥ ∥A ∪B∥ = ∥A∥+ ∥B∥ .

This is just Equation (2.6). ■

Proof of one-dimensional Prékopa-Leindler inequality. We have non-negative measurable functions f , g, and m. We
use ∥·∥ to represent the Lebesgue measure on R. For any function h : R → R and t ∈ R, define

Lh(t) = {x ∈ R : h(x) ≥ t}.

Then note that by Equation (2.8),
Lm(t) ⊇ λLf (t) + (1− λ)Lg(t).

We can then apply the one-dimensional Brunn-Minkowski inequality to get∥∥Lm(t)
∥∥ ≥

∥∥λLf (t) + (1− λ)Lg(t)
∥∥ ≥ λ

∥∥Lf (t)
∥∥+ (1− λ)

∥∥Lg(t)
∥∥ .

Finally, we can assume boundedness of all three functions and use Fubini’s Theorem to say that∫
m =

∫ ∥∥Lm(t)
∥∥dt

≥ λ

∫ ∥∥Lf (t)
∥∥ dt+ (1− λ)

∫ ∥∥Lg(t)
∥∥ dt

= λ

∫
f + (1− λ)

∫
g

≥
(∫

f

)λ(∫
g

)1−λ

,

where the last step follows from the weighted AM-GM inequality. ■
14due to the inner regularity of the Lebesgue measure.

https://en.wikipedia.org/wiki/Regular_measure
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Proof of Prékopa-Leindler inequality. We prove this inductively. Suppose we have m, f , and g from Rn → R (n > 1)
satisfying Equation (2.8). For any z ∈ R and any function h : Rn → R, we denote by hz : Rn−1 → R the function
given by hz(x) = h(x, z) (for z ∈ Rn−1) – we make the last coordinate constant and consider the resulting function
on the remaining n− 1 coordinates. Now, let α, β ∈ R, x, y ∈ Rn−1 and let γ = λα+ (1− λ)β. Then,

mγ(λx+ (1− λ)y) = m(λx+ (1− λ)y, λα+ (1− λ)β)

≥ f(x, α)λg(y, β)1−λ

= fα(x)
λgβ(y)

1−λ.

That is, mγ , fα, and gβ satisfy Equation (2.8) (on Rn−1). We can then apply the inductive hypothesis on them to
get ∫

Rn−1

mγ ≥
(∫

Rn−1

fα

)λ(∫
Rn−1

gβ

)1−λ

.

Now, for any function h : Rn → R, we denote by h̃ : R → R the function given by

γ 7→
∫
Rn−1

fγ .

Note that the functions m̃, f̃ , and g̃ satisfy the condition for the one-dimensional Prékopa-Leindler inequality!
Therefore, condensing the iterated integral to a joint integral, we get∫

Rn

m ≥
(∫

Rn

f

)λ(∫
Rn

g

)1−λ

,

which is exactly what we desire! ■

This proof is quite magical - we use the inequality on Rn−1 and R1 with barely any extra work to conclude that it
holds for Rn.
To conclude this section, we state another surprising result (from [Bus49]) in a similar vein to the nice observation
that is Brunn’s Theorem.

Theorem 2.8 (Busemann’s Theorem). Let K be a symmetric convex body in Rn and for each unit vector u, let
r(u) be the volume of the slice of K by the subspace orthogonal to u. Then the body whose radius in each direction
u is r(u) is convex as well.

2.3. The Reverse Isoperimetric Problem

The Isoperimetric Inequality solves the problem of finding the body with the largest volume among bodies with a
given surface area. How would one go about solving the reversed problem – finding the body with the largest surface
area among bodies with a given volume? We must phrase this more carefully such that it makes sense because as
it stands, we could make the surface area arbitrarily large (consider a large thin disc). So the more common way of
phrasing it is – given a convex body, how small can we make its surface area by applying an affine transformation
that preserves volume?

Theorem 2.9. Let K be a convex body, T a regular solid simplex in Rn, and Q a cube in Rn. Then, there is an
affine transformation K̃ of K such that the volume of K̃ is equal to that of T and whose surface area is at most that
of T . If K is symmetric, then there is an affine transformation K̃ of K such that the volume of K̃ is equal to that
of Q and whose surface area is at most that of Q.

The primary focus of this section is to find the bodies with the largest volume ratios – this is answered for symmetric
bodies in Theorem 2.10, which we encourage the reader to look at now.

Given this, we can prove the second part of Theorem 2.9 as follows.
Choose K̃ such that its maximal ellipsoid is Bn

2 . Then K̃ has volume at most 2n (since this is the volume of the
cube with maximal ellipsoid Bn

2 ). Note that

vol(∂Q) = 2n vol(Q)(n−1)/n.
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Therefore, we shall show that
vol(∂K̃) ≤ 2n vol(K̃)(n−1)/n

Indeed, we have

vol(∂K̃) = lim
ε→0

vol(K̃ + εBn
2 )− vol(K̃)

ε

≤ lim
ε→0

vol(K̃ + εK̃)− vol(K̃)

ε
(because Bn

2 ⊆ K̃)

= vol(K̃) lim
ε→0

(1 + ε)n − 1

ε

= n vol(K̃)

= n vol(K̃)1/n vol(K̃)(n−1)/n

≤ 2n vol(K̃)(n−1)/n. (by Theorem 2.10)

2.3.1. Volume Ratio Estimates and Young’s Convolution Inequality

Theorem 2.10. Among symmetric convex bodies, the cube has the largest volume ratio.

The above is equivalent to saying that if K is a convex body whose maximal ellipsoid is Bn
2 , then vol(K) ≤ 2n. By

Fritz John’s Theorem, there exist unit vectors (ui) and positive (ci),∑
i

ciui ⊗ ui = In.

Consider the polytope
C = {x ∈ Rn : |⟨x, ui⟩| ≤ 1 for 1 ≤ i ≤ m}. (2.10)

We clearly have K ⊆ C, so it suffices to show that vol(C) ≤ 2n.
The most important tool we use for this is the following.

Theorem 2.11 (Young’s Convolution Inequality). Suppose f ∈ Lp(R), g ∈ Lq(R), and 1
p + 1

q = 1 + 1
s . Then,

∥f ∗ g∥s ≤ ∥f∥p ∥g∥q , (2.11)

In the above, f ∗ g represents the convolution of f and g and is the function given by

x 7→
∫
R
f(x)g(x− y) dy.

In compact spaces, equality holds in Equation (2.11) when f and g are constant functions.
On R however, we can add a multiplicative constant cp,q < 1 on the right and improve the inequality. Here, equality

holds when f and g are appropriate Gaussians x 7→ e−ax2

and x 7→ e−bx2

, where a and b are some constants depending
on p and q (see [BL76]).
Young’s inequality is often written in an alternate form. Let r be equal to 1− 1

s . We then have 1
p + 1

q + 1
r = 2. Let

h be a function such that ∥h∥r = 1 and ∥∥(f ∗ g)(h)
∥∥
1
= ∥f ∗ g∥s ∥h∥r .

We know that such a h exists by choosing that which satisfies the equality condition in Hölder’s inequality.
Therefore, rewriting the above in terms of h,∥∥(f ∗ g)(h)

∥∥ ≤ ∥f∥p ∥g∥q ∥h∥r .



High-Dimensional Convex Geometry 24 / 106 Amit Rajaraman

More explicitly, ∫ ∫
f(y)g(x− y)h(x) dy dx ≤ ∥f∥p ∥g∥q ∥h∥r .

Equivalently, ∫ ∫
f(y)g(x− y)h(−x) dy dx ≤ ∥f∥p ∥g∥q ∥h∥r .

Note that (y) + (x− y) + (−x) = 0. Consider the map from R2 → R3 given by

(x, y) 7→ (y, x− y,−x).

The image of this transformation is equal to

H = {(u, v, w) : u+ v + w = 0}.

Therefore, if 1
p + 1

q + 1
r = 2, ∫

H

f(u)g(v)h(w) ≤ ∥f∥p ∥g∥q ∥h∥r .

We integrate over a two-dimensional measure on the subspace H.

2.3.2. A Generalization

So this is all well and good, but how is it related to volume ratios? [BL76] did more than just say that equality
holds when the functions are appropriate Gaussians. It actually generalized Young’s Convolution Inequality to
higher-dimensional spaces and any number of functions. Note that the map from R2 to R3 that leads to H is given
by

x 7→ (⟨x, v1⟩, ⟨x, v2⟩, ⟨x, v3⟩),

where v1 = (0, 1), v2 = (1,−1), and v3 = (−1, 0). The generalisation led to the following:

Theorem 2.12. If (vi)
m
1 are vectors in Rn and (pi)

m
1 are positive numbers satisfying∑

i

1

pi
= n

and (fi)
m
1 are non-negative measurable functions on R, then the expression∫

Rn

m∏
i=1

fi(⟨x, vi⟩)

m∏
i=1

∥fi∥pi

is “maximized”15 when the (fi) are appropriate Gaussian densities fi(x) = e−αix
2

, where each αi depends on the
(pi), (vi), m, and n.

However, this seems quite unwieldy. The constants αi are quite difficult to compute since they result from non-linear
equations of all the variables. When we talk about convex bodies however, this issue completely disappears and gives
a surprising connection back to Fritz John’s Theorem!

15there are degenerate cases for which the maximum is not attained
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Theorem 2.13. If (ui)
m
1 are unit vectors in Rn, (ci)

m
1 are positive reals, and (fi)

m
1 are non-negative measurable

functions such that
m∑
i=1

ciui ⊗ ui = In,

and ∫
Rn

m∏
i=1

fi(⟨x, ui⟩)ci ≤
m∏
i=1

(∫
fi

)ci

A couple of things to note here are:

� The maximized value is 1 now! The inequality is sharp.

� The ci play the role of the 1
pi
. As observed earlier, the (ci) sum up to 1 just like the ( 1

pi
) should.

� We replace each fi with f
ci
i to make it easier to state the equality condition.

When each fi is equal to t 7→ e−t2 ,∫
Rn

m∏
i=1

fi(⟨x, ui⟩)ci =
∫
Rn

exp

−
∑
i

ci⟨x, ui⟩2


=

∫
Rn

exp(−∥x∥2)

=

∫
Rn

exp

−
∑
i

x2i


=

(∫
e−t2

)n

=

(∫
e−t2

)∑
i ci

=

m∏
i=1

(∫
fi

)ci

We now prove Theorem 2.10.

Proof. Let K be a convex body with maximal ellipsoid Bn
2 , (ui)

m
1 and (ci)

m
1 be the points and constants as mentioned

in Fritz John’s Theorem, and C be the polytope defined in Equation (2.10). For each 1 ≤ i ≤ m, define fi : R → R
to be the indicator function on [−1, 1]. Observe that for x ∈ Rn, fi(⟨x, ui⟩) is non-zero for every i if and only if
|⟨x, ui⟩| ≤ 1 for every i, that is, x ∈ C. Therefore,

vol(C) =

∫
Rn

m∏
i=1

fi(⟨x, ui⟩)ci

≤
m∏
i=1

(∫
fi

)ci

=

m∏
i=1

2ci = 2n,

which proves our claim. ■

The analogous result of Theorem 2.10 for general convex bodies, as might be expected, says that among convex
bodies, the regular solid simplex has the largest volume ratio.
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§3. Concentration and Almost-Balls

Before we formally begin this section, we state without proof some results in probability that will be helpful later.

Unlike usual convention in probability, we take that a Bernoulli random variable takes −1 and +1 (instead of 0 and
1) with probability 1

2 each.

Theorem 3.1 (Hoeffding’s inequality). If (εi)
n
1 are independent Bernoulli random variables and (ai)

n
1 are reals that

satisfy
∑

i a
2
i = 1, then for t > 0,

Pr


∣∣∣∣∣∣

n∑
i=1

aiεi

∣∣∣∣∣∣ > t

 ≤ 2e−t2/2.

We also have

Theorem 3.2. If (Xi)
n
1 are iid random variables, each of which is uniformly distributed on [− 1

2 ,
1
2 ] and (ai)

n
1 are

reals that satisfy
∑

i a
2
i = 1, then for t > 0,

Pr


∣∣∣∣∣∣

n∑
i=1

aiXi

∣∣∣∣∣∣ > t

 ≤ 2e−6t2 .

Given a point x ∈ Rn,
∑

i aixi is the distance of x from the hyperplane orthogonal to (a1, . . . , an) ∈ Rn that passes

through the origin. So the above theorem essentially says that if we uniformly randomly pick a point from
[
− 1

2 ,
1
2

]n
,

then it is close to any (n− 1)-dimensional hyperplane passing through the origin. This might be reminiscent of how
a majority of the volume in a ball is contained in (relatively) thin slabs.
We elaborate further on this phenomenon in the following section.

3.1. Concentration in Geometry

Given a compact set A ⊆ Rn and x ∈ Rn, we write

d(x,A) = inf{d(x, y) : y ∈ A}.

Note that for ε > 0,
A+ εBn

2 = {x ∈ Rn : d(x,A) ≤ ε}.

Denote such a neighbourhood (A+ εBn
2 ) of A by Aε.

Then the proof of the Isoperimetric Inequality we gave using the Brunn-Minkowski inequality essentially says that
if B is a Euclidean ball of the same volume as A, then

vol(Aε) > vol(Bε) for any ε > 0.

Observe that we have removed Minkowski addition and reformulated everything in terms of only the measure and
the metric. A more general question that one might ask is:

Given a metric space (Ω, d) equipped with a Borel measure µ and some α, ε > 0, for which sets A of
measure α do the “blow-ups” Aε have the smallest measure?
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3.1.1. The Chordal Metric

First, consider the example of Ω = Sn−1 and d being the Euclidean metric inherited from Rn (also known as the
chordal metric). The measure is σn−1.
It was shown (with great difficulty) that the sets A are exactly spherical caps in Rn, which are the balls in Sn−1.

This might not seem like a big deal, but it does lead to some very startling results. For example, consider some
hemisphere H (α = 1

2 ). Then for any set A of measure 1
2 , σ(Aε) ≥ σ(Hε). Further, since the complement of A is a

ε-cap, we can use Lemma 1.2 to write

σ(Aε) ≥ 1− e−nε2/2.

This means (for sufficiently large n), that nearly the entire sphere lies within distance ε of A, although there might
be points that are far from A.
Similar to the observation made at the beginning where the majority of the mass was concentrated around any
hyperplane through the origin, we see that the majority of the mass is concentrated around any set of measure 1

2 .

Let us now reformulate this same property in another way. Let f : Sn−1 → R be a 1-Lipschitz function:

|f(θ)− f(ϕ)| ≤ ∥θ − ϕ∥ for any θ, ϕ ∈ Sn−1

Let M ∈ R (a median of f), be such that σ({f ≥ M}) = σ({f ≤ M}) = 1
2 . Due to the Lipschitz nature of f , for

any ε > 0, if x is at distance at most ε from {f ≤M},

σ({f > M + ε}) ≤ e−nε2/2.

Writing a similar expression for σ({f < M + ε}) and combining the two, we get

σ({|f −M | ≤ ε}) ≥ 2e−nε2/2.

That is, any 1-Lipschitz function on Sn−1 is practically constant!

For future reference, we also state two more results. Here, med(·) represents a median of the function, that is, a
number M such that σ({f ≤M}) ≥ 1

2 and σ({f ≥M}) ≤ 1
2 .

Lemma 3.3. Let f : Sn−1 → R be 1-Lipschitz. Then

|med(f)−E(f)| ≤ 12n−1/2.

Proof. We have

|med(f)−E(f)| ≤ E
(
|f −med(f)|

)
≤

∞∑
k=0

k + 1√
n

Pr

[
|f −med(f)| ≥ k√

n

]

≤ n−1/2
∞∑
k=0

(k + 1)2e−k2/2

≤ 12n−1/2.

■

3.1.2. The Gaussian Metric

Second, let us consider the example of Rn equipped with the standard Gaussian probability measure µ that has
density

γ(x) = (2π)−n/2e−|x|2/2.
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The solutions to the problem for α = 1
2 were found to be half-spaces. That is, if A ⊆ Rn and µ(A) = 1

2 , then for any
ε > 0, µ(Aε) ≥ µ(Hε), where H = {x ∈ Rn : x1 ≤ 0} and so, Hε = {x ∈ Rn : x1 ≤ ε}. We have

µ(Hε) =
1√
2π

∫ ∞

ε

e−x2/2 dx ≤ e−ε2/2

and therefore,

µ(Aε) ≥ 1− e−ε2/2.

A more general result about the Gaussian metric states that

Theorem 3.4. Let A ⊆ Rn be measurable and µ the standard Gaussian probability measure on R. Then∫
ed(x,A)2/4 dµ ≤ 1

µ(A)
.

In particular, if µ(A) = 1
2 ,

µ(Aε) ≥ 1− 2e−ε2/4.

Proof. Define the functions

f : x 7→ ed(x,A)2/4γ(x),

g : x 7→ 1Aγ(x), and

m : x 7→ γ(x),

where 1A represents the indicator function on A. Then, for any x ̸∈ A and y ∈ A,

f(x)g(y) = ed(x,A)2/4 · (2π)−ne−(|x|2+|y|2)/2

≤ (2π)−ne∥x−y∥2/4e−(∥x∥2+∥y∥2)/2

= (2π)−ne−∥x+y∥2/4

= m

(
x+ y

2

)2

.

Using the above, it is obvious that for any x, y ∈ Rn,

f(x)g(y) ≤ m

(
x+ y

2

)2

.

We can then use the Prékopa-Leindler inequality to conclude that(∫
Rn

f

)(∫
Rn

g

)
≤
(∫

Rn

m

)2

.

That is,

µ(A)

∫
ed(x,A)2/4 dµ ≤ 1,

which is exactly what we want to show.

For the second part, we have

ed(x,A)2/4 ≤ 2.

For any ε > 0, the integral on the left is at least eε
2/4µ({d(x,A) ≥ ε}). We then have

µ({d(x,A) ≥ ε}) ≤ 2e−ε2/4,

which directly results in our claim. ■
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The reader might have noticed that we have proved slightly different bounds from what we claimed at the beginning
of this subsection (ε2/4 instead of ε2/2), we can get arbitrarily close to the given bound by changing f , g and λ
(which we chose to be 1

2 ) slightly. Henceforth, we use the ε2/2 bound itself.



High-Dimensional Convex Geometry 30 / 106 Amit Rajaraman

3.2. Dvoretzky’s Theorem

Theorem 3.5 (Dvoretzky’s Theorem). There is a positive number c such that for every ε > 0 and natural n, every
symmetric body of dimension n has a slice of dimension

k ≥ cε2

log(1 + ε−1)
log n

that is within distance 1 + ε of the Euclidean ball.

The above theorem essentially says that any symmetric convex body possesses almost spherical slices.
While the original proof was by Dvoretzky, Milman found a different proof of the above theorem which is based on
concentration of measure. A few years later, Gordon removed the log(1 + ε−1) factor from the denominator.
We describe Milman’s approach without making explicit the dependence on n (for the sake of simplicity).

Loosely, the proof goes as follows:

� Section 3.2.3 - Using Theorem 3.7, restrict to a “good” subspace that is not too much smaller than Rn.

� Section 3.2.4 - Bound the expectation, and thus the median, of the norm corresponding to the body by some

constant multiple of
√

logn
n .

� Section 3.2.1 - Find a general bound on a valid k in terms of the median and use the bound from the previous
step.

3.2.1. Expressing the Result in Terms of the Median

Let K be a symmetric convex body such that the maximal ellipsoid in it is the Euclidean ball. Let ∥·∥K be the
metric under which K is the unit ball.
We then want to find a k-dimensional subspace H of Rn such that the function f : θ 7→ ∥θ∥K is almost constant on
the k-dimensional ball H ∩ Sn−1. Now, for any x ∈ Rn, we have ∥x∥ ≥ ∥x∥K . This implies that∣∣∥θ∥K − ∥ϕ∥K

∣∣ ≤ ∥θ − ϕ∥K ≤ ∥θ − ϕ∥

so f is 1-Lipschitz on Sn−1. From the discussion in Section 3.1.1, we know that on a large part of Sn−1, f is
approximately equal to

M =

∫
Sn−1

f dσ.

We can view any such subspace H as an embedding T : Rk → Rn. For any unit vector ψ ∈ Rk, ∥Tψ∥K is close to M
with high probability. Then for any unit vectors (ψi)

m
1 , ∥Tψ∥K is close toM with high probability for some choice of

T . What we would like to show is that if we pin down ∥Tψi∥K at sufficiently many points that are “well-distributed”
around the ball (in Rk), then the radius will be almost constant on the sphere as well.
To make this more concrete, we bring back some terminology that we used in the proof of Theorem 1.3. Define a set
{ψ1, . . . , ψm} to be a δ-set in Sk−1 if for any x ∈ Sk−1, d(x, ψi) ≤ δ for some i.

Lemma 3.6. Let ∥·∥K be a norm on Rk. Suppose that for some γ > 0, each point ψ of some δ-net on Sk−1 satisfies

M(1− γ) ≤ ∥ψ∥K ≤M(1 + γ).

Then for every θ ∈ Sk−1,
M(1− γ − 2δ)

1− δ
≤ ∥θ∥K ≤ M(1 + γ)

1− δ
.
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Proof. We may assume without loss of generality that M = 1. Let

C = sup
θ∈Sn−1

∥θ∥K = sup
θ∈Sn−1

∥θ∥K
∥θ∥

and θ0 be the point on Sn−1 for which this supremum is attained. Let ψ0 be a point of the δ-net such that
∥θ0 − ψ0∥ ≤ δ. Then,

C = ∥θ0∥K
≤ ∥ψ0 − θ0∥K + ∥ψ0∥K
≤ Cδ + (1 + γ).

Therefore,

C ≤ 1 + γ

1− δ
.

Now, for any θ ∈ Sn−1, if ψ is a point of the δ-net such that ∥θ − ψ∥ ≤ δ, then

1− γ ≤ ∥ψ∥K
≤ ∥θ∥K + ∥ψ − θ∥K

≤ ∥θ∥K +

(
1 + γ

1− δ

)
δ.

Simplifying gives the other side of the inequality. ■

Now, let us bring the problem to the above form.

From the discussion in Section 3.1.1, we know that for any γ > 0,

M(1− γ) ≤ ∥θ∥K ≤M(1 + γ)

on all but a set of measure (at most) 2e−nM2γ2/2.

We can find a δ-net A (of the sphere in Rk−1 that has at most 1
2 ·
(

δ
2

)k−1

points.

Now, rather than considering every k-dimensional subspace of Rn, we can instead fix a particular embedding of Rk

in Rn and subsequently consider every orthogonal transformation U of this space.
Rephrasing it in these terms, we want to determine if there is an orthogonal transformation U such that every ψ ∈ A,

M(1− γ) ≤ ∥Uψ∥K ≤M(1 + γ).

For a particular ψ, the set of “bad” transformations is of measure at most 2e−nM2γ2/2. Further, a necessary (and
sufficient) condition for there to be a valid U is that the total set of bad transformations is of measure less than 1.
This yields (

4

δ

)k−1

· e−nM2γ2/2 < 1

which gives a k in the order of
nM2γ2

2 log(4/δ)
.

Both the γ and the δ contribute to the ε as mentioned in Dvoretzky’s Theorem, so we should aim to bound M by a
reasonably quantity to get the log(n) estimate we gave in the beginning. In particular, we should show that

M =

∫
Sn−1

∥θ∥K dσ is of the order of

√
log n

n
.

To show this, we must use the fact that Bn
2 is the maximal ellipsoid in K. Before we prove the general case, we

examine a specific case.
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3.2.2. Dvoretzky’s Theorem for a Cross-Polytope under the Gaussian Measure

Consider the case where the measure is the Gaussian measure on Rn. Then,

M =

∫
Sn−1

∥θ∥K dσ

=
Γ
(
n
2

)
√
2Γ
(
n+1
2

) ∫
Rn

∥x∥K dµ(x) (converting from polar coordinates using Equation (1.1))

>
1√
n

∫
Rn

∥x∥K dµ(x)

and the body K under consideration is the cross-polytope. The corresponding norm is x 7→ 1√
n

∑
i |xi|. We can split

this integral to n separate integrals (in terms of each coordinate) to get

M >
1√
n

∫
Rn

∥x∥K dµ(x) =

∫ ∞

−∞
|x| 1√

2π
e−x2/2 dx =

√
2

π

This proves that for this example, there are in fact almost-spherical sections of dimension of the order of n!16

3.2.3. A Weaker Version of the Dvoretzky-Rogers Lemma

To aid us in our goal, we give the following lemma.

Theorem 3.7 (Dvoretzky-Rogers Lemma). Let K ⊆ Rn be a symmetric body with maximal ellipsoid Bn
2 . Then,

there exists some subspace Z ⊆ Rn of dimension k =
⌊

n
log2 n

⌋
and an orthonormal basis (ui)

k
1 of Z such that

∥ui∥K ≥ 1
2 for all i.

The above is quite similar in spirit to Theorem 1.5. Instead of bounding the body between Bn
2 and

√
nBn

2 , we bound
the restriction of the body to a subspace between a ball and a parallelotope.17

The basic idea of the proof is as follows. Either the body K touches the inner ball at a “large number” of places,
in which case we can construct the (ui), or it stays away from the ball in some “large” subspace. In this case, we
restrict to this subspace, inflate the inner ball, and repeat the process. Since we cannot inflate the inner ball forever
(it must be contained within

√
nBn

2 ), this will end at some point.

Proof. Consider two cases.

� If every subspace Y ⊆ Rn of dimension > n− k contains a vector u with ∥u∥ = 1 and ∥u∥K ≥ 1
2 , then choose

one such vector from each of k orthogonal subspaces of dimension n− k + 1 to construct the required.

� Otherwise, there exists some subspace Y of dimension greater than n−k such that for every unit vector u ∈ Y ,
∥u∥K ≤ 1

2 . Let K̃ and B̃n
2 be the restriction of K and Bn

2 to this subspace respectively. Observe that 2B̃n
2 ⊆ K̃.

We can then recurse on the subspace Y scaled down by a factor of 1
2 .

Since K is contained in
√
nBn

2 , this process must terminate in at most i0 := log2(n)− 1 steps. Because n− ki0 ≥ k,
the result holds. ■

Note that we could have repeated the above proof to get a similar result that is off by a constant factor if in Theo-
rem 1.5, we had the weaker bound of something like n or n43 instead of

√
n.

While we have found a subspace of dimension n
log2 n , there are alternate proofs that give much better results. One

in particular gives dim(Z) = n
2 .

16exclamation mark, not factorial!
17the parallelotope is defined by the separating hyperplanes between each (2ui) and K.
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3.2.4. Bounding the Expectation

Henceforth, we restrict ourselves to the subspace Z as defined in Theorem 3.7. We can do so because the reduction
in dimension from n to n

logn makes barely any difference.18 Assume that Z = Rn.

We now want to get a lower bound on the median of x 7→ ∥x∥K (restricted to Sn−1). Instead of doing this, we
shall bound the expectation. This is justified because as seen in Lemma 3.3, the difference between them is O(n−1/2)
which is irrelevant compared to the quantity we aim to bound it by.

Let ∥·∥P be the norm that defines the corresponding parallelotope.
We clearly have ∥θ∥K ≥ ∥θ∥P . Therefore, it suffices to instead bound the expectation of ∥·∥P .

Now, we show that it in fact suffices to consider the cube [−2, 2]n instead of the parallelotope! The norm corresponding
to the cube is 1

2 ∥·∥∞.

Lemma 3.8. Let v1, . . . , vn be vectors in a normed space with norm ∥·∥. Then

∑
σ∈{−1,1}n

∥∥∥∥∥∥
n∑

i=1

σivi

∥∥∥∥∥∥ ≥ 2n max
i

∥vi∥

Proof. Assume without loss of generality that v1 has the largest norm. Then,

∑
σ∈{−1,1}n

∥∥∥∥∥∥
n∑

i=1

σivi

∥∥∥∥∥∥ = 2
∑

σ∈{−1,1}n−1

∥∥∥∥∥∥v1 +
n∑

i=1

σi−1vi

∥∥∥∥∥∥
= 2

∑
σ∈{−1,1}n−2

∥∥∥∥∥∥v1 +
v2 + n∑

i=2

σi−2vi

∥∥∥∥∥∥+
∥∥∥∥∥∥v1 −

v2 + n∑
i=2

σi−2vi

∥∥∥∥∥∥
≥ 2

∑
σ∈{−1,1}n−2

2 ∥v1∥

= 2n ∥v1∥ .

■

For the sake of simplicity, denote the function x 7→ ∥x∥P by fP and x 7→ 1
2 ∥x∥∞ by fC . We want to show that

E[fP ] ≥ E[fC ]. We use an averaging argument as follows, writing each x ∈ Sn−1 as
∑

i αiui for some (αi). We then
have

2nE[fP ] = 2n
∫
Sn−1

fP (x) dσ(x)

=
∑

σ∈{−1,1}n

∫
Sn−1

fP

 n∑
i=1

σiαiui

dσ(x)

=

∫
Sn−1

∑
σ∈{−1,1}n

fP

 n∑
i=1

σiαiui

dσ(x)

≥
∫
Sn−1

2n max
i

∥αiui∥ dσ(x)

≥
∫
Sn−1

2n · 1
2
max

i
|αi|dσ(x)

= 2n
∫
Sn−1

fC(x) dσ(x) = 2nE[fC ].

18For a more convincing argument, one could just work in the subspace of dimension n
2
.
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Finally, we shall show that for some constant c,

E[fC ] =
1

2

∫
Sn−1

∥x∥∞ dσ(x) ≥ c

√
log n

n

To show this, we give an elegant probabilistic method that uses the fact that the n-dimensional Gaussian is symmetric
about the origin. Let Z = (Z1, . . . , Zn) be the standard normal. We can draw a point uniformly randomly from
Sn−1 using Z

∥Z∥ . Clearly,

E[fC ] = E

[
∥Z∥∞
∥Z∥

]
.

Now, note that

Pr[∥Z∥ ≥
√
3n] = Pr[∥Z∥2 ≥ 3E[∥Z∥2] ≤ 1

3
.

That is, ∥Z∥ is less than some constant multiple of
√
n with probability at least 2

3 . On the other hand, for any
constant z,

Pr[∥Z∥∞ ≤ z] =
(
Pr[|Z1| ≤ z]

)n
=

(
1−

∫ ∞

z

2√
2π
e−t2/2 dt

)n

≤
(
1− 2√

2π
e−(z+1)2/2 dt

)n

Setting z to
√
log n− 1, we get

Pr[∥Z∥∞ ≤ z] ≤
(
1− 2√

2π
n−1/2

)n

,

which is less than 1
3 for all n. Therefore, ∥Z∥∞ ≤ c2

√
n with probability at least 2

3 and ∥Z∥ ≥ c1
√
log n with

probability at least 2
3 for some constants c1, c2. This implies that

∥Z∥∞
∥Z∥ ≥ c

√
logn
n for some suitable c,19 which is

exactly what we want.

19since we know that it occurs with probability at least 1
3
.
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§4. Computing Volume in High Dimensions

A very popular problem in high-dimensional convex geometry is that of determining the volume of an arbitrary
convex body.

For a fixed dimension n, this problem isn’t too difficult if we want to measure it up to some precision ε. We could
assume that the body K is enclosed in a box B =×i≤n

[ai, bi], subdivide this box up to precision ε, and count

how many subdivided boxes have non-empty intersection with K. This (after normalizing appropriately) can be
considered efficient in a fixed dimension, where polynomiality is measure in 1

ε . If we measure it in n on the other
hand, this method is useless.
We are looking for algorithms that are efficient (polynomial) in the dimension n.

There are a few issues that arise when we even want to formulate this problem.

� What does it mean when we say that a convex body K is “given”? In what form is it given?

� What does “efficient” exactly mean?

We have already answered the second question above – we are looking for algorithms that are polynomial in the
dimension n. We either want the exact volume or an approximation up to some small relative error ε > 0. If it is
the latter, we would also like the algorithm to be polynomial in 1

ε .
20

4.1. Sandwiching and Deterministic Algorithms

Let us answer the first question that we mentioned – how is an arbitrary body K represented? What information
do we have access to?

4.1.1. Oracles

We represent the body using an oracle. We explain the different types of oracles one may consider over the course
of this section.

Definition 4.1. A body K is said to be well-guaranteed if it contains rBn
2 and is contained in RBn

2 for some r,R > 0.

We restrict ourselves to well-guaranteed bodies since otherwise, we may ask any (finite) number of questions about
the body (say of the form “is x ∈ K”) and receive a no every time. This doesn’t allow us to make any useful
inferences about vol(K). The fact that K contains rBn

2 ensures that it isn’t too small and the containment in RBn
2

ensures that it isn’t “at infinity”.

A body K is given by an oracle K if we know nothing about it other than the fact that it is well-guaranteed with r
and R and we may ask questions about K, and receive answers to said questions. Depending on the questions and
answers, we get different types of oracles.
We primarily use weak separation oracles and strong membership oracles.

Definition 4.2 (Strong Membership Oracle). For a fixed convex body K, the strong membership oracle (correctly)
answers questions of the form “Is x ∈ K?”.

Now, for x ̸∈ K, we know that there is a hyperplane separating them by Lemma 1.7. This gives rise to the strong
separation oracle.

Definition 4.3 (Strong Separation Oracle). For a fixed convex body K, the strong separation oracle (correctly)
answers questions of the form “Is x ∈ K?”. If the answer is no, it also returns a hyperplane S separating x from K.

This hyperplane is returned as a vector s ∈ Rn with ∥s∥∞ = 1 such that ⟨s, x⟩ > 1 and ⟨s, y⟩ ≤ 1 for any y ∈ K.
This leads to the weak separation oracle.

20Note that ε takes only log(1/ε) bits, so this is a relaxation in some sense.
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Definition 4.4 (Weak Separation Oracle). For a fixed convex body K, we can fix an ε > 0 and ask the weak
separation oracle questions of the form “Is x ∈ K for the positive number ε?”. However, in this case, the precision
of the answer is ε in the sense that

(i) If d(x, ∂K) < ε, we can get any answer.

(ii) If B(x, ε) ⊆ K, we get the correct answer (yes).

(iii) If d(x,K) ≥ ε, we get the correct answer (no) and a vector s normalized by ∥s∥∞ = 1 for which ⟨s, y⟩ < ⟨s, x⟩+ε
for every y ∈ K.

A weak membership oracle is similar, where if it is within ε of ∂K, it may return either answer and if it is farther
than ε, it returns the correct answer.

The complexity of the algorithm is measured in the number of calls to the oracle, since this is usually the most
expensive step.

4.1.2. Sandwiching

We earlier mentioned that we only consider well-guaranteed bodies. As might be expected, the ratio R/r is quite
important. Defining it slightly more concretely,

Definition 4.5. Given a convex body K, let E an ellipsoid centered at 0 such that E ⊆ K ⊆ dE for some d ≥ 1. We
are then said to have a sandwiching of K with sandwiching ratio d.

We are given a sandwiching of sandwiching ratio R/r initially. It is natural to want to obtain a sandwiching that
has a lower ratio to make whatever algorithm we use more efficient.
Further, note that by Theorem 1.5, the minimum possible sandwiching ratio of (an affine transformation of) a body
is at most n.

The information given to us initially (r and R) are not even necessarily useful all the time. For example, one could
have a very “pencil-like” body in Rn such that the inscribed ball is far far smaller than the circumscribed one.
Thus, before we even begin our algorithm, we would want to do some preliminary sandwiching – perform an affine
transformation to get a sandwiching with a more manageable sandwiching ratio.

Lovász showed in [Lov86] that it is possible to compute an affine transformation K̃ of K in polynomial time such
that

Bn
2 ⊆ K̃ ⊆ (n+ 1)

√
nBn

2 . (4.1)

We first introduce the following common tool.

Lemma 4.1 (Basic ellipsoid method). For a convex body K ⊆ Rn along with some R > 0 such that K ⊆ RBn
2 and

a weak separation oracle, it is possible to find a point in K in polynomial time.

We prove it for the case where we have a strong separation oracle. The algorithm basically works by cutting down
our search space until we find a point.

Proof. We construct a sequence E0, . . . , Ek of ellipsoids with E0 = RBn
2 . Given Er, check if its center xr is contained

in K. Otherwise, we have a half-space Hr such that K ⊆ Hr. We set Er+1 to be the ellipsoid of minimal volume
that contains K ∩Hr. The sequence terminates when the center of an ellipsoid is contained in K.
It may be shown that

vol(Er+1) =

(
n

n+ 1

)(n+1)/2(
n

n− 1

)(n−1)/2

vol(Er).

Rewriting it more suggestively,

vol(Er+1) =

(
n2

n2 − 1

)(n−1)/2
n

n+ 1
vol(Er)

<

(
1 +

1

n2

)(n−1)/2

vol(Er) < e−1/2n vol(Er).
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The thing to note here is that e−1/2n is independent of the ellipsoids involved. Since we have K ⊆ Ek,

vol(K) ≤ vol(Ek) ≤ e−k/2n(2R)n.

That is,
k ≤ 2n2 log(2R)− 2n log(vol(K))

so there is a polynomial upper bound on the number of steps. ■

If each ellipsoid is given by

Er =
{
x ∈ Rn : (x− xk)

⊤A−1
k (x− xk) ≤ 1

}
,

ck is the vector returned by the separation oracle and gk = 1√
c⊤k Akck

ck, then

xk+1 = xk − 1

n+ 1
Akgk and

Ak+1 =
n2

n2 − 1

(
Ak − 2

n+ 1
Akgkg

⊤
k Ak.

)
Since there is rounding anyway (irrationals might become involved due to the

√
·), it turns out that it suffices to

have a weak separation oracle.

A pair of ellipsoids like that in Equation (4.1) is often known as a weak Löwner-John pair for K (the sandwiching
ratio must be (n+ 1)

√
n).

Theorem 4.2. Let K ⊆ Rn be a convex body given by a weak separation oracle. Then a weak Löwner-John pair
for K can be computed in polynomial time.

Again, we prove it for the case where we have a strong separation oracle instead. This algorithm is nearly identical to
that of basic ellipsoid method, but at each step we perform a little extra computation to check if the corresponding
ellipsoid scaled down by a factor of (n+ 1)

√
n is contained in K.

Proof. We construct a sequence E0, . . . , Ek of ellipsoids with E0 = RBn
2 . Given Er, first check if its center xr is

contained in K. if it is not, then use the basic ellipsoid method to get an ellipsoid that does; we abuse notation and
refer to this as Er as well.
Next, let the endpoints of the axes of the ellipsoid be given by xr ± ai (for 1 ≤ i ≤ n). Check if the 2n points
xr ± 1

n+1ai are in K for each i. If they all are, then we are done, since this implies that the convex hull of these
points is contained in K as well, and the maximal ellipsoid contained in the convex hull is just Er scaled down by a
factor of (n+ 1)

√
n.

Otherwise, suppose that xr +
1

n+1a1 is not in K and Hr is the half-space returned by the oracle that contains K.
Similar to the basic ellipsoid method, find the minimal ellipsoid Er+1 that contains Er ∩Hr.
It may be shown that in this case,

vol(Er+1) < e−3/2(n+1)(2n+1)2 vol(Er).
The sequence terminates when we have found a weak Löwner-John pair. ■

It is also notable that for certain types of special convex bodies, we can improve the bound beyond (n+ 1)
√
n.

In particular, if K is symmetric, we can attain a factor of n, if K is a polytope given as the convex hull of a set of
vectors, we can attain n+ 1, and if K is a symmetric polytope given as above, we can attain

√
n+ 1.

Typically, we assume that after performing sandwiching, we perform a linear transformation such that Bn
2 becomes

the maximal ellipsoid of the transformed body. That is, the problem boils down computing the volume of a body K
with

Bn
2 ⊆ K ⊆ (n+ 1)

√
nBn

2 .

Readers interested in oracles and sandwiching are highly recommended to take a look at [GLS93].
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4.1.3. The Problem and Deterministic Attempts

Our problem is to find for some given convex body K, some quantities vol(K) and vol(K) such that

vol(K) ≤ vol(K) ≤ vol(K)

while minimizing vol(K)
vol(K) .

Theorem 4.2 produces estimates (equal to the volumes of the ellipsoids) with vol(K)
vol(K) = nn(n+1)n/2. This may seem

ludicrously bad, but as it turns out, any deterministic attempts in general are destined to fail. Indeed, Elekes proved
in [Ele86] that for any positive ε < 2, there exists no deterministic polynomial time algorithm that returns

vol(K)

vol(K)
≤ (2− ε)n (4.2)

for every convex body K. The reason for this is that the convex hull of polynomially many points in Bn
2 is always

bound to be far smaller than Bn
2 itself – we’ve already seen this all the way back in Theorem 1.3. Let us now prove

Equation (4.2).

Lemma 4.3 (Elekes’ Theorem). Every deterministic algorithm to estimate the volume of an arbitrary convex body

K ⊆ Rn that uses q oracle queries has vol(K)
vol(K) ≥

2n

q for some K given by a well-guaranteed weak separation oracle.

What exactly do we mean by a deterministic algorithm? Roughly, it means that if we pass the same body into the
algorithm twice, we will get the exact same result. More specifically, if we pass two bodies K1 and K2 such that
(xi) and (yi) are the queried points respectively, the first point where they differ, say xi ̸= yi, must be such that
xi−1 = yi−1 is in K1△K2. We abuse this fact.

Proof. Let A be some deterministic algorithm to estimate the volume of a convex body. Fix ε = 2n for the separation
oracle. When we run A on Bn

2 , suppose that the points queried are x1, . . . , xq. Let C be the convex hull of these q
points. Now, note that if we run A on C, the same points (xi) will be queried and as a result, the volume estimates
vol and vol that are returned are the same as well!
To conclude the argument, note that

C ⊆
q⋃

i=1

B

(
xi
2
,
1

2

)
.

Therefore,
vol(C)

vol(Bn
2 )

≤ q

2n
.

We then have
vol

vol
≥ vol(Bn

2 )

vol(C)
≥ 2n

q
.

■

4.1.4. The Bárány-Füredi Theorem

We now give a stronger result known as the Bárány-Füredi Theorem (given in [BF87]), which shows that deterministic
algorithms in general aren’t much better than even the estimate with an nn error returned by basic sandwiching.

Theorem 4.4 (Bárány-Füredi Theorem). There is no deterministic polynomial time algorithm that computes a
lower bound vol(K) and an upper bound vol(K) for the volume of every convex body K ⊆ Rn given by some oracle
such that for every convex body,

vol(K)

vol(K)
≤
(
c
n

log n

)n
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The basic outline of the proof is as follows.

Proof. Rather than considering a simple separation oracle, we consider an even stronger oracle. First of all, we know
beforehand that the convex body K is such that Bn

1 ⊆ K ⊆ Bn
∞.

For x ∈ Rn, denote x◦ = x/ ∥x∥, H+(x◦) = {z ∈ Rd : ⟨z, x◦⟩ ≤ 1} and H−(x◦) = {z ∈ Rd : ⟨z, x◦⟩ ≥ 1}.

When we query x ∈ Rn, in addition to the information given by the separation oracle, we also receive “x◦ ∈ K and
−x◦ ∈ K and K ⊆ H−(x◦) and K ⊆ H+(x◦)”. That is, if x ̸∈ K, in addition to a separating hyperplane, we also
receive information as to whether the hyperplanes at ±x◦ that are orthogonal to x are tangential to K.

Now, for the main part of the proof, suppose we have some deterministic polyomial time algorithm A that returns
a lower and upper bound vol(K) and vol(K) for any body K. The basic idea is roughly similar to that of Elekes’
Theorem. Suppose we run A on Bn

2 until m ≤ na − n questions have been asked for some a ≥ 2 (due to the
polynomial nature of the algorithm) and x1, . . . , xm are the points queried. Define

C = Conv(±e1,±e2, . . . ,±en, x◦1, . . . , x◦m).

Now, consider the dual C∗ of C (recall what a dual is from the proof of Lemma 1.6). Observe that for any of the xi,
the output of the oracle on passing xi (or ±ei) must be the same whether we pass it with regards to C, C∗, or Bn

2 .
21

Indeed, each H+(x◦i ) and H−(x◦i ) is a supporting hyperplane of all three bodies. This implies that the estimates
returned by A are the same for all three bodies!
We then have

vol(Bn
2 ) ≥ vol(C∗) and vol(Bn

2 ) ≤ vol(C).

Therefore,
vol(C)

vol(C)
=

vol(C∗)

vol(C∗)
=

vol(Bn
2 )

vol(Bn
2 )

≥ vol(C∗)

vol(C)
.

■

Over the rest of this section, we show that there is some constant c such that

vol(C∗)

vol(C)
≥
(
c
n

log n

)n

.

To do this, we introduce some more notation. Let

V (n,m) = sup{vol(K) : K = Conv({v1, . . . , vm}) ⊆ Bn
2 }

and
S(n,m) = inf{vol({x : |⟨x, vi⟩| ≤ 1 for each i}) : (vi)m1 ∈ Rn such that for each i, ∥vi∥ ≤ 1}

Clearly, it suffices to show that
S(n, na)

V (n, na)
≥
(
c
n

log n

)n

(4.3)

since C∗ and C are of the above considered forms.

4.1.5. Bounding V (n,m) and S(n,m)

For 1 ≤ k ≤ n, define

ρ(n, k) =


1, if k = 0√
(n− k)/nk, if 1 ≤ k ≤ n− 2

1/n, if k = n− 1.

21if xi ∈ Bn
2 , we receive a yes. Otherwise, we receive a no along with the information that the hyperplanes at the x◦

i are tangential.
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Lemma 4.5. Let S = Conv({v0, v1, . . . , vn}) ⊆ Bn
2 be an n-dimensional simplex and x ∈ S. Then for every k such

that 0 ≤ k ≤ n− 1, S has a k-dimensional face Sk = Conv({vi0 , vi1 , . . . , vik}) and a point xk in the interior22 of Sk

such that (x− xk) ⊥ span(Sk) and ∥x− xk∥ ≤ ρ(n, k).

Proof. The result for k = n− 1 follows directly from the fact that the maximal ellipsoid in S is at most 1
nB

n
2 .

For 1 ≤ k ≤ n− 2, we use strong (backward) induction on k.
Let xn = x and for each r : n > k > k, let xr be such that (xr+1 − xr) ⊥ span(Sr) and ∥xr+1 − xr∥ ≤ ρ(n, r).
Note that xn − xn−1, xn−1 − xn−2, . . . , xk+1 − xk are all orthogonal and ∥xr+1 − xr∥ ≤ 1

r for each r. We then have

∥xn − xk∥2 =

n−1∑
r=k

∥xr+1 − xr∥2

≤
n∑

r=k+1

1

r2

≤
n∑

r=k+1

1

r(r − 1)

=
1

k
− 1

n
.

Finally, the result for k = 0 follows from the fact that the (vi) are contained in Bn
2 . ■

Observe that this bound is only tight when k is 1 or n. Putting this in a slightly more compact form, let S ⊆ Rn

and U = span(S). If we define

Sρ = S +
(
U⊥ + ρBn

2

)
,

Lemma 4.5 just says that for some Sk, x ∈ S
ρ(n,k)
k .

It is also worth noting that if S is convex and dimU = k,

vol(Sρ) = volk(S)vn−kρ
n−k (4.4)

Theorem 4.6. There is a constant c > 0 such that

V (n,m)

vn
≤
(
c
1 + log(m/n)

n

)n/2

and so,

V (n,m) ≤

(
γ

√
1 + log(m/n)

n

)n

where γ =
√
2πec.

If m/n→ ∞ and n/ log(m/n) → ∞, then there is a constant c′ such that

V (n,m)

vn
≤
(
c′
log(m/n)

n

)n/2

Proof. It may be shown that if K = Conv({v1, . . . , vm}) ⊆ Rn, then K is the union of its n-dimensional simplices.
That is,

K =
⋃

i0<···<in

Conv({vi0 , . . . , vin}).

22it is a convex combination of the (vij )
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This allows us to bound the volume of K. For any 1 ≤ k ≤ n− 1, we can write

K ⊆
⋃

i0<···<ik

{
Sρ(n,k) : S = Conv({vi0 , . . . , vik})

}
.

Bounding the volume,

vol(K) ≤
(

m

k + 1

)
max

{
vol
(
Sρ(n,k)

)
: S = Conv({x0, . . . , xk}) ⊆ Bn

2

}
.

Using Equation (4.4),

vol(K) ≤
(

m

k + 1

)
· vn−kρ(n, k)

n−k ·max
{
volk(S) : S = Conv({x0, . . . , xk}) ⊆ Bn

2

}
.

The right-most quantity is maximum when the body is the k-dimensional regular solid simplex, whose volume is
(n + 1)(n+1)/2/nn/2n!. This is easily computed by using induction on dimension and the maximality was briefly
mentioned at the end of Section 2.3. So,

vol(K) ≤
(

m

k + 1

)
· π(n−k)/2

Γ
(

n−k
2 + 1

) (n− k

nk

)(n−k)/2
(k + 1)(k+1)/2

kk/2k!

≤
(

m

k + 1

)
·
(

2πe

n− k

)(n−k)/2(
n− k

nk

)(n−k)/2
(k + 1)(k+1)/2

kk/2k!

=

(
m

k + 1

)
·
(
2πe

nk

)(n−k)/2
(k + 1)(k+1)/2

kk/2k!

≤ mk+1

(k + 1)!
·
(
2πe

nk

)(n−k)/2
(k + 1)(k+1)/2

kk/2k!

≤
(

em

k + 1

)k+1

·
(
2πe

nk

)(n−k)/2(
e

k

)k

.

And therefore,

vol(K)

vn
≤
(

em

k + 1

)k+1

nk/2k−(n+k)/2.

It remains to choose a suitable value of k. For the case when m/n → ∞ and n/ log(m/n) → ∞, we can let

k =
⌈

n
2 log(m/n)

⌉
to obtain

vol(K)

vn
≤ eo(n)

(
2e log(m/n)

n

)n/2

.

■

Note that the above again leads to an inference similar to that we made in Theorem 1.3 – the volume is comparable
only when m is exponentially large.

It remains to bound S(n,m).

To do this, we use the second of the following neat results – see [Mil98, BM87] for relevant discussion.

Theorem 4.7 (Blaschke-Santaló Inequality). Let K be a convex body in Rn with dual K∗. Then

vol(K) vol(K∗) ≤ vol(Bn
2 )

2

with equality when K is an ellipsoid.
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Theorem 4.8 (Bourgain-Milman Inequality). Let K be a convex body in Rn with dual K∗. Then

vol(K) vol(K∗) ≥ cn

n!

for some universal constant c > 0.

For our purposes, it suffices to know that there is some constant c2 such that

vol(K) vol(K∗) ≥
(
c2
n

)n

.

If we let K = {x ∈ Rn : |⟨x, vi⟩| ≤ 1 for each i} for some (vi)
m
1 ∈ Rn such that ∥vi∥ ≤ 1 for each i, then note that

K∗ = Conv({v1, . . . , vm}).
An upper bound then directly follows from Theorem 4.8 and Theorem 4.6. We get for some constants c2 and γ,

S(n,m) ≥
(
c2
n

)n
(

n

γ
√
log(m/n) + 1

)n

=

(
c′√

log(m/n) + 1

)n

(4.5)

for some constant c′.

Finally, to show the bound mentioned in Equation (4.3), use Theorem 4.6 and Equation (4.5) to get

vol(C)

vol(C)
≥ S(n, na)

V (n, na)
≥
(
c1
γa

n

log n

)n

which is exactly what we want.

4.2. Rapidly Mixing Random Walks

It has now clearly been established beyond doubt that deterministic algorithms will get us nowhere. What if instead,
we consider randomized algorithms? That is, we are fine with some small probability, say η, of getting the incorrect
answer? We can do far far better in this case.

4.2.1. An Issue with High Dimensions and the Solution

Reformulating the problem in this context, we pass some 0 < η < 1, some ε > 0, and a well-guaranteed strong

membership oracle23 of a body K, and ask for an estimate ṽol(K) such that with probability at least 1− η,

(1− ε)ṽol(K) ≤ vol(K) ≤ (1 + ε)ṽol(K).

Henceforth, we assume that the reader has a basic understanding of Markov chains and stationary distributions
thereof, at least in the discrete case. In case the reader does not, they can skip ahead to Section 4.4.

A simple method that might come to mind is a Monte Carlo algorithm. Find some box Q in which K is contained,
uniformly randomly generate a large number of points in Q, and find the fraction of points generated that are in K

– this is a good estimate of vol(K)
vol(Q) .

However, the issue is one that we emphasised very heavily on in the very first (and quantified to some extent in the
previous) section: if we take K = Bn

2 and Q = Bn
∞, then vol(K)/ vol(Q) is extremely (exponentially) small, so it

will not work (in polynomial time) at all.

23it is in general not too important which oracle we are given.
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That is, the issue is that vol(K) is extremely small compared to a box it is contained in. To get around this, there
is a surprisingly simple solution.

Rather than considering just K, consider some m+ 1 bodies K0 ⊆ K1 ⊆ · · · ⊆ Km = K (for appropriately large m)
and for each i, estimate Λi := vol(Ki)/ vol(Ki−1) (we can then estimate vol(K) as vol(K0)

∏
i Λi).

Usually, we take Ki = K ∩ 2i/nBn
2 . Note that because Ki ⊆ 2i/nKi−1 in this case,

Λi =
vol(Ki)

vol(Ki−1)
≤ 2

is not large at all.
The value of vol(K0) is already known. But how do we estimate Λi?
As observed earlier, since 1/Λi is not small, we can just stick with Monte Carlo methods, the basic idea being to some-
how generate a uniform random distribution on Ki and find the fraction of points generated that are within Ki−1.
Here on out, our main interest is just to figure out a way of efficiently uniformly randomly generating points from Ki.

To do this, we synthesize a Markov chain whose stationary distribution is the uniform distribution on Ki. We run
the chain for polynomially many steps, and take the resultant state as a point uniformly randomly generated from Ki.

Obviously, we want Markov chains that converge to the stationary distribution very rapidly (in polynomial time)
since that is the main part of the algorithm that must be made efficient. To restrict ourselves to finding the uniform
distribution within Ki, we skip any move where the random walk attempts to leave Ki.

24 At the same time, we
count how often we are in Ki−1 ⊆ Ki. In the two algorithms we discuss, we modify this to a Metropolis chain, the
idea of which is discussed at the end of Section 4.2.4

Succinctly, we use “Multiphase Monte Carlo Markov Chain methods” for volume computation. We call the random
walk “rapidly mixing” if it gets sufficiently close to the stationary distribution in polynomially many steps.

Another small change is that we make the random walk lazy. That is, if we are at a ∈ K, we stay at a with probability
1
2 , and with probability 1

2 we choose a random direction a + v. If a + v ∈ K, we move there. Otherwise, we stay
put. There are two reasons for doing this. The first is that sometimes parity issues arise due to which the stationary
distribution might not be the uniform one. The second is that it turns the matrix describing the random walk into
a positive semidefinite matrix, which is much easier to analyze.

4.2.2. Random Walks on Graphs

Before we move onto the general case, let us define random walks in graphs and study them for a bit. Let G = (V,E)
be a connected d-regular simple graph with V = {1, . . . , n}. A simple random walk on G with initial state X0 is
given by

Pr[Xt+1 = j | Xt = i] =


1
2 , i = j,
1
2d , ij ∈ E,

0, otherwise.

It may be shown that irrespective of X0, limt→∞ Pr[Xt = i] = 1
n for any i. But to see whether the walk is rapidly

mixing, we need to know how fast it converges. Let

ei,t = Pr[Xt = i]− 1

n

be the “excess” probability at time t on vertex i. Also, denote Pr[Xt = i] as p
(t)
i for the sake of brevity. Denoting

24For the hit-and-run strategy we describe later, this is unimportant since it never even tries to leave the body.
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the neighbourhood of i by Γ(i),

ei,t+1 = p
(t+1)
i − 1

n

=

1

2
p
(t)
i +

1

2d

∑
j∈Γ(i)

p
(t)
j

− 1

n

=
1

2
ei,t +

1

2d

∑
j∈Γ(i)

ej,t

=
1

2d

∑
j∈Γ(i)

(ei,t + ej,t) (4.6)

To be able to quantify our closeness to the stationary distribution, define

d1(t) = d1(X̃, t) =
∑
i

|ei,t|

and
d2(t) = d2(X̃, t) =

∑
i

e2i,t.

We call a walk X̃ on G rapidly mixing if there exists a polynomial f such that for any 0 < ε < 1
3 and t ≥

f(log n) log(1/ε), d1(t) ≤ ε. However, this doesn’t completely make sense right now since if we only have a single
graph, n is constant.

Definition 4.6 (Rapidly Mixing Random Walks). Let (Gi)i∈N be a sequence of graphs where Gi has ni vertices
and ni → ∞. We say that the simple random walks on G1, G2, . . . are rapidly mixing if there is a polynomial f
(depending only on the sequence (Gi)) such that if 0 < ε < 1

3 and t ≥ f(log ni) log(1/ε), then d(X̃i, t) ≤ ε whenever

X̃i is a simple random walk on Gi.

There are some issues that arise when we want to synthesize a rapidly mixing walk. For example, suppose we have
a random walk on [−1, 1]n and we somehow find ourselves near one of the corners. Then the probability of leaving
the corner is extremely low (of the order of 2−n) at each step, which would greatly hinder the speed of convergence.

4.2.3. Conductance and Bounding the Speed of Convergence

In a graph, the analogous event is that we get stuck within some subset of vertices that is highly connected within
itself, but not very well-connected to its complement. With this in mind, let us define the conductance of a graph.
Let G = (V,E) be a graph and U ⊆ V be non-empty. Then define

ΦG(U) =
e(U, V \ U)

d|U |

where e(U, V \ U) is the number of edges between U and V .
ΦG(U) gives a measure of the “difficulty” we mentioned earlier. The lower it is, the more difficult it is to leave U .
We might as well consider only sets U with |U | ≤ n

2 . Thus, we define the conductance of G by

ΦG = min
1≤|U |≤n/2

ΦG(U).

In graph theoretic contexts, this quantity is more often known as the Cheeger’s constant of a graph or its isoperi-
metric number.
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For graphs in general, denote vol(U) =
∑

u∈U d(u). Then its conductance is

ΦG = min
U⊊V
U ̸=∅

e(U, V \ U)

min(vol(U), vol(V \ U))
.

Obviously, 0 ≤ ΦG ≤ 1 for any graph G. The upper bound is only attained when G is the graph containing a single
vertex, a single edge, or a triangle. The lower bound is attained only when G is disconnected. If G is large, then the
best we can hope for is that ΦG is not too much lower than 1

2 .

It is intuitively clear that if a graph has high conductance, then any simple walk will converge quite rapidly. This is
stated quantitatively in the following.

Theorem 4.9. Every simple random walk on a connected d-regular graph G satisfies

d2(t+ 1) ≤
(
1− 1

4
Φ2

G

)
d2(t).

In particular,

d2(t) ≤
(
1− 1

4
Φ2

G

)t

d2(0) ≤ 2

(
1− 1

4
Φ2

G

)t

.

We prove this using two other lemmas.

Lemma 4.10. For any simple random walk on a connected d-regular simple graph on G,

d2(t+ 1) ≤ d2(t)−
1

2d

∑
ij∈E

(ei,t − ej,t)
2.

Proof. Using Equation (4.6) along with the Cauchy-Schwarz inequality,

d2(t+ 1) =
1

4d2

n∑
i=1

 ∑
j∈Γ(i)

ei,t + ej,t

2

≤ 1

4d

n∑
i=1

∑
j∈Γ(i)

(ei,t + ej,t)
2

=
1

2d

∑
ij∈E

(ei,t + ej,t)
2

=
1

d

∑
ij∈E

(e2i,t + e2j,t)−
1

2d

∑
ij∈E

(ei,t − ej,t)
2

= d2(t)−
1

2d

∑
ij∈E

(ei,t − ej,t)
2

■

Lemma 4.11. Suppose weights xi are assigned to the elements of the vertex set V = [n] satisfying
∑

i xi = 0. Then

∑
ij∈E

(xi − xj)
2 ≥ d

2
Φ2

G

n∑
i=1

x2i .

Observe that setting xi = ei,t for each i and substituting the above in Lemma 4.10 directly gives Theorem 4.9.
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Proof. We may assume without loss of generality that x1 ≥ x2 ≥ · · · ≥ xn. Fix m = ⌈n/2⌉ and for each i, let
yi = xi − xm. Note that it suffices (and is in fact stronger) to prove the inequality for the (yi) instead of the (xi)
since

d

2
Φ2

G

n∑
i=1

(xi − xm)2 =
d

2
Φ2

G

n∑
i=1

x2i +
nd

2
Φ2

Gx
2
m.

Also, let

ui =

{
yi, i ≤ m,

0, otherwise,
vi =

{
0, i ≤ m,

yi, otherwise.

Obviously, it suffices to prove the inequality for the (ui) and (vi) since

(yi − yj)
2 = (ui − uj + vi − vj)

2 ≥ (ui − uj)
2 + (vi − vj)

2

and
∑

i x
2
i =

∑
i u

2
i +

∑
i v

2
i .

We prove it only for the (ui). Using the Cauchy-Schwarz inequality,

2d

n∑
i=1

u2i
∑
ij∈E

(ui − uj)
2 =

∑
ij∈E

2(u2i + u2j )
∑
ij∈E

(ui − uj)
2

≥
∑
ij∈E

(ui + uj)
2
∑
ij∈E

(ui − uj)
2

≥

∑
ij∈E

(u2i − u2j )

2

(4.7)

We aim now to bound the term within the square in the final expression.
Suppose that in every edge ij ∈ E, i < j. We can then rewrite the expression as

∑
ij∈E

(u2i − u2j ) =
∑
ij∈E

j−1∑
l=i

(u2l − u2l+1) =

n∑
l=1

(u2l − u2l+1)e
(
[l], [n] \ [l]

)
.

It is very clear now how the conductance enters the picture. Since we can disregard the terms of the summation
after l = m, the expression on the right is bounded below by dlΦG. That is,∑

ij∈E

(u2i − u2j ) ≥
m∑
l=1

(u2l − u2l+1)dlΦG

= dΦG

m∑
l=1

u2l .

Substituting the above in Equation (4.7),

∑
ij∈E

(ui − uj)
2 ≥ d

2
Φ2

G

n∑
l=1

u2l ,

which is exactly what we want to show. ■

Since d1(t)
2 ≤ nd2(t), we have the following corollary of Theorem 4.9.

Corollary 4.12. Every simple random walk on a connected d-regular graph G satisfies

d1(t) ≤ (2n)1/2
(
1− 1

4
Φ2

G

)t/2



High-Dimensional Convex Geometry 47 / 106 Amit Rajaraman

Note that if G is connected (so ΦG ̸= 0), then for

t > 8Φ−2
G

(
log(2n) + log(1/ε)

)
>

2

− log
(
1− 1

4Φ
2
G

) (log(2n) + log(1/ε)
)
, (4.8)

d1(t) < ε. Thus, we have the following sufficient condition for rapid mixing.

Lemma 4.13. Let (Gi)i∈N be a sequence of regular graphs with |Gi| = ni → ∞. If there exists k ∈ N such that

ΦGi
≥ (log ni)

−k

for sufficiently large i, then the simple random walks on (Gi) are rapidly mixing.

The entirety of the discussion thus far has been regarding simple random walks. How would one go about generalizing
this to aperiodic reversible random walks on finite sets in general?

Definition 4.7. Let V be a finite set and X a random walk on V with transition probabilities p(u, v) such that for
each u, p(u, u) ≥ 1

2 . Let λ be the (reversible) stationary distribution that satisfies λ(u)p(u, v) = λ(v)p(v, u). Also,
for U ⊆ V , write λ(U) =

∑
u∈U λ(u). The conductance of X is then

Φ̃X = min
λ(U)≤ 1

2

∑
u∈U

∑
v∈V \U λ(u)p(u, v)

λ(U)
.

Similar to earlier, the lower the conductance, the higher the probability of getting “stuck” somewhere. Note that
the conductance here is half as large as the definition we gave for regular graphs (since in this case, p(u, v) = 1/2d
replaces the 1/d earlier). That is, if X is a simple random walk on a regular graph,

Φ̃X =
1

2
ΦG.

As earlier, we can measure the distance from λ by

d2(t) =
∑
v∈V

(
p(t)v − λ(v)

)2
.

We can then prove the following analogue of Theorem 4.9 (in exactly the same way).

Theorem 4.14. Let X be a reversible random walk. Then with the notation above,

d2(t+ 1) ≤ (1− Φ̃2
X)d2(t).

In particular,
d2(t) ≤ 2(1− Φ̃2

X)t.

4.2.4. An Overview of Random Walks for Uniform Distributions

The basic algorithm used in most algorithms that attempt to solve this problem, which we mentioned at the begin-
ning of this section, was proposed by Dyer, Frieze, and Kannan in [DFK91] and has remained largely unchanged.
This algorithm is O(n23(log n)5ε−2 log(1/ε) log(1/η)). Henceforth, to make things relatively simple, we use the O∗

notation that suppresses any powers of log n and polynomials of (1/ε) and log(1/η). With this notation, the algo-
rithm is O∗(n23).
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We use a multiphase Monte Carlo algorithm while using random walks to sample. The improvements on this algo-
rithm since its proposal have primarily involved changing the random walk used, using the conductance to bound
the mixing time when we are likely to be close to the stationary distribution, and bounding the conductance using
isoperimetric inequalities.

There are mainly three different types of random walks used.

Walking on the Grid. This is probably the simplest graph. It defines a sufficiently fine grid Lδ where each step is
of size δ. Suppose we are at xt. At each step, we stay put at xt with probability 1

2 . Otherwise, we choose a random
vector v of the 2n possible directions. If xt + v ̸∈ K, we remain at xt and otherwise, we move to xt+1 = xt + v.
[DFK91] uses this walk with a value of δ around n−5/2. In [LS90], this was improved to a δ around n−3/2.

Ball-Steps. In this random walk, we choose some small step-size δ. We use a lazy random walk but when we try
to move, we choose a random v ∈ δBn

2 . Similar to the grid, if xj + v ̸∈ K, we remain at xj and otherwise, we move
to xj+1 = xj + v. In [KLS97], the value of δ was around n−1/2.

Hit-and-Run. Unlike the previous two walks where we had to choose a step-size δ, this walk doesn’t need anything
of the sort. We choose a random unit vector v from Bn

2 . We then find the length of the intersection of {x+tv : t ∈ R}
with K and pick a uniformly distributed x′ from this segment. It is believed that this walk converges very rapidly.

An issue (in any of the walks) that we must figure out how to rectify is that of getting stuck in some corner (we had
given this as motivation for defining the conductance of a random walk).
For example, in the ball-step walk, we can consider the local conductance

ℓδ(x) :=
vol(K ∩ (x+ δBn

2 ))

vol(δBn
2 )

and the overall conductance

λ :=
1

vol(K)

∫
K

ℓδ(x) dx.

In recent times, it has also been a common theme to use Metropolis chains, which are defined as follows.

Metropolis Chain. Suppose we have a function f on K and a random walk (of any of the above types). We can
modify our walk using the same laziness as above, but when we wish to move, we check if f(x) ≥ f(x+ v) (where x
is the original position and x+ v is the new proposed position) and

� if yes, move to x+ v.

� if no, move to x+ v with probability f(x)
f(x+v) (and stay at x otherwise).

If
∫
f <∞, this produces a random walk with stationary distribution that is proportional to f(x).

So far, we have only tried finding uniform distributions within the body K (and never return a point outside the
body K). Often, however, we sacrifice this in favour of a distribution that can return a point outside of K with
not too high probability (say less than 1

2 ) that mixes more rapidly. We detail one such algorithm, similar to that in
[DF98], in the following section.

4.3. A Modified Grid Walk that Runs in O∗(n8)

4.3.1. A Description of the Walk

The algorithm we describe here uses the “Walking on the Grid” mentioned in the previous section. This involves
splitting the body into cubes. To this end, it was observed that if want to sandwich a body between two concentric
cubes instead of balls, then a ratio of O(n) can be obtained (instead of the ball-sandwiching ratio of O(n3/2)). In
particular, [AK91] shows that we can find an affine transformation K̃ of K such that

Bn
∞ ⊆ K̃ ⊆ 2(n+ 1)Bn

∞.
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Henceforth, we refer to this K̃ as K. So in this case, it is more convenient to consider Ki = 2i/n, 0 ≤ i ≤ m :=
⌈n log2(2(n + 1))⌉ instead of the intersections with the balls we used earlier. That is, at each phase we have two
bodies K and L such that

K0 = Bn
∞ ⊆ L ⊆ K ⊆ 2(n+ 1)Bn

∞ = Km

and
L ⊆ K ⊆ 21/nL.

The grid graph over which we design our random walk has vertex set

V =
1

2n
Zn ∩Km.

That is, V is the vertex set of the grid graph Pn
l with l = 8n(n+ 1) + 1 (having ln vertices). Denote this graph by

G (there is an edge between points whose distance under the ℓ∞ norm is 1
2n ).

We wish to create a rapidly mixing random walk that converges to the stationary distribution on K (or something
that could serve the same purpose). Let us now define a distribution on V that is the stationary distribution of a
specific random walk.
Consider the function φ0 on Rn defined by

φ0(x) = min

{
s ≥ 0 : x ∈

(
1 +

s

2n

)
K

}
and φ defined by φ(x) =

⌈
φ0(x)

⌉
. Finally, define f(x) = 2−φ(x).

There are a few things to observe that make it apparent why this f is a good choice for our purposes:

� For x ∈ K, f(x) = 1.

� If x, y are such that ∥x− y∥∞ ≤ 1
2n , then |φ0(x)− φ0(y)| ≤ 1. Indeed,

x = y + (x− y) ∈
(
1 +

φ0(y)

2n

)
K +

1

2n
K =

(
1 +

φ0(y) + 1

2n

)
K

so φ0(x) ≤ φ0(y) + 1.

� How many x ∈ V are there such that φ(x) = s > 0 (so f(x) = 2−s)? We must have

x ∈
(
1 +

s

2n

)
K
∖ (

1 +
s− 1

2n

)
K.

The volume of the body on the right is about((
1 +

s

2n

)n

−
(
1 +

s− 1

2n

)n
)
vol(K) < (es/2 − 1) vol(K).

Multiplying by an appropriate factor on either side, the number of points in V in this body is at most (es/2 −
1)f(K). Therefore, for n > 3,

f(V ) = f(K) +

∞∑
s=1

2−s(es/2 − 1)f(K) < 5f(K).

The above suggests that a Metropolis chain under this function might be exactly what we want – the first point
ensures that the resulting distribution is constant on K.

What is the Metropolis chain corresponding to f for G? It is easily checked that its transition matrix is given by

p(x, y) =


1
4n , xy ∈ E and φ(y) ≤ φ(x),
1
8n , xy ∈ E and φ(y) = φ(x) + 1,

1−
∑

z∈Γ(x) p(x, z), x = y,

0, otherwise.
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It can also easily be checked that this walk is reversible.
Now, let the stationary distribution of this walk be λ, given by λ(x) = cf(x) for a suitable normalizing constant c.
The third point above ensures that λ(K) > 1/5 and we don’t get points outside of K too often.

There is another issue that we haven’t mentioned so far that this walk takes care of. When we have such a walk (in
general), we would want to be able to compute the transition probabilities efficiently only at the points where we
need it – it would be absurd to store the entire transition matrix all the time. In this example, all we have to do
is “carry” the current value of φ with us. At most 4n appeals to the oracle will give us the values of φ at all the
neighbours! We can start at a point that we know the value of φ of, such as 0 ∈ Bn

∞ ⊆ K.

4.3.2. Showing Rapid Mixing by Bounding Conductance

The only thing that remains to show now is that it suffices to run the above random walk for a polynomial amount
of time to get sufficiently close to the stationary distribution, that is, that the walk is rapidly mixing.
By Theorem 4.14, it suffices to show that this walk has large conductance. To do this, we use the following isoperi-
metric inequality given in [LS90].

Theorem 4.15. Let M ⊆ Rn and B(M) be the σ-field of Borel subsets of M . Let F : IntM → R+ be a log-concave
function and let µ be the measure on B(M) with density F

µF (A) =

∫
A

F

for A ∈ B(M). Then for A1, A2 ∈ B(M),

µF (M \ (A1 ∪A2)) ≥
d(A1, A2)

diamM
min(µF (A1), µF (A2)),

where diamM = sup{∥x− y∥ : x, y ∈M}.

This inequality is slightly loose. The best possible constant on the right has an extra multiplicative factor of 2 and
was proved in [DF98]. We omit the proof of the above for now and later prove a better bound in Theorem 4.34 (and
in the process, prove Theorem 4.15 as a simple consequence of Theorem 4.31). We shall now use this to show that
the conductance of our random walk is large.
Let us have U ⊆ V with 0 < λ(U) < 1

2 and let U = V \ U . Also, let ∂U be the set of vertices in U with at least one
neighbour in U .
Let M be the union of the cubes of side length 1/2n centered at vertices of V (M is a solid cube) and A1 be the
union of cubes of side length 1/2n centered at vertices of U . Let B be the union of cubes of volume 2/(2n)n centered
at vertices of ∂U and A2 =M \ (A1 ∪B). Obviously,

diam(M) = O(n3/2). (4.9)

Then, observe that

d(A1, A2) ≥
1

2n

√
n

2
(21/n − 1) = Ω(n−3/2). (4.10)

for some suitable positive constant c1. Also, for some positive constant c2,∑
u∈U
v∈U

λ(u)p(u, v) =
∑
u∈U
v∈B

λ(v)p(v, u)

≥
∑
v∈B

1

8n
λ(v) = c2

λ(B)

n
.
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We may assume that λ(B) is small. Now, define a measure µ on B(M) as in Theorem 4.15 with F = 2−φ1 , where
φ1 is the maximal convex function on M bounded above by φ. Observe that λ(u) is always within a constant factor
of the µ-measure of the unit cube centered at u. Thus, we have∑

u∈U

∑
v∈U λ(u)p(u, v)

λ(U)
≥ c3

n

µ(B)

min{λ(U), λ(U \ ∂U)}

=
c3
n

µ(M \ (A1 ∪A2))

min{µ(A1), µ(A2)}

≥ c3
n

d(A1, A2)

diamM

= Ω(n−4) (4.11)

So what is the total time complexity of the algorithm? Combining Equation (4.11) and Equation (4.8) (or rather,
the corresponding result for d2(t) that does not have the log n factor), the number of steps in the random walk of
each phase of the multiphase Metropolis walk is O∗(n8). At each step of the walk, we perform O(n) oracle queries.
Finally, there are O∗(n) phases. All together, the algorithm is O∗(n10).

In [DF98], a more careful analysis is done to show that this algorithm is in fact O∗(n8).25 More precisely, it is

O

(
n8ε−2 log

(
n

ε

)
log

(
1

η

))
.

Over the course of the next few sections, we describe a O∗(n7) volume estimation algorithm given in [LS93].

4.4. Measure-Theoretic Markov Chains and Conductance

4.4.1. Some Basic Definitions

Definition 4.8. Let Ω be a non-empty set and A a σ-algebra on Ω. For every u ∈ Ω, let Pu be a probability measure
on Ω. Also assume that as a function of u, Pu(A) is measurable for any A ∈ A. We call the triple (Ω,A, {Pu : u ∈ Ω})
a Markov scheme. Together with an initial distribution Q0 on Ω, this defines a Markov chain.

A Markov chain is essentially just a sequence of random variables w0, w1, . . . such that w0 is drawn from Q0 and
wi+1 is drawn from Pwi

(independently of the values of w0, . . . , wi−1). Therefore,

Pr[wi+1 ∈ A | w1 = u1, . . . , wi = ui] = Pr[wi+1 ∈ A | wi = ui] = Pui
(A).

Let f : Ω×Ω → R be an integrable function (with respect to the product measure µ×µ) such that
∫
Ω
f(u, v) dµ(v) = 1

for all u ∈ Ω. f then defines a Markov scheme as

Pu(A) =

∫
A

f(u, v) dµ(v).

In this case, f is known as the transition function of the Markov scheme. The transition function is said to be
symmetric if for all x, y, f(x, y) = f(y, x).

A probability measure Q on Ω is said to be the stationary distribution of a Markov scheme if for all A ∈ A,∫
Ω

Pu(A) dQ(u) = Q(A).

25The conductance is actually Ω(n−3).
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This just means that every wi has the same distribution as Q.

Now, consider the inner product space L2 = L2(Ω,A, Q) with inner product

⟨f, g⟩ =
∫
Ω

fg dQ.

Suppose we have some function g ∈ L2. Then note that the expectation of g(wi+1) (as a function of wi = u) defines
a positive linear operator26 M : L2 → L2 by

(Mg)(u) =

∫
Ω

g(v) dPu(v).

Further note that (Mkg)(u) represents the expectation of g(wi+k) given that wi = u.
Now, consider a Markov chain where the first element is drawn from the stationary distribution. Then for any
function g ∈ L2,

E[g(wi)] = E[g(w0)] = ⟨g, 1⟩
E[g(wi)

2] = E[g(w0)
2] = ⟨g, g⟩

E[g(wi)g(wi+k)] = E[g(w0)g(wk)] = ⟨g,Mkg⟩

A Markov chain is said to be time-reversible if for any A,B ∈ A, the probability of going from B to A is the same
as that of going from A to B. That is, ∫

B

Pu(A) dQ(u) =

∫
A

Pu(B) dQ(u).

It is easy to see that it suffices to have the above for all disjoint sets A and B. The above can be rewritten in a more
symmetric fashion as ∫

B

∫
A

1 dPu(v) dQ(u) =

∫
A

∫
B

1 dPu(v) dQ(u). (4.12)

This is equivalent to saying that for any function g : Ω× Ω → R (assuming both sides are well-defined),∫
Ω

∫
Ω

g(u, v) dPu(v) dQ(u) =

∫
Ω

∫
Ω

g(v, u) dPu(v) dQ(u). (4.13)

It is also equivalent to say that the operator M is self-adjoint.27 If the Markov scheme can be described by a
transition function f (with respect to Q), then time-reversibility is equivalent to the symmetry of f (this isn’t too
difficult to prove using Equation (4.12) and Fubini’s Theorem).
If the Markov scheme is time-reversible, then for any g ∈ L2,

⟨g, g⟩ − ⟨g,Mg⟩ =
∫
Ω

g2 dQ−
∫
Ω

∫
Ω

g(u)g(v) dPu(v) dQ(u)

=

∫
Ω

∫
Ω

g2(u) dPu(v) dQ(u)−
∫
Ω

∫
Ω

g(u)g(v) dPu(v) dQ(u)

=
1

2

(∫
Ω

∫
Ω

(g2(u) + g2(v)) dPu(v) dQ(u)−
∫
Ω

∫
Ω

2g(u)g(v) dPu(v) dQ(u)

)
(by Equation (4.13))

=
1

2

∫
Ω

∫
Ω

(g(u)− g(v))2 dPu(v) dQ(u) ≥ 0. (4.14)

Therefore, the spectral radius28 of M is exactly 1.

26a linear operator A such that ⟨Ax, x⟩ ≥ 0 for any x.
27an operator A such that ⟨Ax, y⟩ = ⟨x,Ay⟩ for any x, y.
28the largest absolute value of its eigenvalues.
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Definition 4.9 (Laziness). A Markov chain is said to be lazy if for each u,

Pu({u}) ≥
1

2
.

There are two main, albeit minor and technical, reasons for desiring laziness:

� Sometimes, a lack of laziness can cause parity issues which result in the limit distribution of a chain not
converging to the stationary distribution.

� In the time-reversible case, it makes the operator M positive semidefinite, thus making it far easier to analyze.

To see why the latter occurs, observe that if M is self-adjoint, then so is 2M − I (and is thus associated with a
Markov scheme) and thus,

⟨f,Mf⟩ ≥ 1

2
⟨f, f⟩ − 1

2
⟨f, (2M − I)f⟩ ≥ 0.

Any Markov scheme can be made lazy easily by flipping a (fair) coin at each step and making a move only if it lands
on tails.

Lemma 4.16. Let w1, w2, . . . be a time-reversible Markov chain generated by a lazy Markov scheme M with w0

drawn from the stationary distribution Q of M. Then for any function g ∈ L2,

E[g(wi)g(wj)] ≥ E[g(wi)]E[g(wj)] = E[g(w0)
2].

Proof. Assume without loss of generality that j > i and j − i = k. Then for any function h, the positive semidefi-
niteness of M implies that

E[h(wi)h(wj)] = ⟨h,Mkh⟩ ≥ 0.

Applying this to (g −E[g(w0)]) yields the result. ■

4.4.2. Conductance

Definition 4.10 (Ergodic Flow). Define the ergodic flow Φ : A → [0, 1] of a Markov scheme by

Φ(A) =

∫
A

Pu(Ω \A) dQ(u).

This just measures how likely the Markov chain is to leave A if it is initially in A (and drawn from Q). Since Q is
stationary,

Φ(A)− Φ(Ω \A) =
∫
A

Pu(Ω \A) dQ(u)−
∫
Ω\A

Pu(A) dQ(u)

= Q(A)−
∫
A

Pu(A) dQ(u)−
∫
Ω\A

Pu(A) dQ(u) (since Pu(Ω \A) = 1− Pu(A))

= Q(A)−
∫
Ω

Pu(A) dQ(u) = 0.

Even conversely, if for some probability distribution Q′, the function Φ′ : A → [0, 1] defined by

A 7→
∫
A

Pu(Ω \A) dQ′(u)

is invariant under complementation, then Q′ is stationary.
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Definition 4.11. The conductance of the Markov scheme is then defined as

Φ = inf
0<Q(A)<1/2

Φ(A)

Q(A)
.

For 0 ≤ s ≤ 1, the s-conductance is defined as

Φs = inf
s<Q(A)≤1/2

Φ(A)

Q(A)− s
.

The lower the conductance is, the more likely the Markov chain is to “get stuck” somewhere. Loosely, Q(A) repre-
sents the probability of entering a “bad region” whereas Φ(A) represents the probability of leaving it.

For any u, 1 − Pu({u}) is called the local conductance of the Markov chain at u. If Q(u) > 0, then the local
conductance is an upper bound on the conductance.
More generally, let

Ht = {u ∈ Ω : Pu({u}) > 1− t}

and s = Q(Ht). Then

Φ(Ht) =

∫
Ht

Pu(Ω \Ht) dQ(u) ≤ tQ(Ht).

Therefore, the (s/2)-conductance is at most 2t.
The main use of defining conductance is that it is closely related to how fast Markov chains converge to their
stationary distribution.
Suppose that Qk is the distribution in the kth step of the chain (Qk(A) = Pr[wk ∈ A]). It turns out that if for all
A ∈ A such that Q(A) > 0, Φ(A) > 0, then Qk → Q (in the ℓ1 distance29). This manifests as an associated bound
in the speed of convergence.
To make concrete this notion of “speed of convergence”, let us define the following specific distance function.

4.4.3. A Distance Function

Definition 4.12. For x ∈ [0, 1], consider all measurable functions g : Ω → [0, 1] such that∫
Ω

g dQ = x.

We then define the distance function of Q and Qk by

hk(x) = sup
g

∫
Ω

g(dQk − dQ) = sup
g

∫
Ω

g dQk − x.

For example, it is easily shown that for a finite Markov chain with N states and uniform stationary distribution,
hk(j/N) is the sum of the j largest

(
Qk(ω)− 1

n

)
.

There are a few things to note.

� For any x, 0 ≤ hk ≤ 1 − x. The lower bound is because one can consider the constant function x on Ω. The
upper bound is because

∫
Ω
g dQk is bounded above by 1. In particular, hk(1) = 0.

29given by ∥f∥1 =
∫
Ω |f | dQ
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� hk is a concave function of x. We shall see below in Lemma 4.18 that the supremum in the definition of hk
is attained. Then, for any a, b, λ ∈ [0, 1], set x = λa + (1 − λ)b and let g1, g2 be the functions that attain the
supremums for hk(a) and hk(b). Then,

sup
g

∫
Ω

g dQk − x ≥
∫
Ω

(λg1 + (1− λ)g2) dQk = λhk(a) + (1− λ)hk(b).

The definition of hk is similar to a continuous analogue of the fractional knapsack problem wherein the sum of the
weights corresponds to integration with respect to Q, the sum of values corresponds to integration with respect to
Qk, and the weight capacity is x. This analogy also lends itself very naturally in the proof of Lemma 4.18, where we
“assign g” to the points which have a high value-weight ratio – this corresponds to the Radon-Nikodym derivative
in the continuous case.
This definition might still seem slightly artificial at the moment, but we hope to give more context to it with the
following few lemmas.

Lemma 4.17. For every set A ∈ A with Q(A) = x,

−hk(1− x) ≤ Qk(A)−Q(A) ≤ hk(x).

Proof. The upper bound is immediate from the definition of the distance function by taking g = 1A (the indicator
function on A). The similar upper bound for Ω \A gives the result. ■

Lemma 4.18. For every 0 < x < 1, there exists a function G that is 0-1 valued except possibly on a Q-atom30 that
attains the supremum in the definition of hk(x).

Proof. Let U ∈ A such that Q(U) = 0 and Qk(U) is maximum. Let Q′ and Q′
k be the restrictions of Q and Qk to

Ω \ U respectively. Clearly, the way we have defined U implies that Q′
k is absolutely continuous with respect to Q′.

Thus, let ϕ be the Radon-Nikodym derivative of Q′
k with respect to Q′.

Now, let x ∈ [0, 1] and g : Ω → [0, 1] such that
∫
Ω
g dQ = x.

For t ≥ 0, define
At = U ∪ {u ∈ Ω \ U : ϕ(u) ≥ t} and s = inf{t ≥ 0 : Q(At) ≤ x}.

Observe that since As =
⋂

t<sAt, upper semicontinuity implies that Q(As) ≥ x. Also define

A′ =
⋃
t>s

At = U ∪ {u ∈ Ω \ U : ϕ(u) > s}.

Lower semicontinuity implies that Q(A′) ≤ x. We also have that A′ ⊆ As and for every u ∈ As \A′, ϕ(u) = s.
Now, choose a B ∈ A such that A′ ⊆ B ⊆ As, Q(B) ≤ x, and Q(B) is maximum.
We first show that if Q(B) = x, then the indicator function on B suffices. Indeed, in this case,∫
Ω

g dQk =

∫
U

g dQk +

∫
B\U

gϕdQ+

∫
Ω\B

gϕdQ

=

∫
U

g dQk +

∫
B\U

(g − 1)ϕdQ+

∫
B\U

dQk +

∫
Ω\B

gϕdQ

≤
∫
U

dQk + s

∫
B\U

(g − 1) dQ+

∫
B\U

dQk + s

∫
Ω\B

g dQ (0 ≤ g ≤ 1 and ϕ ≤ s Q-almost everywhere on Ω \B)

= Qk(B) + s

∫
Ω\U

g dQ− s

∫
B\U

dQ

= Qk(B) + s(x−Q(B)) = Qk(B).

We also see that the supremum is attained when g = 1B .
Next, assume that Q(B) < x. Then for every W ⊆ As \ B, either Q(W ) = 0 or Q(W ) > x − Q(B). That is, the
measure on A′ \B is concentrated on atoms. Let V be one such atom. As shown above,∫

Ω

g dQk ≤ Qk(B) + s(x−Q(B)).

30a Q-atom is a set V ∈ A such that Q(V ) > 0 and for any V ′ ⊆ V , either Q(V ′) = Q(V ) or Q(V ′) = 0.
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To show that this bound is attained, let g = 1B + λ1V where λ = (x−Q(B))/Q(V ). Clearly, 0 ≤ g ≤ 1. Further,∫
Ω

g dQ = Q(B) + λQ(V ) = x

and ∫
Ω

g dQk = Qk(B) + λQk(V ) = Qk(B) + s(x−Q(B))

where the last step follows since ϕ(u) = s for all u ∈ V ⊆ As \A′. ■

Lemma 4.19. If Q is atom-free, then

hk(x) = sup
A∈A

Q(A)=x

(
Qk(A)−Q(A)

)
.

This follows directly from the previous lemma.
If Q is atom-free, note that

sup
x
hk(x) = sup

A∈A
|Qk(A)−Q(A)| = 1

2
∥Qk −Q∥1 . (4.15)

Although we did say what a rapidly mixing random walk is earlier in Definition 4.6, we now define it more generally.

4.4.4. Rapidly Mixing Markov Chains

Definition 4.13 (Rapidly Mixing Markov Chain). A Markov chain is said to be rapidly mixing if for some θ < 1,
supx hk(x) is O(θk).

For our needs, the stationary distribution Q is usually atom-free. Unless mentioned otherwise, we assume henceforth
that this is the case. We also assume that the chains are lazy.
Let us now get on to the main subject of this section, namely that of bounding the speed of convergence of rapidly
mixing Markov chains.

Theorem 4.20. For k ≥ 1, if s ≤ x ≤ 1/2, then

hk(x) ≤
1

2

(
hk−1(x− 2Φs(x− s)) + hk−1(x+ 2Φs(x− s))

)
and if 1/2 ≤ x ≤ 1− s, then

hk(x) ≤
1

2

(
hk−1(x− 2Φs(1− x− s)) + hk−1(x+ 2Φs(1− x− s))

)
.

Proof. We prove the first inequality alone.
By Lemma 4.18, let A be a set such that Q(A) = x and hk(x) = Qk(A)−Q(A). Define g1, g2 : Ω → [0, 1] by

g1(u) =

{
2Pu(A)− 1, u ∈ A,

0, otherwise,
g2(u) =

{
1, u ∈ A,

2Pu(A), otherwise.

The functions map into [0, 1] because the chain is lazy.
Also, let x1 =

∫
Ω
g1 dQ and x2 =

∫
Ω
g2 dQ. Observe that x1 + x2 =

∫
Ω
2Pu(A) dQ(u) = 2x. We have

hk(x) = Qk(A)−Q(A)

=
1

2

((∫
Ω

g1 dQk−1 − x1

)
+

(∫
Ω

g2 dQk−1 − x2

))

≤ 1

2

(
hk−1(x1) + hk−1(x2)

)
.
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We also have

x2 − x = x− x1 =

∫
A

(2− 2Pu(A)) dQ(u) = 2Φ(A) ≥ 2Φs(x− s).

Then with the above, the concavity of hk−1 then implies that

hk−1(x1) + hk−1(x2) ≤ hk−1(x− Φs(x− s)) + hk−1(x+Φs(x− s)),

completing the proof. ■

The next result is analogous to Theorem 4.14 and is our main tool in bounding the speed of convergence using the
conductance.

Theorem 4.21. Let 0 ≤ s ≤ 1/2 and suppose we have c1, c2 such that for s ≤ x ≤ 1− s,

h0(x) ≤ c1 + c2 min{
√
x− s,

√
1− s− x}.

Then for every k ≥ 0 and s ≤ x ≤ 1− s,

hk(x) ≤ c1 + c2 min{
√
x− s,

√
1− s− x}

(
1− Φ2

s

2

)k

.

Proof. We prove this via induction. It clearly holds for k = 0. Suppose that k ≤ 1 and s ≤ x ≤ 1/2. Using induction,

hk(x) ≤
1

2

(
hk−1(x− 2Φs(x− s)) + hk−1(x+ 2Φs(x− s))

)
≤ c1 +

c2
2

(
1− Φ2

s

2

)k−1 (√
x− 2Φs(x− s)− s+

√
x+ 2Φs(x− s)− s

)

= c1 +
c2
2

√
x− s

(
1− Φ2

s

2

)k−1 (√
1− 2Φs +

√
1 + 2Φs

)

≤ c1 +
c2
2

√
x− s

(
1− Φ2

s

2

)k−1(
1− 2Φs

2
− 4Φ2

s

8
+ 1 +

2Φs

2
− 4Φ2

s

8

)

= c1 + c2
√
x− s

(
1− Φ2

s

2

)k

■

Writing the above in a slightly more useful form,

Corollary 4.22. Let M = supAQ0(A)/Q(A). Then for every A ∈ A,

|Qk(A)−Q(A)| ≤
√
M

(
1− Φ2

s

2

)k

.

Proof. Clearly, for any x, h0(x) ≤Mx. We also have h0(x) ≤ 1− x. Therefore,

h0(x) ≤
√
Mx(1− x) ≤

√
M min{

√
x,

√
1− x}.

Theorem 4.21 then implies the required. ■
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4.4.5. An Important Inequality involving the operator M

A little bit of thought makes it quite clear that to analyze the speed of mixing of Markov chains, the spectrum of
the operator M is an important parameter.

Theorem 4.23. Let M be a time-reversible Markov scheme with conductance Φ. Then for every g ∈ L2 with
E[g] = 0,

⟨g,Mg⟩ ≤

(
1− Φ2

2

)
∥g∥2 .

Proof. As might be expected, we use Equation (4.14) in this proof. It suffices to show that if E[g] = 0,∫
Ω

∫
Ω

(g(u)− g(v))2 dPu(v) dQ(u) ≥ Φ2 ∥g∥2 .

Choose a median r of g, that is, a real number such that Q({x : g(x) > r}) ≤ 1/2 and Q({x : g(x) < r}) ≤ 1/2. Let
h(x) = max{g(x)− r, 0}. Observe that∫

Ω

∫
Ω

(g(u)− g(v))2 dPu(v) dQ(u) ≥
∫
Ω

∫
Ω

(h(u)− h(v))2 dPu(v) dQ(u)

Therefore, it suffices to bound the quantity on the right suitably. To do this, use the Cauchy-Schwarz inequality to
get

∫
Ω

∫
Ω

(h(u)− h(v))2 dPu(v) dQ(u) ≥

(∫
Ω

∫
Ω
|h2(u)− h2(v)|dPu(v) dQ(u)

)2∫
Ω

∫
Ω
(h(u) + h(v))2 dPu(v) dQ(u)

Now, by definition, Q({h ≥ 0}) ≥ 1/2. Therefore,∫
Ω

h2 dQ ≥ 1

2

∫
Ω

(g(x)− r)2 =
∥g∥2 + r2

2
≥ ∥g∥2

2
.

To bound the denominator,∫
Ω

∫
Ω

(h(u) + h(v))2 dPu(v) dQ(u) ≤ 2

∫
Ω

∫
Ω

(h2(u) + h2(v)) dPu(v) dQ(u) = 2 ∥h∥

For each t, define At = {x ∈ Ω : h(x)2 ≥ t}. Then∫
Ω

∫
Ω

|h2(u)− h2(v)|dPu(v) dQ(u) = 2

∫
Ω

∫
A(h2(u))

(h2(v)− h2(u)) dPu(v) dQ(u)

= 2

∫
Ω

∫ ∞

h2(u)

Pu(A(t)) dtdQ(u) (by Fubini’s Theorem)

= 2

∫ ∞

0

∫
Ω\A(t)

Pu(A(t)) dQ(u) dt

≥ 2Φ

∫ ∞

0

Q(A(t)) dt = 2Φ

∫
Ω

h2 dQ = 2Φ ∥h∥2 .

The result follows directly, since we now have∫
Ω

∫
Ω

(h(u)− h(v))2 dPu(v) dQ(u) ≥ 4Φ2 ∥h∥4

4 ∥h∥2
= 2Φ2 ∥h∥2 ≥ Φ2 ∥g∥2 ,

which is exactly what we set out to show. ■
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Corollary 4.24. Let M be a time-reversible Markov scheme with conductance Φ. Then for every f ∈ L2 with
E[f ] = 0,

⟨f,Mkf⟩ ≤

(
1− Φ2

2

)k

∥f∥2 .

We omit the proof of the above.31 This quite neatly captures the fact that rapid mixing depends heavily on
conductance. Indeed, it implies that

∥∥Mkf
∥∥ ≤ (1 − Φ2/2)k ∥f∥, so as time progresses, f “flattens out” and goes

closer to 0.
The next inequality can be thought of a central limit theorem style inequality.

Theorem 4.25. Let M be a time-reversible Markov scheme with stationary distribution Q and let w1, w2, . . . be a
Markov chain generated by M with initial distribution Q. Let F ∈ L2 and ξ =

∑T−1
i=0 F (wi) for some T . Then,

Var[ξ] ≤ 4T

Φ2
∥F∥2

Proof. We may assume that E[ξ] = 0. Then Theorem 4.23 implies that

Var[ξ] = E[ξ2] =
∑

0≤i,j≤T−1

E[F (wi)F (wj)]

= T ∥F∥2 + 2
∑

0≤i<j≤T−1

E[F (w0)F (w|i−j|)]

= T ∥F∥2 + 2

T−1∑
k=1

(T − k)⟨F,MkF ⟩

≤ ∥F∥2
T + 2

T−1∑
k=1

(T − k)

(
1− Φ2

2

)k


< 2T ∥F∥2
T−1∑
k=0

(
1− Φ2

2

)k

≤ 4T

Φ2
∥F∥2 .

■

4.4.6. Metropolis Chains

While we have used Metropolis chains previously, let us define them more formally for the sake of completeness.

Definition 4.14 (Metropolis Chain). Let M be a time-reversible Markov chain on (Ω,A) and let F : Ω → R be a

non-negative measurable function. Suppose that F =

∫
Ω

F dQ is finite. Denote by µF the measure with density F .

We then define the filtering of M by F , denoted M/F , as the Markov scheme with transition probabilities

PF
u (A) =


∫
A

min

{
1,
F (v)

F (u)

}
dPu(v), u ̸∈ A,∫

A

min

{
1,
F (v)

F (u)

}
dPu(v) +

∫
Ω

max

{
0, 1− F (v)

F (u)

}
dPu(v), u ∈ A.

And as mentioned, this modified chain converges to a distribution proportional to F .

31It may be shown by considering M̃ , the restriction of M to the invariant subspace E[f ] = 0. By the above lemma,
∥∥∥M̃∥∥∥ ≤ 1−Φ2/2.

Then
∥∥∥M̃k

∥∥∥ ≤
∥∥∥M̃∥∥∥k, which immediately gives the result.



High-Dimensional Convex Geometry 60 / 106 Amit Rajaraman

Theorem 4.26. If M is time-reversible, then M/F is also time-reversible and has stationary distribution QF =
(1/F )µF .

Proof. From the remark after Definition 4.10, it suffices to show that for any disjoint measurable sets A and B
(B = Ω \A in particular), ∫

B

PF
u (A) dQF (u) =

∫
A

PF
u (B) dQF (u),

that is, ∫
B

∫
A

min

{
1,
F (v)

F (u)

}
F (u)

F
dPu(v) dQ(u) =

∫
A

∫
B

min

{
1,
F (v)

F (u)

}
F (u)

F
dPu(v) dQ(u).

Rewriting, we want to show that∫
B

∫
A

min
{
F (u), F (v)

}
dPu(v) dQ(u) =

∫
A

∫
B

min
{
F (u), F (v)

}
dPu(v) dQ(u),

but this follows from the time-reversibility of M. ■

Before we move on to the main algorithm, we set up some prerequisite results to make the discussion in the subsequent
section more natural.

4.5. An Isoperimetric Inequality

4.5.1. Log-Concave Functions

A function f : Rn → R≥0 is said to be log-concave if for any x, y ∈ Rn and 0 < λ < 1,

f(λx+ (1− λ)y) ≥ f(x)λf(y)1−λ.

This just means that log f is concave (with the convention that log 0 = −∞). While we did not mention this by
name, similar ideas were discussed back in the (multiplicative) Brunn-Minkowski inequality (2.7).

It is quite obvious that if f and g are log-concave functions, then so are fg and min{f, g}. The following result due
to [Pré73] is also true.

Lemma 4.27. Let f and g be two log-concave functions. If their convolution h defined by h(x) =
∫
Rn g(u)f(x−u) du

is well-defined, it is log-concave.

Let F be a non-negative integrable funciton on Rn. As in Theorem 4.15, denote by µF the measure with density F .
We then get the following corollary.

Corollary 4.28. Let K ⊆ Rn be a convex body and F : Rn → R a log-concave function. Then µF (x + K) is a
log-concave function of x.

This is quite easily proved by setting f = F and g = 1K in Lemma 4.27.

Setting K to be a rectangle aligned with the axes having edges of length ε in k directions and 1/ε in the remaining
directions and then taking ε→ 0 gives

Corollary 4.29. Let F : Rn → R+ be a log-concave function with finite integral. Then for any subset {x1, . . . , xk}
of variables, the function ∫

R

∫
R
· · ·
∫
R
F dx1 . . . dxk

in the remaining variables is log-concave.

Slightly more generally, setting f = 1K′ and g = 1K , we get that the function x 7→ vol((x+K ′)∩K) is log-concave.

Corollary 4.30. Let K and K ′ be two convex bodies and t > 0. If {x ∈ Rn : vol((x+K ′)∩K) > t} has an interior
point, then it is convex. In particular, for any 0 < s < 1,

Ks = {x ∈ K : vol((x+K) ∩K) ≥ s vol(K)}

is a convex body.
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4.5.2. An Improvement of a Past Result

The main result of this section is Theorem 4.34, which is an improvement of Theorem 4.15.

Theorem 4.31 (Localization Lemma). Let g and h be lower semicontinuous Lebesgue integrable functions on Rn

such that their integrals on Rn are positive. Then there exist points a, b ∈ Rn and a linear function ℓ : [0, 1] → R≥0

such that ∫ 1

0

ℓ(t)n−1g((1− t)a+ tb) dt > 0 and

∫ 1

0

ℓ(t)n−1h((1− t)a+ tb) dt > 0

The above result is quite useful and reduces integrals in n-dimensions to a single dimension. We shall solidify this
relationship further and give a few related results in Sections 5.1.2 and 5.1.3.

It suffices to consider the case where g and h are continuous. If not, we can find some monotone (strictly) increasing
sequence of continuous integrable functions (gk) and (hk) that converge to g and h. We then have

lim
k→∞

∫
Rn

gk =

∫
Rn

g > 0

so for sufficiently large k,
∫
Rn gk > 0 and likewise,

∫
Rn hk > 0. It then suffices to show it for the gk and hk for

sufficiently large k, so we may assume continuity.
Further, note that it suffices to show the inequality with ≥ 0 instead of > 0. Indeed, if we prove it for the weak
inequality, we can apply it to (g−a) and (h−a) for some function a that is everywhere positive and continuous with
a sufficiently small integral to get the strict inequality.

We continue the proof over two lemmas. In Lemma 4.33, we in fact obtain the exact required result with a concave
function instead of a linear one. Over the remainder, we refine it to obtain linearity.

Lemma 4.32. There exists a sequence K0 ⊇ K1 ⊇ · · · of convex bodies such that for each i,∫
Ki

g(x) dx > 0 and

∫
Ki

h(x) dx > 0

and K =
⋂

iKi is a point or a segment.

Proof. We may choose K0 to be a sufficiently large ball. To find Ki+1 given Ki, we use a bisection argument. We
choose a half-space H such that ∫

Ki∩H

g(x) dx =
1

2

∫
Ki

g(x) dx.

The hyperplane supporting the half-space is referred to as a bisecting hyperplane. It remains to show that it is
possible to choose a H at each step such that the Ki shrink to a 0 or 1-dimensional body.

Claim. Given any (n− 2)-dimensional affine subspace A, there is a bisecting hyperplane containing it.
This is easily shown by taking any hyperplane containing A, rotating it about A, and using the continuity of the
resulting map that maps a hyperplane to the integral over the half-space on a particular side. This reduces to
showing that for a continuous map g from the unit circle S1 in R2 to R, there exists x on the unit circle such that
f(x) = f(−x). This is not difficult to show, and is left as an exercise.

Now, choose A0, A1, . . . to be the sequence of (n− 2)-dimensional affine subspaces defined by xi = r1 and xj = r2 for
1 ≤ i < j ≤ n, where r1 and r2 are rational. For each i, let Pi be the bisecting hyperplane of Ki that passes through
Ai and define Ki+1 = Ai ∩Hi, where Hi is a half-space with supporting hyperplane Pi.
We wish to show that

⋂
iKi is at most 1-dimensional. Suppose instead that it is (at least) 2-dimensional. Then the

projection of K onto one of the planes spanned by two coordinates axes (say x1 and x2) must be two-dimensional,
and therefore has a rational interior point (r1, r2). However, the hyperplane defined by x1 = r1, x2 = r2 is one of
the Ai, and in this case, Pi bisects K, and therefore also Ki+1, which is a contradiction. ■
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In the case where the resulting K is a point a, it follows that g(a) ≥ 0 and h(a) ≥ 0, so Theorem 4.31 follows for
b = a and ℓ ≡ 1.
Therefore, we assume that K is a segment. Let a and b be the endpoints of this segment.

Lemma 4.33. There exists a concave function ψ : [0, 1] → R+, not identically zero, such that∫ 1

0

ψ(t)n−1g((1− t)a+ tb) dt ≥ 0 and

∫ 1

0

ψ(t)n−1h((1− t)a+ tb) dt ≥ 0.

Proof. Assume without loss of generality that a = 0 and b = e1. For t ∈ R, set Zt = {x ∈ Rn : x1 = t} and for each
i ∈ N,

ψi(t) =

(
voln−1(Ki ∩ Zt)

vol(Ki)

)1/(n−1)

.

Denote by αi and βi the maximum and minimum of x1 over Ki. Since K ⊆ Ki, αi ≥ 1 and βi ≤ 0 for each i and
moreover, αi → 1 and βi → 0. By Brunn’s Theorem, each ψi is concave on [βi, αi].
Note that on any closed subinterval [s, t] ⊆ (0, 1) ⊆ [βi, αi], the (ψi) are Lipschitz (due to concavity).32 In particular,
if δ ≤ s ≤ t ≤ 1− δ, for any s ≤ x ≤ y ≤ t,

|ψi(y)− ψi(x)| ≤
supx∈(0,1) ψi(x)

δ
|y − x|.

The above implies that if we show uniform boundedness of the (ψi) on [s, t], then (uniform) equicontinuity follows
as well. And indeed, since the (ψi) are concave, then letting ψi attain its supremum in [s, t] at xi, we have

1 ≥
∫ t

s

ψi(t)
n−1 dt ≥

∫ (xi+t)/2

(s+xi)/2

(
supx∈[s,t] ψi(x)

2

)n−1

dt,

which, after a straightforward simplification, implies uniform boundedness.
Therefore, by the Arzelá-Ascoli Theorem, the (ψi) have a uniformly convergent subsequence on any [s, t]; let ψ be the
resulting limit function. Extending this appropriately to a function on [0, 1], we clearly have that ψ is non-negative,
concave, and ∫ 1

0

ψ(t)n−1 dt = 1.

Now, setting x = (t, y) for t ∈ R and y ∈ Rn−1,∫
Ki

g(x) dx =

∫ αi

βi

∫
Ki∩Zt

g(t, y) dy dt

=

∫ αi

βi

(
1

voln−1(Ki ∩ Zt)

∫
Ki∩Zt

g(t, y) dy

)
vol(Ki)ψi(t)

n−1 dt.

1

vol(Ki)

∫
Ki

g(x) dx =

∫ αi

βi

(
1

voln−1(Ki ∩ Zt)

∫
Ki∩Zt

g(t, y) dy

)
ψi(t)

n−1 dt.

By definition, the left hand side is non-negative and∫ αi

βi

(
1

voln−1(Ki ∩ Zt)

∫
Ki∩Zt

g(t, y) dy

)
ψi(t)

n−1 dt→
∫ 1

0

g(t, 0)ψ(t)n−1 dt.

Therefore, this integral is non-negative and the claim is proved (the expression for h is non-negative by an identical
argument). ■

Now, we wish to convert ψ to a linear function.

32See this StackExchange answer if you are unfamiliar with the result.

https://math.stackexchange.com/a/2662341/447210
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Continued Proof. Define ψ, a, and b as in the previous lemma but further, make two assumptions:

� Choose a, b ∈ K such that ∥a− b∥ is minimum. When we say “minimum”, we mean that one of the two
integrals involved is equal to 0, so we cannot make the segment any shorter. Without loss of generality, assume
a = 0 and b = e1.

� Let [α, β] ⊆ [0, 1] be the largest interval that ψ is linear on. That is, ψ is linear on [α, β] and |β−α| is maximum
– in the case where ψ is nowhere linear, β − α = 0 (How can we assume that such an interval exists?).

For the sake of simplicity, define π1 to be the projection of x ∈ Rn onto the first axis (π1(x) = x1). Define the

functions ĝ, ĥ : Rn → R by
ĝ(x) = g(π1(x)e1) and ĥ(x) = h(π1(x)e1).

Also, consider the convex body

K ′ = {x ∈ Rn : 0 ≤ x1 ≤ 1, x2, . . . , xn ≥ 0, and x2 + · · ·+ xn ≤ ψ(x1)}.

The body K ′ can be visualized more naturally as taking the union of the (n− 1)-dimensional simplices spanned by
te1, te1 + ψ(t)e2, . . . , te1 + ψ(t)en over all 0 ≤ t ≤ 1. As a result,

voln−1(K
′ ∩ Zt) =

ψ(t)n−1

n!
,

where Zt = π−1
1 (t) is defined as in the previous lemma.

Then, ∫
K′
ĝ(x) dx =

∫ 1

0

vol(K ′ ∩ Zt)g(te1) dt =
1

(n− 1)!

∫ 1

0

ψ(t)n−1g(te1) ≥ 0,

where the last inequality follows from the definition of ψ in the previous lemma. We have a similar inequality for
the integral of ĥ as well.
Since we have taken ∥a− b∥ to be minimal, we may assume without loss of generality that

∫
K′ ĝ(x) dx = 0.

Consider the (n − 2)-dimensional affine space A defined by x1 = σ and x2 + · · · + xn = τ for some 0 < σ < 1 and
τ > 1 (which we shall fix later). Suppose that A intersects the interior of K ′. Then by Lemma 4.32, there exists a
hyperplane H through A that splits K ′ into convex bodies LA and L′

A such that∫
LA

ĝ(x) dx =

∫
L′

A

ĝ(x) dx = 0 and

∫
LA

ĥ(x) dx ≥ 0.

Note that
L′
A ∩ (Z0 ∩K ′) ̸= ∅ and L′

A ∩ (Z1 ∩K ′) ̸= ∅ (∗)
since otherwise, the minimality of ∥a− b∥ is contradicted.33 As a consequence, H cannot be orthogonal to the
x1-axis and so, it can be described as x2 + · · · + xn = ℓ(x1) for some linear function ℓ (due to the structure of the
(n− 2)-dimensional affine space A it contains). Due to (∗), this ℓ must also satisfy ℓ(0) ≥ 0 and ℓ(1) ≥ 0. Further,
observe that we can succinctly describe LA ∩K ′ as{

x ∈ Rn : 0 ≤ x1 ≤ 1, x2, . . . , xn ≥ 0, and x2 + · · ·+ xn ≤ ψ′(t)
}
,

where
ψ′(t) = min{ψ(t), ℓ(t)}

is concave as well.

Now, since ψ is concave on [0, 1], it is continuous on (0, 1). Therefore, if there is a discontinuity, it must be at either
0 or 1. Based on this, we take 3 cases and in each, construct an A that yields the desired linear function.

� Case 1. ψ(0) = ψ(1) = 0. Consider the affine space A for σ = 1/2. Due to (∗), (1/2)e1 ∈ LA (Why?). Since
ℓ(0), ℓ(1) ≥ 0 and ℓ(1/2) = τ , as we take τ → 0, ℓ tends to 0 uniformly on [0, 1]. Making τ sufficiently small,
we see that ψ′ satisfies the required condition and becomes linear on a length tending to 1 (it becomes equal
to ℓ for a larger portion as τ becomes smaller and smaller).

33we can then restrict ourselves to LA instead of K′ while maintaining non-negativity of the two integrals.
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� Case 2. ψ(0) = 0 and ψ(1) > 0 (the reversed case is nearly identical). Consider the affine space A for
τ = ψ(1)σ. (∗) implies that 0 ≤ ℓ(1) ≤ ψ(1). However, in this case, ψ′ must be linear on [σ, 1], so we can
obtain linearity on a length tending to 1.

� Case 3. ψ(0), ψ(1) > 0.Consider a convex(!) function η : [0, 1] → R≥0 such that

– 0 ≤ η(0) ≤ ψ(0) and 0 ≤ η(1) ≤ ψ(1),

– the convex body Kη defined by

Kη = {x ∈ Rn : 0 ≤ x1 ≤ 1, x2, . . . , xn ≥ 0, and η(x1) ≤ x2 + · · ·+ xn ≤ ψ(x1)}

satisfies ∫
Kη

ĝ(x) dx = 0 and

∫
Kη

ĥ(x) dx ≥ 0, and

–

∫ 1

0

η(x) dx is maximal.

Such an η must exist since the zero function satisfies the first two conditions.
If ψ(0) = η(0) or ψ(1) = η(1), then we are done, since ψ − η satisfies the original conditions (non-negative
integrals), and it is already covered in the first two cases.
Otherwise, we have η(0) < ψ(0) and η(1) < ψ(1). Let (σ, τ) be the intersection point of the segments joining
(0, η(0)), (1, ψ(1)) and (0, ψ(0)), (1, η(1)) and A be the corresponding affine space. Let H be a hyperplane
containing A dividing space into two half-spaces M and M ′ such that∫

Kη∩M

ĝ(x) dx =

∫
Kη∩M ′

ĝ(x) dx = 0.

Also, choose M to be the half-space that contains (1/2)e1 (the one that “faces down”).
It is clear from contruction that any (n − 1)-dimensional hyperplane containing A, H in particular, either
intersects both Z0∩Kη and Z1∩Kη or neither. The latter cannot happen due to (∗) (or rather, the corresponding
expression for Kη rather than K ′).
Now, ∫

M ′
ĥ(x) dx < 0.

Indeed, otherwise, the linear function ℓ corresponding to H contradicts the maximality of η. However, this
implies that ∫

M∩K′
ĝ(x) dx =

∫
K′
ĝ(x) dx−

∫
M ′

ĝ(x) dx = 0

and ∫
M∩K′

ĥ(x) dx =

∫
K′
ĥ(x) dx−

∫
M ′

ĥ(x) dx > 0.

Finally, M ∩K ′ is a truncated cone, thus completing the proof. ■

The above result has some interesting corollaries, namely Theorems 4.34 and 4.36, which are of interest to us. The
following is an improvement of Theorem 4.15.

Theorem 4.34. Let K ⊆ Rn be a convex body, 0 < t < 1, and K1,K2 be two measurable sets in K such that for
any a, b ∈ K, the distance between K1 ∩ [a, b] and K2 ∩ [a, b] is at least t ∥a− b∥. Then for any log-concave function
F with support K,

µF (M \ (K1 ∪K2)) ≥
2t

1− t
min{µF (K1), µF (K2)}.

The above bound is tight when K is a cylinder and F is identically 1. Note that t ≥ d(K1,K2)/diam(K) (which
explains why this is an improvement of Theorem 4.15).
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Proof. Suppose otherwise. Assume that K1 and K2 are open (otherwise, we can delete the boundary and enlarge
them slightly to open sets while preserving both the assumptions and the inequality). Denote K3 =M \ (K1 ∪K2).
Define

g(x) =


F (x), x ∈ K1,

− 1−t
2t F (x), x ∈ K3,

0, otherwise,

and h(x) =


F (x), x ∈ K2,

− 1−t
2t F (x), x ∈ K3,

0, otherwise.

By our assumption, the integrals of g and h over Rn are positive. We can then apply Theorem 4.31 to get a linear
functional ℓ and a, b ∈ Rn such that∫ 1

0

ℓ(u)n−1g(ua+ (1− u)b) du > 0 and

∫ 1

0

ℓ(u)n−1h(ua+ (1− u)b) du > 0.

For each 1 ≤ i ≤ 3, define

Hi = {u ∈ [0, 1] : ua+ (1− u)b ∈ Ki} and G(u) = ℓ(u)n−1F (ua+ (1− u)b).

Substituting g and h in the above equation, we get∫
H3

G(u) du <
2t

1− t
min

{∫
H1

G(u) du,

∫
H2

G(u) du

}
. (4.16)

Intuitively, the worst case to prove appears to be when H3 is a single interval – as we shall see later in the proof, we
can reduce it to this case even in general. We show the following claim, which just asserts that Equation (4.16) is
incorrect (for the single-interval case). Define µG to be measure on [0, 1] with density G.

Claim. For 0 ≤ s < s+ t ≤ 1,

µG([s, s+ t]) ≥ 2t

1− t
min{µG([0, s]), µG([s+ t, 1])}. (4.17)

Before we move to the proof, note that Theorem 4.15, which has a t in place of 2t/(1 − t) above, is trivial now.
Indeed, since G is unimodal34,

µG([s, s+ t]) ≥ t inf
x∈[s,s+t]

G(x) ≥ tmax{s, 1− s− t} inf
x∈[s,s+t]

G(x) ≥ tmin{µG([0, s]), µG([s+ t, 1])}.

First, note that since G is the product of two log-concave functions, it is log-concave as well. Choose constants c, c0
such that G(s) = c0e

cs and G(s + t) = c0e
c(s+t). By the log-concavity of G, G(u) ≥ c0e

cu for s ≤ u ≤ s + t and
G(u) ≤ c0e

cu elsewhere. As a consequence, it suffices to show Equation (4.17) for the case where G(u) = c0e
cu.

Further, we may assume that c0 = 1. We wish to show that

ec(s+t) − ecs ≥ 2t

1− t
min

{
ecs − 1, ec − ec(s+t)

}
.

The worst case is when ecs − 1 = ec − ec(s+t) (Why?). That is,

ecs =
1 + ec

1 + ect
.

We then aim to show that

(ect − 1)
1 + ec

1 + ect
≥ 2t

1− t

(
1 + ec

1 + ect
− 1

)
.

Let x = ect > 1 and λ = 1/t > 1. The equation then becomes

(x− 1)(1 + xλ) ≥ 2

λ− 1
(xλ − x),

34there is some m ∈ [0, 1] such that G is monotonically increasing for x ≤ m and monotonically decreasing for x ≥ m.
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that is,
(λ+ 1)(x− xλ) + (λ− 1)(xλ+1 − 1) ≥ 0.

Letting the expression on the left be h(x), we get h(1) = h′(1) = 0 and h′′(x) = (λ2 − 1)λ(xλ−1 − xλ−2) ≥ 0, thus
proving the claim for all x ≥ 1.

Now, how do we reduce the general case problem to this? For each maximal interval I = (a, b) contained in H3 of
length at least t, colour [0, a] red if µG([0, a]) < µG([b, 1]) and [b, 1] red otherwise. The above claim implies that each
interval introduces a red set of µG-measure at most 1−t

2t µG((a, b)). The entirety of the red set then has measure at
most 1−t

2t µG(H3). It then suffices to show that either H1 or H2 is completely red.
Suppose otherwise. Denote by U the region that is uncoloured. We then have that U intersects both H1 and H2.
By construction, U is an open interval. Since the distance between H1 and H2 is at least t, U ∩ H3 must contain
a subinterval (of length at least t). This is a contradiction because there is an adjacent red interval (that intersects
U). ■

Setting F to be identically 1 on K in the above result, we get the following.

Corollary 4.35. Let K ⊆ Rn be a convex body, 0 < t < 1, and K1,K2 be two measurable sets in K such that for
any a, b ∈ K, the distance between K1 ∩ [a, b] and K2 ∩ [a, b] is at least t ∥a− b∥. Then

vol(M \ (K1 ∪K2)) ≥
2t

1− t
min{vol(K1), vol(K2)}.

In particular, if K has diameter d and the distance between K1 and K2 is at least 1,

vol(M \ (K1 ∪K2)) ≥
2

d− 1
min{vol(K1), vol(K2)}.

Theorem 4.36. Let F be a log-concave function on Rn and θ ≤ 1 such that∫
Rn\Bn

2

F (x) dx = θ

∫
Rn

F (x) dx.

Then for every u ≥ 1, ∫
Rn\uBn

2

F (x) dx ≤ θ(u+1)/2

∫
Rn

F (x) dx.

Proof. Suppose otherwise. Then exactly as we did in the proof of Theorem 4.34, there exist a, b ∈ Rn and a linear
function ℓ : [0, 1] → R+ such that on setting

G(t) = ℓ(t)n−1F ((1− t)a+ tb),

H1 = {t ∈ [0, 1] : (1− t)a+ tb ∈ Bn
2 },

H2 = {t ∈ [0, 1] : (1− t)a+ tb ∈ uBn
2 \Bn

2 }, and
H3 = [0, 1] \ (H1 ∪H2),

we have ∫
H2∪H3

G(t) dt ≤ θ

∫ 1

0

G(t) dt (4.18)

and ∫
H3

G(t) dt > θ(u+1)/2

∫ 1

0

G(t) dt (4.19)

As seen before, G is log-concave. Further, note that H1 is an interval and H2, H3 consist of 1 or 2 intervals.

If 0 ̸∈ H1, we can choose a point s ∈ H1 such that∫
[0,s]∩H1

G(t) dt∫
[s,1]∩H1

G(t) dt
=

∫
[0,s]

G(t) dt∫
[s,1]

G(t) dt
.



High-Dimensional Convex Geometry 67 / 106 Amit Rajaraman

We can then replace [a, b] with one of [a, (1−s)a+sb] and [(1−s)a+sb, b] (that is, replace [0, 1] with [0, s] or [s, 1]).35

Therefore, we may assume wlog that 0 ∈ H1, that is, a ∈ Bn
2 .

Let H1 = [0, α], H2 = (α, β], and H3 = (β, 1]. It is easily shown that β ≥ (u+1
2 )α.

Now, choose constants c and c0 such that∫ α

0

G(t) dt =

∫ α

0

c0e
−ct dt and

∫ 1

β

G(t) dt =

∫ ∞

α

c0e
−ct dt.

Note that the log-concavity (unimodality in particular) of G implies that for all α ≤ t ≤ β, G(t) ≥ c0e
−ct. Therefore,∫ 1

0

G(t) dt ≥
∫ ∞

0

c0e
−ct dt.

However, Equation (4.18) then implies that

θ ≥
∫ 1

α
G(t) dt∫ 1

0
G(t) dt

= 1−
∫ α

0
G(t) dt∫ 1

0
G(t) dt

≥ 1−
∫ α

0
c0e

−ct dt∫∞
0
c0e−ct dt

=

∫∞
α
c0e

−ct dt∫∞
0
c0e−ct dt

= e−cα.

Using the above, we now have

θ(u+1)/2 ≥ e−cα(u+1)/2

≥ e−cβ

=

∫∞
β
c0e

ct dt∫∞
0
c0ect dt

≥
∫ 1

β
G(t) dt∫ 1

0
G(t) dt

,

thus resulting in a contradiction to Equation (4.19) and proving the claim. ■

Corollary 4.37. Let K be a convex body in Rn and θ = vol(K \Bn
2 )/ vol(K). Then vol(K \uBn

2 ) ≤ θ(u+1)/2 vol(K).

Before we conclude this section, we give two more lemmas that will be useful in the future.

Lemma 4.38. Let K be a convex body and θ = vol(K \Bn
2 )/ vol(K). Then K ⊆ 2n

1−θB
n
2 .

Proof. Let x ∈ K be the point farthest from the origin andR = ∥x∥. It suffices to show the result for Conv (K ∩Bn
2 ) ∪ {x}

(Why?). Assume K to be of this form.
Note that K is contained in {

x+

(
R+ 1

R− 1

)
v : x+ v ∈ K \Bn

2

}
.

Then,

vol(K) ≤
(
R+ 1

R− 1

)n

vol(K \Bn
2 ) ≤ θ

(
R+ 1

R− 1

)n

vol(K).

Therefore,

R ≤ 2

1− θ1/n
≤ 2n

1− θ
. ■

35Multiplying by the appropriate factors leaves Equation (4.18) unchanged in the restricted segment, and one of the two intervals will
also satisfy the restriction of Equation (4.19).
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Lemma 4.39. Let 0 ≤ t ≤ 1. If vol(K \ (x+K)) ≤ 1/2 vol(K), then vol(K \ (tx+K)) ≤ (2t/3) vol(K).

Proof. Define ψ : [0, 1] → R by

ψ(u) =
vol(K ∩ (ux+K))

vol(K)
.

Corollary 4.29 (or rather, the line right after it) implies that ψ is log-concave. We have ψ(0) = 1 and ψ(1) ≥ 1/2.
Therefore, ψ(t) ≥ 2−t so

vol(K \ (tx+K)) ≤ (1− 2−t) vol(K) ≤ 2t

3
vol(K). ■

4.6. An O∗(n7) Algorithm using Ball-Step

As in most volume estimation algorithms, the basic idea remains nearly the same, the changes being only in the
walk. The algorithm used here involves the “ball-step” mentioned earlier. It is worth noting instead of the “ball” in
ball-step, one could use any other symmetric convex body G. An obvious choice is the cube, which is quite convenient
to draw points uniformly randomly from from a programming perspective. Our analysis shall be done in this general
case.

4.6.1. Ball-Step and Bounding Conductance

The basic walk M is as follows: when we are at vk, we let vk+1 = vk with probability 1/2. Otherwise, we generate a
random vector u from the uniform distribution on G. If vk + u ∈ K, set vk+1 = vk + u and otherwise, set vk+1 = vk.
This is termed as the lazy random walk in K with G-steps.
In this particular algorithm, we further filter it to obtain a Metropolis chain (recall that we defined this in Defini-
tion 4.14). That is, for any measurable A such that x ̸∈ A,

Px(A) =
1

2 vol(G)

∫
(x+G)∩A

min

{
1,
F (y)

F (x)

}
dy =

1

2 vol(G)

∫
(x+G)∩A

min

{
1

F (y)
,

1

F (x)

}
dµF (y)

and

Px(x) =
1

2
+

1

2 vol(G)

∫
x+G

max

{
0, 1− F (y)

F (x)

}
dy.

Recall from the discussion after Definition 4.11 that we denote by Ht (for 0 ≤ t ≤ 1/2) the set of points such that∫
x+G

min{F (x), F (y)}dy < tF (x) vol(G),

the set of points where the probability of moving out is less than t. We also saw that the (QF (Ht)/2)-conductance
of the chain is at most 2t.

The main result of this section, which is an improvement of a previous result, says that if the local conductance is
large and the “diameter” (not the usual Euclidean diameter) of K is small, then the overall conductance is large.

Theorem 4.40. Let 0 ≤ t ≤ 1/2, 0 < θ < 1, and s = QF (Ht). Assume that for all x, y ∈ K,

vol(G ∩ (θ(x− y) +G)) ≤ 1

2
vol(G). (4.20)

Then the (7s/t)-conductance of M(K,G)/F is at least t2θ/18.

Our idea of diameter here is 1/θ (where θ is the minimal value satisfying the required in the above theorem). It is
seen that 1/θ is the usual diameter under the norm whose unit ball is {x : vol(G∩ (x+G)) ≥ vol(G)/2}. If G is the
Euclidean ball, then 1/θ grows as

√
nd, where d is the usual Euclidean diameter of K.
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Proof. Alternatively, the above result states that if we split K into measurable sets S1 and S2,∫
S1

∫
S2∩(x+G)

min{F (x), F (y)} dy dx ≥ t2θ vol(G)

18
min

{
QF (S1)−

7s

t
,QF (S2)−

7s

t

}
.

We may assume that QF (S1) and QF (S2) are both greater than 7s/t. For i = 1, 2, define

S′
i =

{
x ∈ Si : µF ((x+G) ∩ S3−i) ≥

t

3
vol(G)F (x)

}
,

S′′
i = (Si \ S′

i) \Ht, and

S3 = S′
1 ∪ S′

2 ∪Ht.

Note that S′′
1 , S

′′
2 , and S3 are disjoint (and cover the entirety of K). Each S′

i represents the “good” points in Si –
the probability of transitioning to S3−i is decently high, or rather, sufficiently higher than the probability of even
being at that point in the first place.
The only problematic points are those in the S′′

i .
Claim. If x1 ∈ S′′

1 and x2 ∈ S′′
2 , then vol((x1 +G) \ (x2 +G)) ≥ t

3 vol(G).
Suppose otherwise. Observe that the expression under consideration is symmetric in x1 and x2 so we may assume
that F (x1) ≤ F (x2). Define Gi = xi +G for i = 1, 2. Since S′′

i and Ht are disjoint,∫
Gi

min{F (xi), F (y)}dy ≥ t vol(G)F (xi).

We also have (by the contradiction assumption) that∫
G2\G1

min{F (x2), F (y)} dy <
t

3
vol(G)F (x2).

Therefore, ∫
G2∩G1

min{F (x2), F (y)} dy ≥ 2t

3
vol(G)F (x2).

Since x2 ̸∈ S′
2, ∫

G2∩G1∩S1

min{F (x2), F (y)}dy ≤
∫
G2∩S1

min{F (x2), F (y)} dy <
t

3
vol(G)F (x2).

Because S1 ∪ S2 = K, ∫
G2∩G1∩S2

min{F (x2), F (y)}dy >
t

3
vol(G)F (x2).

Multiplying by F (x1)/F (x2) on either side,∫
G2∩G1∩S2

min{F (x1), F (y)} dy >
t

3
vol(G)F (x1)

and so, ∫
G1∩S2

min{F (x1), F (y)} dy >
t

3
vol(G)F (x1).

However, this means that x1 ∈ S′
2, proving the claim.

Observe that the above claim is equivalent to saying that if x1 ∈ S′′
1 and x2 ∈ S′′

2 , vol(G∩((x2−x1)+G)) > t
3 vol(G).

Therefore, Lemma 4.39 implies that

vol

(
G ∩

(
2

t
(x2 − x1) +G

))
>

1

2
vol(G).
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If we have some a, b ∈ K such that S′′
1 ∩[a, b] and S′′

2 ∩[a, b] are non-empty and the distance between them is ρ ∥b− a∥,
then the claim above together with Equation (4.20) imply that ρ > tθ/2. Using Theorem 4.34,

µF (S3) ≥
tθ

1− tθ/2
min{µF (S

′′
1 ), µF (S

′′
2 )}.

Further note that
µF (S

′′
i ) ≥ µF (Si)− µF (S

′
i)− µF (Ht) ≥ µF (Si)− µF (S3)− s.

That is, (
1 +

tθ

2

)
µF (S3) ≥

tθ

1− tθ/2
min{µF (S1)− s, µF (S2)− s},

so
µF (S3) ≥ tθmin{µF (S1)− s, µF (S2)− s}.

We also have ∫
S1

∫
S2∩(x+G)

min{F (x), F (y)} dy dx ≥
∫
S′
1

∫
S2∩(x+G)

min{F (x), F (y)} dy dx

≥
∫
S′
1

t

3
vol(G)F (x) dx =

t

3
vol(G)µF (S

′
1).

A similar inequality holds with µF (S
′
2) instead of µF (S

′
1) as well (invoking time-reversibility). Finally,∫

S1

∫
S2∩(x+G)

min{F (x), F (y)} dy dx ≥ t

6
vol(G)µF (S

′
1 ∪ S′

2)

=
t

6
vol(G)µF (S3 \Ht)

≥ t

6
vol(G)(µF (S3)− s)

≥ t

6
vol(G)

(
tθmin{µF (S1)− s, µF (S2)− s} − s

)
=
t2θ

6
min

{
µF (S1)− s

(
1 +

1

tθ

)
, µF (S2)− s

(
1 +

1

tθ

)}

≥ t2θ

6
min

{
µF (S1)−

7s

t
, µF (S2)−

7s

t

}
.

■

Corollary 4.41. If the local conductance of M(K,G) is at least t at each point, its conductance is at least t2θ/18.

4.6.2. The Walk

A simple albeit important problem is that of deciding how to sample from the body G we are considering. As
mentioned at the beginning of this section, a cube is quite convenient from a programmer’s perspective. The
Euclidean ball is not too problematic either. Letting ξ1, . . . , ξn be iid standard normal distributions and η be
uniformly distributed in [0, 1], we see that

v0 =

(
η1/n

ξ1√∑
i ξ

2
i

, . . . , η1/n
ξn√∑

i ξ
2
i

)
is uniformly distributed in Bn

2 .

We modify the G-walk described above into a suitable Metropolis chain, with the primary function being quite
similar to that we used in the O∗(n8) algorithm described in a previous section. Define

ϕK(x) = min{t ≥ 0 : x ∈ tK}
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and FK(x) = e−ϕK(x). Clearly, 0 < FK ≤ 1. We often refer to these functions as just ϕ and F if it is clear from
context what convex body we are talking about (this is almost always K). First of all, we can use Equations (1.2)
and (1.3) to get ∫

Rn

F = n vol(K)

∫ ∞

0

tn−1e−t dt.

That is,

vol(K) =
1

n!

∫
Rn

F. (4.21)

Let h : R+ → R be any function such that

∫ ∞

0

h(t)tn−1 dt exists. Then another useful corollary of Equations (1.2)

and (1.3) is that ∫
Rn

h(ϕ(x)) = n vol(K)

∫ ∞

0

h(t)tn−1 dt. (4.22)

Now, define

λ(s) =
1

s

(
1

(n− 1)!

∫ s

0

e−ttn−1 dt

)1/n

.

The reason for choosing such a convoluted function is made clear by the following lemma.

Lemma 4.42. Let v be randomly distributed in Rn with density e−ϕ(v)/(n− 1)!. Then

H(v) = λ(ϕ(v))v

is uniformly distributed on K.

Proof. Set h(t) = e−t/(n − 1)! and fix some 0 ≤ s ≤ 1. Observe that the set sK is mapped by H to sλ(s)K.36

Obviously, the probability of sλ(s)K under the uniform distribution on K is (sλ(s))n. The probability of sK under
the given density h is ∫

sK

e−ϕ(x)

(n− 1)!
dx =

∫ s

0

h(t)tn−1 dt.

By the definition of λ, these two quantities are equal. Since we can similarly restrict ourselves to any fixed cone
similarly, the assertion holds and H(v) is uniform. ■

While we used usual (deterministic) sandwiching in our earlier algorithm, it turns out that we can get an algorithm
that gives a better sandwiching ratio without being too costly in terms of time by introducing randomness.

The sandwiching we take is such that more than 2/3 of the volume of Bn
2 is in K and for a 1 ≤ m ≤ n3/2, more than

2/3 of the volume of K is contained in the convex body mBn
2 .

There exists a randomized algorithm to obtain a m = n in the above (which we describe later), but for now, we shall
analyze it for a general m.

Set q = 2mn log(4/ε) and t = 1010nq2(n log n+ log(2/ε)).
In the algorithm, start with the uniform distribution on Bn

2 and do a lazy random walk in qBn
2 up till time t with

Bn
2 -steps, filtered by F (as defined earlier in the section). Compute w = H(vt). We claim that w is close to being

drawn from the uniform distribution. This is stated more rigorously in the following, which is the main result of this
section.

Theorem 4.43. For any (Lebesgue) measurable set A ⊆ K, the random point w described above satisfies∣∣∣∣Pr [w ∈ A]− vol(A)

vol(K)

∣∣∣∣ < ε.

Moreover, it requiresO(n3m2 log2(1/ε)(n log n+log(1/ε))) membership tests andO(n4m2 log(1/ε)(n log n+log(1/ε)))
arithmetic operations involving numbers of O(log n) bits.

36if x ∈ s∂K, then H(x) = λ(s)x.



High-Dimensional Convex Geometry 72 / 106 Amit Rajaraman

The remainder of this section is dedicated to proving the above.

Lemma 4.44. Let H be a halfspace in Rn and B a unit ball whose center is at distance t from H. Then

(i) if t ≤ 1/
√
n,

vol(B ∩H) >

(
1

2
− t

√
n

2

)
vol(Bn

2 ).

(ii) if t > 1/
√
n,

1

10t
√
n
(1− t2)(n+1)/2 vol(Bn

2 ) < vol(H ∩B) <
1

t
√
n
(1− t2)(n+1)/2 vol(Bn

2 ).

Observe that the above is just a (better) bound on the volume of a spherical cap, which we rudimentarily bounded
back in Lemmas 1.1 and 1.2. We omit the proof of the above.

The above with the sandwiching we are taking implies that (1/3n1/2)Bn
2 ⊆ K. Also, Lemma 4.38 implies that

K ⊆ 3nmBn
2 . Therefore, for any x ∈ K,

∥x∥
3nm

≤ ϕ(x) ≤ 3
√
n ∥x∥ . (4.23)

The first lemma justifies why we can restrict ourselves to qBn
2 .

Lemma 4.45. Given the above, (
1− ε

4

)
vol(K) <

1

n!

∫
qBn

2

F (x) dx.

Proof. Let K = K ∩mBn
2 . Note that for any x, FK(x) ≤ F (x). We then have∫

2nmBn
2

F (x) dx ≥
∫
2nK

F (x) dx (2nK ⊆ 2nmBn
2 )

≥
∫
2nK

F (x) dx

= n vol(K)

∫ 2n

0

e−ttn−1 dt

using Equation (4.22) on h(t) =

{
e−t, 0 ≤ t ≤ 2n,

0, otherwise.


>

39

40
n! vol(K)

≥ 13

20
n! vol(K) (at least 2/3 of the volume of K is in mBn

2 )

for sufficiently large n.
Alternatively, ∫

Rn\2nmBn
2

F (x) dx <
7

20
n! vol(K) =

7

20

∫
Rn

F (x) dx.

We can then use Theorem 4.36 to get∫
Rn\2nm log(4/ε)Bn

2

F (x) dx <

(
7

20

)log(4/ε) ∫
Rn

F (x) dx ≤ ε

4
n! vol(K)

for sufficiently small ε, thus proving the required. ■

The second lemma bounds the conductance of the chain.

Lemma 4.46. If p ≥ 10
√
n, then the conductance of M(pBn

2 , B
n
2 )/FK is at least 1/(20000p

√
n).
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Proof. The first step is bounding the local conductance, much like we did for the earlier algorithm. Let x ∈ pBn
2 and

y be chosen randomly from x+Bn
2 . By the condition that p ≥ 10

√
n, y ̸∈ pBn

2 with probability at most 5/9. Since
2/3 of the volume of Bn

2 is in K, y ̸∈ K with probability at most 1/3. Therefore, y ∈ pBn
2 ∩K with probability at

least 1/9. Fix such a y. Then
y ∈ x+K ⊆ ϕ(x)K +K = (ϕ(x) + 1)K,

so ϕ(y) ≤ ϕ(x) + 1. Therefore, FK(y) ≥ FK(x)/e. This bounds the local conductance below by 1/9e > 1/25.
In the context of Corollary 4.41, the minimum value of θ is bounded below by 2/3pn1/2 (using Lemma 4.44).37

Corollary 4.41 then yields the result. ■

Let us now move on to the proof of the main theorem.
For A ⊆ Rn, define

QF (A) =

∫
A
F (u) du∫

Rn F (u) du

and

Q′
F (A) =

∫
A∩qBn

2
F (u) du∫

qBn
2
F (u) du.

For measurable A ⊆ K,
Pr[w ∈ A] = Pr[vt ∈ H−1(A)] = Qt(H

−1(A)).

By Lemma 4.42,

QF (H
−1(A)) =

vol(A)

vol(K)
.

Clearly, it suffices to show that for any measurable U ⊆ Rn,

|QF (U)−Qt(U)| < ε.

Using Lemma 4.45,

QF (U)−Q′
F (U) =

µF (U)

µF (Rn)
− µF (U ∩ qBn

2 )

µF (qBn
2 )

≤ µF (U)

µF (Rn)
− µF (U ∩ qBn

2 )

µF (Rn)

=
µF (U \ qBn

2 )

µF (Rn)

≤ µF (Rn \ qBn
2 )

µF (Rn)
≤ ε

4

Q′
F (U)−QF (U) =

µF (U ∩ qBn
2 )

µF (qBn
2 )

− µF (U)

µF (Rn)

≤ µF (U ∩ qBn
2 )

µF (qBn
2 )

− µF (U ∩ qBn
2 )

µF (Rn)

=
µF (U ∩ qBn

2 )µF (Rn \ qBn
2 )

µF (qBn
2 )µF (Rn)

≤ µF (Rn \ qBn
2 )

µF (Rn)
≤ ε

4

37try bounding the distance d such that vol(Bn
2 ∩ (de1 +Bn

2 )) ≥ vol(Bn
2 )/2 and going from there.
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Therefore, it suffices to bound |Q′
F (U) − Qt(U)| by 3ε/4. To do so, we use Corollary 4.22. To estimate M (in the

context of Corollary 4.22),

M = sup
A

Q0(A)

Q′
F (A)

=
µF (qB

n
2 )

µF (Bn
2 )

(the supremum is attained for A = Bn
2 )

≤ n! vol(K)

e−3
√
n vol(Bn

2 )
(Equation (4.23))

≤ n3n

(
n! ≤ nn,

vol(K)

vol(Bn
2 )

≤ 3

2
mn, e−3

√
n ≤ 2

3
nn/2

)
for sufficiently large n. By Lemma 4.46,

Φ ≥ 1

20000q
√
n
.

Therefore,

|Qt(U)−Q′
F (U)| ≤ n3n/2

(
1− Φ2

2

)t

= n3n/2
(
1− 25

2t

(
n log(n) + log(2/ε)

))t

≤ n3n/2 exp

(
−25

2

(
n log(n) + log(2/ε)

))
≤ ε

2
.

This proves Theorem 4.43.
It is actually possible to perform the above algorithm with a far smaller value of t (O∗(n4m2)) while taking ε

1000nB
n
2 -

steps, but the analysis is more complicated so we omit it (we would have to use s-conductance in the proof instead).

4.6.3. Better Sandwiching and Ignoring the Error Probability

One of the basic assumptions in our algorithm was that of the sandwiching. Our body K is such that

� At least 2/3 of the volume of Bn
2 is in K.

� At least 2/3 of the volume of K is in mBn
2 for some 1 ≤ m ≤ n3/2.

We have already seen in Section 4.1.2 that it is possible to deterministically obtain get Bn
2 ⊆ K ⊆ n3/2Bn

2 . Sticking
with n3/2 would cost us a running time of n in the main part, so how do we do better?
Suppose we have n−1/2Bn

2 ⊆ K ⊆ nBn
2 . First, we randomly select T = 3 log n points in Bn

2 independently and then
check if they are in K. If one of them is not, we have a point in Bn

2 \K to perform the ellipsoid step. Otherwise, we
shall conclude that at least 2/3 of the volume of Bn

2 is in K. Indeed, if not, the probability that we do not find a
point in B \K is less than (2/3)3 logn ≤ 1/(100n2 log n). The procedure itself lasts at most 25n2 log n steps, so the
probability that it halts with K containing less than 2/3 of Bn

2 (which it has) is less than 1/4.
This gives a randomized algorithm that achieves the required with error probability less than 1/4.
It is worth noting that here, we have the second condition for m = n in a stronger sense with at least 2/3 of the
volume of Bn

2 in K and K ⊆ mBn
2 .

We now discuss another tactic to obtain the first condition in a strong sense and the second condition in a weaker
sense using the polar.
Suppose we have Bn

2 ⊆ K ⊆ n3/2Bn
2 . If K contains some point x with ∥x∥ > 6n, then we first expand the body

by a factor of (1 + 1/n) in all directions orthogonal to x, shrink it by a factor of 3 along x, and then translate
it by (−2/3)(x/ ∥x∥). This affine transformation of K still contains Bn

2 (Why?). We can repeat this until we get
Bn

2 ⊆ K ⊆ 6nBn
2 (or rather, some affine transformation of K).
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However, there is still one problem – how do we find a valid x or determine that no such x exists? That is, we
wish to determine if K ⊆ 6nBn

2 and if not, find a point in 6Bn
2 \K. We can do this by generating log3/2(10n log n)

independent random points in K(!) and test if they belong to 6nBn
2 . If one of them does, we have a point to carry out

the ellipsoid step. If all of them belong to 6nBn
2 , then we shall conclude that at least 2/3 of the volume is in 6nBn

2 .
Indeed, if not, the probability of not finding a point in 6nBn

2 \K is less than (2/3)log3/2(10n logn) ≤ 1/(10n log n).
Generating points in K is quite expensive however, especially because the whole reason we are sandwiching is to
make generating points easy.
If we use the sampling algorithm discussed in Theorem 4.43, we require O(n4m2 log n) membership test and
O(n5m2 log n) arithmetic operations.
With a neat little trick however, we may in fact take m = O(n) here. Let K ′ = K ∩ 18nBn

2 . If vol(K \ 6nBn
2 ) =

θ vol(K) (θ > 1/3), then by Corollary 4.37, vol(K \ 18nBn
2 ) ≤ θ2 vol(K). Therefore,

vol(K ′ \ 6nBn
2 ) = vol(K ∩ 18nBn

2 )− vol(K ∩ 6nBn
2 )

≥ (1− θ2) vol(K)− (1− θ) vol(K)

= (θ − θ2) vol(K)

= θ vol(K ∩ 6nBn
2 ) = θ vol(K ′ ∩ 6nBn

2 )

(1 + θ) vol(K ′ \ 6nBn
2 ) ≥ θ vol(K ′)

vol(K ′ \ 6nBn
2 ) ≥

θ

1 + θ
vol(K ′) ≥ 1

4
vol(K ′).

We need to generate O(n log2 n) random points overall, which makes the cost of this phase O(n7 log3 n), which is at
most a log factor more than that of the main part.

The reader might be wondering why we even introduced this alternate way to obtain a sandwiching; it does not
seem to be any better than what we did earlier with the strong satisfaction of the second condition. In special cases
however, this method turns out to be extremely powerful.
If K is a polytope with polynomially many (in n) facets, the two conditions can be attained with m = O(

√
n log n).

If K is a symmetric polytope with polynomially many facets, then we can in fact achieve m = O(log n)!

We mentioned in Section 4.6.2 that while it seems like we sacrifice precision and get a bad error probability δ, this
is not really the case. This is due to a neat statistical trick from [JVV86] which claims that it suffices to solve
the problem for δ = 1/3. Fix some ε > 0 and suppose we have some algorithm that calculates a ζ such that
ζ ∈ [(1− ε) vol(K), (1+ ε) vol(K)] with probability at least 2/3. Let s = 10 log(1/δ) and repeat the algorithm 2s+1
times to obtain ζ1, ζ2, . . . , ζ2s+1. Arranging the (ζi) in increasing order, let ζ = ζs+1 (the median).
We claim that Pr[ζ ∈ [(1− ε) vol(K), (1 + ε) vol(K)]] ≥ 1− δ.
If ζ is not in the interval, at least (s + 1) of the (2s + 1) (ζi) are outside the interval. We can then use Chernoff’s
inequality, which yields that out of 2s + 1 independent events, each having a probability at most 1/3 of occurring,
the probability that more than half occur is at most e−s/10 ≤ δ.

4.6.4. Bringing Everything Together and a Final Analysis

We have now built the various parts of the algorithm, and all that remains is to put the pieces together.
Let K be a convex body with (2/3) vol(Bn

2 ) ≤ vol(K ∩ Bn
2 ) and (2/3) vol(K) ≤ vol(K ∩mBn

2 ). We have described
how to attain this (in a randomized manner) in Section 4.6.3.

Although we have described the primary algorithm in detail before, we restate it here because it is slightly different.
Set q = 4mn log(1/ε), k = 4n log n, and t = 1011nkq2ε−2.
For each i, define

Fi(x) = min{F (x), exp(−∥x∥n1/22−i/n)}

where F is defined as in the beginning of Section 4.6.2.
Now, for each i, perform a lazy walk taking 3t steps in qBn

2 with Bn
2 -steps, filtered by Fi. Let these steps be

vi,1, . . . , vi,3t. The stationary distribution of this walk QFi
is such that QFi

(A) = µF (A)/µF (qB
n
2 ). Here, the first t

steps are to get close to the stationary distribution, the next t are what we use for the algorithm, and the last t are
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to ensure independence from the next phase.
The ith walk begins where the (i− 1)th ends. For each i, compute

Λi =
1

t

2t∑
j=t+1

Fi−1(vi,j)

Fi(vi,j)
.

Note that

Λi ≈
∫
qBn

2

Fi−1(x)

Fi(x)
dQFi

(x) =

∫
qBn

2
Fi−1(x) dx∫

qBn
2
Fi(x) dx

≈ vol(Ki−1)

vol(Ki)
,

where Ki = 2i/nBn
2 ∩K. Finally, we return our estimate of vol(K) as

ṽol(K) = (Λ1Λ2 · · ·Λk)
−1 vol(Bn

2 ).

Let us now analyze this beast.

Theorem 4.47. If K is a convex body such that vol(K ∩ Bn
2 ) ≥ (2/3) vol(Bn

2 ) and vol(K ∩mBn
2 ) ≥ (2/3) vol(K)

and ζ is the estimate returned by the above algorithm, then

Pr[(1− ε)ζ ≤ vol(K) ≤ (1 + ε)ζ] ≥ 3/4.

Further, the algorithm uses

O
(
n3m2ε−2(n+ log(1/ε))2(logm+ log log(1/ε))2 log2(1/ε)

)
membership oracle calls.

Corollary 4.48. Let K be a convex body given by a well-guaranteed membership oracle. Then it is possible to
compute a ζ such that

Pr[(1− ε)ζ ≤ vol(K) ≤ (1 + ε)ζ] ≥ 1− δ

in
O
(
n7ε−2 log2(n) log2(1/ε) log(1/δ)

)
oracle calls. Further, ifK is a polytope with polynomially many (in n) facets, we only requireO

(
n6ε−2 log4(n) log2(1/ε) log(1/δ)

)
oracle calls and ifK is a centrally symmetric polytope with polynomially many facets, we only requireO

(
n5ε−2 log4(n) log2(1/ε) log(1/δ)

)
oracle calls.

The rest of this section is dedicated to proving the above, which we have already done most of the work for over the
past 3 subsections. For each i, let Wi =

∫
qBn

2
Fi. By Lemma 4.46,(

1− ε

4

)
vol(K) ≤ 1

n!
Wi ≤ vol(K).

First, we claim that for any i,
1

2
≤ Wi−1

Wi
≤ 1.



High-Dimensional Convex Geometry 77 / 106 Amit Rajaraman

Indeed, the latter inequality is trivial and for the former,

Wi =

∫
qBn

2

Fi(x) dx

≤
∫
2i/nqBn

2

Fi(x) dx

=
1

2

∫
qBn

2

Fi(2
i/nx) dx

≤ 1

2

∫
qBn

2

Fi−1(x) dx =
1

2
Wi−1.

We also see that W0 is easily computed to be n−n/2n! vol(Bn
2 ).

What are the possible (probabilistic) sources of error in our algorithm?

1. The distribution of the point vi,t+1 generated is not exactly (1/Wi)QFi
.

2. The points vi,t+1 are not independent.

3. The sum used to estimate Wi−1/Wi has variance.

Let us look at each of these separately, starting with the first.
Let Pi,p represent the distribution of vi,p. As defined in Section 4.4, let hi,p be the distance function between Pi,p

and QFi
. Because QFi

is atom-free,
hi,p(x) = sup

A⊆qBn
2

QFi
(A)=x

Pi,p(A)− x.

Also let h0,p(x) = 0. Define Φ = mini Φi. By Lemma 4.46, Φ ≥ 1/(20000q
√
n). Also define

η =

(
1− Φ2

2

)t

≤ e−tΦ2/2

Lemma 4.49. For every 0 ≤ x ≤ 1,

hi,p(x) ≤

{
2ηmin{

√
x,

√
1− x}, if t ≤ p ≤ 3t,

4min{
√
x,

√
1− x} otherwise.

Proof. We prove this with induction on i. The claim is trivially true for i = 0. Let i > 0. Then for some A ⊆ qBn
2

with QFi
(A) = x,

hi,0(x) = Pi,0(A)− x.

Let y = QFi−1
(A). Then

y =
1

Wi−1

∫
A

Fi−1(u) du ≤ 2

Wi

∫
A

Fi(u) du = 2x.

Therefore, using the inductive hypothesis,

hi,0(x) = Pi,0(A)− x

= Pi−1,3t(A)− x

= (Pi−1,3t(A)− y) + (y − x)

≤ hi−1,3t(y) + min{x, 1− x} (y − x ≤ x)

≤ 2ηmin{√y,
√
1− y}+min{

√
x,

√
1− x}

≤ (1 + 2
√
2η)min{

√
x,

√
1− x} < (1 + 4η)min{

√
x,

√
1− x}.
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We can then use Theorem 4.21 to conclude that for p ≥ t,

hi,p(x) < (1 + 4η)min{
√
x,

√
1− x}

(
1− Φ2

2

)p

≤ (η + 4η2)min{
√
x,

√
1− x} ≤ 2ηmin{

√
x,

√
1− x}.

The case for p < t follows similarly (with the last two inequalities above slightly modified). ■

The above lemma resolves the first of the issues by bounding how far the distribution of vi,t+1 can get from the
required.

Next, let us look at the second issue. Let u = vi,a and w = vj,b for some i < j and t < a, b ≤ 2t. Let f(u) =
Fi−1(u)/Fi(u) and g(w) = Fj−1(w)/Fj(w). We wish to bound the correlation between the two random variables.

Lemma 4.50. Let f , g, u, and w be defined as above. Then∣∣E[f(u)g(w)]−E[f(u)]E[g(w)]
∣∣ ≤ 4η.

Proof. Let us consider another random walk vi,a, . . . , vj,b defined as follows. The transition probability from a v to
another is exactly the same as that for the v, but the distribution of the starting point vi,a is slightly different. Set

cf =
1∫

qBn
2
f dPi,a

=
Wi

Wi−1
.

Further, let

P i,a(A) = Pr[vi,a] =

∫
A
f dPi,a∫

qBn
2
f dPi,a

= cf

∫
A

f dPi,a.

Similarly, for each i ≤ k ≤ j and 0 ≤ r ≤ 2t, let P k,r be the distribution of vk,r. Then

E[f(u)g(w)] =

∫
qBn

2

E[f(u)g(w) | u = x] dPi,a(x)

=

∫
qBn

2

E[g(w) | u = x]f(x) dPi,a(x)

=

∫
qBn

2

E[g(w) | u = x] dP i,a(x)

∫
qBn

2

f(x) dPi,a(x)

= E[g(vj,b)]E[f(u)].

Therefore,∣∣E[f(u)g(w)]−E[f(u)]E[g(w)]
∣∣ = E[f(u)]

∣∣E[g(vj,b)− g(vj,b)]
∣∣

= E[f(u)]

∣∣∣∣∣
∫
qBn

2

g(y)
(
dP j,b − dPj,b

)∣∣∣∣∣
≤ sup

A∈A
|P j,b(A)− Pj,b(A)|

(
1

2
≤ E[f(u)] ≤ 1 and Equation (4.15)

)
≤ sup

A∈A
|P j,b(A)−QFi

(A)|+ |QFi
(A)− Pj,b(A)|

By Lemma 4.49, the second quantity is at most 2η. For each i ≤ k ≤ j and 0 ≤ r ≤ 2t, let hk,r be the distance
between P k,r and QFk

. To bound the first quantity, let A ⊆ qBn
2 with QFi

(A) = z. Let y =
∫
A
f dQFi

≤ z. Then

P i,a(A)−QFi
(A) =

∫
A

cff dPi,a − z

=

∫
A

cff
(
dPi,a − dQFi

)
+

∫
A

cff dQFi − z

≤ cfhi,a(y) + cfy − z

≤ 2hi,a(y) + 2y − z.
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By Lemma 4.49 and because 1 ≤ cf ≤ 2,

hi,a(z) ≤ 4ηmin{√y,
√
1− y}+ 2y − z

≤ 4η
√
z + z ≤ 5

√
z.

We also trivially have
hi,a(z) ≤ 1− z ≤ 5

√
1− z.

Applying the proof of Lemma 4.49 to the alternate chain,

hj,b(z) ≤ 2ηmin{
√
z,
√
1− z} ≤ 2η,

completing the proof. ■

The third issue has already been taken care of in Theorem 4.25.

For each i, let 1 + βi = Λi/E[Λi]. We shall then show that

Pr

1− ε

2
≤

k∏
i=1

(1 + βi) ≤ 1 +
ε

2

 > 3

4
. (4.24)

Obviously, E[βi] = 0 for any i. We split the proof into two cases.

1.
∑k

i=1 β
2
i > ε/8. By Markov’s inequality,

Pr

 k∑
i=1

β2
i >

ε

8

 ≤
E
[∑k

i=1 β
2
i

]
ε/8

.

Let F = Fi−1/Fi. Applying Theorem 4.25,

Var[tΛi] ≤
4t

Φ2
≤ 4t

Φ2
.

Therefore,

E[β2
i ] =

Var[Λi]

E[Λi]2
≤ 4t/Φ2

1/4
≤ ε2

8k

and

Pr

 k∑
i=1

β2
i >

ε

8

 ≤ 1

8
.

2.
∑k

i=1 β
2
i ≤ ε/8. We may assume that each |βi| ≤ 1

2 .
Suppose that

∣∣∏
i (1 + βi)− 1

∣∣ > ε/2. Then,

log

(
1− ε

2

)
>
∑
i

log(1 + βi) or
∑
i

log(1 + βi) > log

(
1 +

ε

2

)
so ∣∣∣∣∣∣

k∑
i=1

log(1 + βi)

∣∣∣∣∣∣ > ε

4
.
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Then note that | log(1 + βi)− βi| < β2
i . Therefore,∑

i

β2
i >

∑
i

∣∣log(1 + βi)− βi
∣∣

≥
∑
i

∣∣log(1 + βi)
∣∣−∑

i

|βi|

≥

∣∣∣∣∣∣
∑
i

log(1 + βi)

∣∣∣∣∣∣−
∣∣∣∣∣∣
∑
i

βi

∣∣∣∣∣∣∣∣∣∣∣∣
∑
i

βi

∣∣∣∣∣∣ >
∣∣∣∣∣∣
∑
i

log(1 + βi)

∣∣∣∣∣∣−
∣∣∣∣∣∣
∑
i

β2
i

∣∣∣∣∣∣ ≥ ε

8
.

The probability of this occurring can be computed using Chebyshev’s inequality. We have

Var

∑
i

βi

 = E


∑

i

βi

2


=
∑
i

E[β2
i ] + 2

∑
1≤i<j≤n

E[βiβj ]

≤ ε2

8
+ 2

∑
1≤i<j≤n

E[βiβj ].

E[βiβj ] =
E[ΛiΛj ]

E[Λi]E[Λj ]
− 1.

Using Lemma 4.50,

E[ΛiΛj ] =
1

t2

2t∑
a=t+1

2t∑
b=t+1

E
[
f(vi,a)g(vj,b)

]
≤ 1

t2

2t∑
a=t+1

2t∑
b=t+1

E[f(vi,a)]E[g(vj,b)] + 4η

= E[Λi]E[Λj ] + 4η.

Because E[Λi] ≥ 1
2 , E[βiβj ] ≤ 16η < ε2/8k2. Therefore,

Var

∑
i

βi

 ≤ ε2

4
.

Using Chebyshev’s inequality,

Pr


∣∣∣∣∣∣
∑
i

βi

∣∣∣∣∣∣ > ε

8

 ≤
64Var

[∑
i βi
]

ε2
≤

This proves the required.
How large is the running time? We make kt “moves”, where each move constitutes

� An update of n coordinates.

� One test of membership in qBn
2 .

� The evaluation of ϕ(x).
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� Some constant number of arithmetic operations.

We can evaluate ϕ(x) using binary search with error ε/n2 in O(log n + log(1/ε)) membership tests. Thus, the
algorithm makes O(kt(log n+ log(1/ε))) membership tests.
It is worth noting that we have assumed that we can compute membership in an affine image of K in a single step.
This is indeed true for sensible encodings such as linear or algebraic inequalities, but it may become important if it
takes n2 or more operations.
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§5. The KLS Conjecture

5.1. An Isoperimetric Problem

5.1.1. Introduction

In the context of ball-step, let us look at the mixing time of the chain for a general (not necessarily convex) body.
As discussed, it suffices to look at the conductance of the chain, which relates to finding a “cut” of the body of
relatively small surface area. For example, in a dumbbell, we could have a cut down the central bottleneck, which
would result in a very low conductance.
What about convex bodies? It is seen that hyperplanes are not bad (this is made precise in Theorem 5.10). A
natural next question is: could we have some convoluted cut that ends up being a bottleneck? In [KLS95], Kannan,
Lovàsz, and Simonovits conjectured that this in fact cannot happen. In particular, they claim that up to a constant
factor, hyperplane cuts are in fact the “worst” cuts.
We first formalize this notion of a cut to get an expression similar to that of conductance, discuss some localization
lemmata similar to those discussed earlier (to reduce n-dimensional integrals to 1-dimensional integrals), prove an
improvement of Theorem 4.34 in Theorems 5.7 and 5.9, and finish off with the statement of the conjecture.
Suppose we have a convex body K and we want to find a surface that divides K into two parts, whose measure is
minimum relative to that of the two parts.

Definition 5.1. The isoperimetric coefficient of a convex body K ⊆ Rn is defined as the largest number ψ = ψ(K)
such that for any measurable S ⊆ K,

ψ = inf
S⊆K

voln−1(∂S)

min{vol(S), vol(K \ S)}

More generally, for any log-concave density p on Rn (instead of 1K taken above), we can define ψp, the isoperimetric
constant for p, as

ψp = inf
S⊆Rn

p(∂S)

min{p(S), p(Rn \ S)}
.

In some texts, the above definition is replaced with

ψp = inf
S⊆Rn

p(∂S)

p(S)p(Rn \ S)
.

Since both definitions are within a factor of 2 of each other, this does not make much difference in our estimations.

This problem turns out to be very intimately related to that of volume computation we explored in the previous
section.
[LS90] bounds the isoperimetric coefficient below by 1/d, where d is the diameter of the body. Note that this is quite
obvious if the separating surface ∂S is a (section of a) hyperplane.
[AK91] gives a more general result where the measure is replaced by that with density equal to any log-concave
function and bounds it below by 2/d. This is in fact as tight as we can get in terms of the diameter and indeed, the
bound is attained for a thin long cylinder.
However, the bodies we are interested in (in say, volume computation) tend to have a certain structure to them. In
particular, sandwiching makes the bodies somewhat round.
The main result of this section is that for every convex body K,

ψ(K) ≥ ln 2

M1(K)
,

where M1(K) is the average distance of a point in K from the center of gravity of K.
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5.1.2. Needles and Localization Lemmas

To begin, consider the following motivated by Theorem 4.31.

Definition 5.2. A needle is a segment [a, b] ∈ Rn together with a non-negative linear function ℓ : I → R≥0 not
identically 0. If N = (I, ℓ) is a needle and f is an integrable function defined on I, denote∫

N

f =

∫ |b−a|

0

f(a+ tu)ℓ(a+ tu)n−1 dt,

where u = (b− a)/|b− a|.

Lemma 5.1. Let f1, f2, f3, f4 be non-negative continuous functions defined on Rn and α, β > 0. The following are
equivalent.

� For every convex body K in Rn,(∫
K

f1

)α(∫
K

f2

)β

≤
(∫

K

f3

)α(∫
K

f4

)β

.

� For every needle N in Rn, (∫
N

f1

)α(∫
N

f2

)β

≤
(∫

N

f3

)α(∫
N

f4

)β

.

Proof. The first implying the second is quite easy to show. For the converse, suppose that the second holds but the
first does not.
Adding a sufficiently small quantity to f3 and f4, we may further assume that they are (strictly) positive. We may
also assume that f1 and f2 are positive (Why?). Choose some A such that(∫

K
f1∫

K
f3

)α

> A >

(∫
K
f4∫

K
f2

)β

.

Then, ∫
K

f1 −A1/αf3 > 0 and

∫
K

A1/βf2 − f4 > 0.

Using Theorem 4.31, there is some needle N such that∫
N

f1 −A1/αf3 > 0 and

∫
N

A1/βf2 − f4 > 0.

This implies that (∫
N
f1

)α
(∫

N
f3

)α > A >

(∫
N
f4

)β
(∫

N
f2

)β ,
thus proving the claim. ■

Observe that we can extend this more generally to the case where f1 and f2 are upper semicontinuous and f3 and f4
are lower semicontinuous by considering an appropriate sequence of continuous functions. In particular, this allows
us to restrict ourselves from Rn to some subset T of Rn by multiplying the functions with the indicator function
1T (the functions extend to upper semicontinuous functions if T is closed and lower semicontinuous functions if T is
open).

Corollary 5.2. Let T be a bounded open convex set in Rn, g a bounded lower semicontinuous function on T , and
h a continuous function on T such that ∫

T

g > 0 and

∫
T

h = 0.

Then there is a needle N = (I, ℓ) with I ⊆ T such that∫
N

g > 0 and

∫
N

h = 0.
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Proof. Choose some 0 < δ <
∫
T
g and let ε > 0. Then,∫

T

(
g − δ +

1

ε
h

)
> 0 and

∫
T

(ε2 − h) > 0.

Extending these functions to functions on Rn (multiplying with the indicator function) and using Theorem 4.31, we
get a needle Nε = (Iε, ℓε) with Iε ⊆ T (Why?) such that∫

Nε

(
g − δ +

1

ε
h

)
> 0 and

∫
Nε

(ε2 − h) > 0. (5.1)

Observe that
∫
Nε

(g − δ + ε) > 0.
Taking M as the supremum of g on Rn,

−Mε

∫
Nε

1 <

∫
Nε

h < ε2
∫
Nε

1. (5.2)

Consider these needles for ε = 1/k (k ∈ N). Scaling appropriately, we may assume that the maximum of each
linear function ℓ1/k is 1. Using the Bolzano-Weierstrass Theorem, there is some subsequence of these needles that
converges (in the sense that the endpoints of the I1/k and the ℓ1/k converge)38 to some needle N = (I, ℓ). Combining
Equations (5.1) and (5.2) implies that N satisfies the required (we get

∫
N
(g − δ) ≥ 0 and

∫
N
h = 0). ■

While these results are quite nice, exponents of a linear function are not very convenient to deal with. This motivates
the following.

5.1.3. Exponential Needles

Definition 5.3. An exponential needle is a segment [a, b] ∈ Rn together with a real γ. If E = (I, γ) is a needle and
f is an integrable function defined on I, denote∫

E

f =

∫ |b−a|

0

f(a+ tu)eγt dt,

where u = (b− a)/ ∥b− a∥.

If we manage to prove our results for an exponential needle instead, it is extremely convenient because taking
exponents does not change the underlying structure of the function itself.

Lemma 5.3. Let f1, f2, f3, and f4 be four non-negative continuous functions defined on an interval [a, b] in R and
α, β > 0. Then the following are equivalent.

� For every log-concave function F defined on R,(∫ b

a

F (t)f1(t) dt

)α(∫ b

a

F (t)f2(t) dt

)β

≤

(∫ b

a

F (t)f3(t) dt

)α(∫ b

a

F (t)f4(t) dt

)β

.

� For every subinterval [a′, b′] ⊆ [a, b] and real γ,(∫ b′

a′
eγtf1(t) dt

)α(∫ b′

a′
eγtf2(t) dt

)β

≤

(∫ b′

a′
eγtf3(t) dt

)α(∫ b′

a′
eγtf4(t) dt

)β

.

Proof. The first implying the second is obvious (on setting F = 1[a′,b′]e
γt).

Note that if for some t0 ∈ [a, b], f1(t0)
αf2(t0)

β > f3(t0)
αf4(t0)

β , then both the assertions above fail since we can
consider

38We can think of an needle N = ([a, b], ℓ) as an element (a, b, ℓ(a), ℓ(b)− ℓ(a)) ∈ R2n+2. In our case, this sequence is bounded because
each interval is in the bounded set T and each ℓ is between 0 and 1.
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� the log-concave function e−c(t−t0)
2

for a sufficiently large c, or

� a sufficiently small interval containing t0.

Therefore, we may assume that for all t ∈ [a, b],

f1(t)
αf2(t)

β ≤ f3(t)
αf4(t)

β . (∗)

Suppose the second holds and the first does not for some log-concave function F .
We may assume that F ̸= 0 (so F > 0) on [a, b]. Otherwise, we can replace it with its convolution with e−ct2 for
a sufficiently large c, which is still log-concave by Lemma 4.27 and would still satisfy the inequality (Why?). We
may also assume that F ≥ 1 on [a, b] by scaling up appropriately. Let F = eG, where G is a non-negative concave
function on [a, b].
For each n, define Kn ⊆ Rn+1 by

Kn =

{
(t, x) : t ∈ [a, b], x ∈ Rn, ∥x∥ ≤ 1 +

G(t)

n

}
.

Let f̂i : Rn+1 → R by defined by f̂i(t, x) = fi(t).
For sufficiently large n, we have (1 +G(t)/n)n ≈ eG(t) = F (t), so we can write(∫

Kn

f̂1(t) dt

)α(∫
Kn

f̂2(t) dt

)β

>

(∫
Kn

f̂3(t) dt

)α(∫
Kn

f̂4(t) dt

)β

.

Using Lemma 5.1, there exists a needle Nn such that(∫
Nn

f̂1(t) dt

)α(∫
Nn

f̂2(t) dt

)β

>

(∫
Nn

f̂3(t) dt

)α(∫
Nn

f̂4(t) dt

)β

.

If Nn is orthogonal to the t-axis, then (∗) immediately breaks so we arrive at a contradiction. Otherwise, we may
project the needle onto the t-axis to get some [an, bn] ⊆ [a, b] and a linear function ℓn such that(∫ bn

an

ℓn(t)
nf̂1(t) dt

)α(∫ bn

an

ℓn(t)
nf̂2(t) dt

)β

>

(∫ bn

an

ℓn(t)
nf̂3(t) dt

)α(∫ bn

an

ℓn(t)
nf̂4(t) dt

)β

. (5.3)

By the Bolzano-Weierstrass Theorem, there is a subsequence such that ank
, bnk

converge, to say a0 and b0. By (∗),
a0 < b0. Suppose that ℓn(a0) < ℓn(b0) for infinitely many indices – if not, then exchange a0 and b0 in the following
argument. Now, let each ℓn be normalized such that ℓn(b0) = 1. Let γn = ℓn(a0) for each n.
For some subsequence, let γn → γ and n(1 − γn) → γ′, where 0 ≤ γ ≤ 1 and 0 ≤ γ′ ≤ ∞. Henceforth, we restrict
ourselves to this subsequence.

� If γ ̸= 1, ℓn(t)
n → 0 for all a0 ≤ t < b0. Dividing Equation (5.3) by

(∫ bn
an
ℓn(t)

n dt
)α+β

and letting n→ ∞, we

get
f1(b0)

αf2(b0)
β ≥ f3(b0)

αf4(b0)
β .

If instead of f3 and f4 everywhere in the proof above, we instead take f3 + ε and f4 + ε for a sufficiently small
ε, we get a strict inequality above and arrive at a contradiction to (∗).

� Therefore, γ = 1. We then have

ℓn(t)
n =

(
(1− (1− ℓn(t)))

1/(1−ℓn(t))
)n(1−ℓn(t))

.

The inner expression goes to 1/e. If γ′ = ∞, then we again get ℓn(t)
n → 0 for t < b0, so we arrive at a

contradiction similar to the first case above. Otherwise, we have

ℓn(t) → eγ
′(t−b0)/(b0−a0).
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Letting γ′′ = γ′/(b0 − a0) and letting n→ ∞, we get(∫ b0

a0

eγ
′′(t−b0)f1(t) dt

)α(∫ b0

a0

eγ
′′(t−b0)f2(t) dt

)β

>

(∫ b0

a0

eγ
′′(t−b0)f3(t) dt

)α(∫ b0

a0

eγ
′′(t−b0)f4(t) dt

)β

.

However, this (after multiplying by eγ
′′b0(α+β) on either side to remove the b0 in the exponent) contradicts the

original assumption that the opposite inequality holds for any exponential needle, thus completing the proof.

■

The next result is essentially a generalized version of the above lemma, so is relatively straight-forward to prove since
we have various tools for localization in our repertoire at this point.

Theorem 5.4. Let f1, f2, f3, and f4 be non-negative functions on Rn and α, β > 0. The following are equivalent.

� For every log-concave function F on Rn with compact support,(∫
Rn

F (t)f1(t) dt

)α(∫
Rn

F (t)f2(t) dt

)β

≤
(∫

Rn

F (t)f3(t) dt

)α(∫
Rn

F (t)f4(t) dt

)β

.

� For every exponential needle E in Rn,(∫
E

f1

)α(∫
E

f2

)β

≤
(∫

E

f3

)α(∫
E

f4

)β

.

Proof. Going from the first to the second isn’t too difficult. Given the exponential needle over [a, b] and constant
γ, consider the function F defined by t 7→ eγ⟨t,u⟩, where u = (b− a)/ ∥b− a∥ restricted to some ε-neighbourhood of
[a, b]. Letting ε→ 0, we get the required.
On the other hand, let the second hold but not the first for some function F . Then applying Lemma 5.1 on the Ffi,
we get some [a, b] and linear function ℓ on [a, b] such that

(∫ ∥b−a∥

0

f1(a+ tu)F (a+ tu)ℓ(a+ tu)n−1 dt

)α(∫ ∥b−a∥

0

f2(a+ tu)F (a+ tu)ℓ(a+ tu)n−1 dt

)β

>

(∫ ∥b−a∥

0

f3(a+ tu)F (a+ tu)ℓ(a+ tu)n−1 dt

)α(∫ ∥b−a∥

0

f4(a+ tu)F (a+ tu)ℓ(a+ tu)n−1 dt

)β

,

where u has the usual meaning of (b− a)/ ∥b− a∥.
However, Fℓn−1 is log-concave, so by Lemma 5.3, there exists an exponential needle that violates the assumption. ■

5.1.4. An Example Using the Equivalences

Let K be a convex body and f : K → R be integrable. Define its Lp norm by

∥f∥p =

(
1

volK

∫
K

|f(x)|p dx
)1/p

.

It is easy to see that if 0 < p < q, ∥f∥p ≤ ∥f∥q.

Theorem 5.5. Let 0 < p < q. There exists a constant cp,q such that for any dimension n, convex body K ⊆ Rn

and linear function f : K → R,
∥f∥q ≤ cp,q ∥f∥p
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Proof. We wish to show that for any K,(∫
K

|f |q
)1/q (∫

K

1

)1/p

≤ cp,q

(∫
K

1

)1/q (∫
K

|f |p
)1/p

.

Equivalently, we wish to show that for any exponential needle E,(∫
E

|f |q
)1/q (∫

E

1

)1/p

≤ cp,q

(∫
E

1

)1/q (∫
E

|f |p
)1/p

.

That is, we wish to show that for any linear function f , a, b ∈ R, and real γ,∫ b

a
eγt|f(t)|q dt∫ b

a
eγt dt

1/q

≤ cp,q

∫ b

a
eγt|f(t)|p dt∫ b

a
eγt dt

1/p

,

Since f is linear, we may assume without loss of generality that f(a+ tu) = t on [a, b] and that γ = 1; for the general
case where γ ̸= 0, we can just substitute appropriately. The cases where γ = 0 or f is constant on [a, b] are easily
shown.

φ(a, b) =

∫ b

a
et|f(t)|q dt∫ b

a
et dt

1/q∫ b

a
et|f(t)|p dt∫ b

a
et dt

−1/p

.

We wish to show that cp,q = supa<b φ(a, b) is finite. Note that φ is continuous for a < b. Further, for any α,
φ(a, b) → 1 as a, b→ α. That is, we may extend the function continuously to a ≤ b defining φ(a, a) = 1.
Now, observe that for fixed a, as b → ∞, φ(a, b) → 1.39 On the other hand, for fixed b and a → ∞, φ(a, b) remains
bounded. The continuity implies that φ is bounded (and its supremum is finite). ■

The actual calculation of the supremum above is quite tedious, however.

5.1.5. Isotropy

The content of this section is closely related to that of volume computation, primarily Section 4.6.3, which discussed
sandwiching.
Given a convex body K ⊆ Rn and f : K → Rm, denote by EK(f) the average of f over K. That is,

EK(f) =
1

vol(K)

∫
K

f(x) dx.

Denote by b(K) = EK(x) the center of gravity of K, also known as the barycenter of K. If K is clear from context,
we often denote it as just b. Denote by A(K) the n× n matrix of inertia

A(K) = EK((x− b)(x− b)⊤).

Denote by Mp(K) the pth moment of K
Mp(K) = EK

(
∥x− b∥p

)
.

It is seen that M2(K) is the trace of A(K). Further, the average squared distance between points in K is

1

vol(K)2

∫
K

∫
K

∥x− y∥2 dxdy = 2M2(K).

As p→ ∞, Mp(K)1/p converges to supx∈K ∥x− b∥.

39
∫ b
a et|f(t)|p dt grows as e−bbp and

∫ b
a et dt grows as eb.
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Definition 5.4 (Isotropic). A body K is said to be in isotropic position if b = 0 and A(K) = I, the identity matrix.40

Similarly, a function f : Rn → [0,∞) is said to be isotropic if its covariance matrix is the identity matrix.

Observe that a convex body is in isotropic position iff its indicator function is isotropic.
It may be shown the affine family of a convex body (the set of its image under affine transformations) has a unique
body in isotropic position.
First, let us show how isotropic position is related to sandwiching.

Theorem 5.6. If K is in isotropic position, then√
n+ 2

n
Bn

2 ⊆ K ⊆
√
n(n+ 2)Bn

2 .

Observe that these inequalities are tight for the regular simplex and also imply the second part of Theorem 1.5. If
K is in isotropic position, then for any unit u,∫

K

⟨u, x⟩2 dx = vol(K).

Proof.

� Suppose that
√
(n+ 2)/nBn

2 ̸⊆ K. Choosing our basis appropriately, we may assume that K is contained in

the half-space x1 > −
√
(n+ 2)/n. Now, we have∫

K

x1 = 0 and

∫
K

(x21 − 1) = 0.

Using Corollary 5.2 (or rather, an extension of it with a weak inequality on
∫
g), we get some needle N =

([a, b], ℓ). We may assume that [a, b] is contained in the x1 axis, so that∫ b

a

x1ℓ(x1)
n−1 = 0 and

∫ b

a

x21ℓ(x1)
n−1 ≥

∫ b

a

ℓ(x1)
n−1.

We have a > −
√

n+2
n . It is easy to see41 that we may assume that ℓ is decreasing, and thus may suppose that

is of the form t− x for some λ ≥ b. We can then manually (and tediously) compute the integrals to arrive at
a contradiction.

� Let v be the point in K furthest from 0 (assume that K is closed so this is well-defined). We wish to show that
∥v∥ ≤

√
n(n+ 2). Let v◦ = v/ ∥v∥ and for each unit u, let φ(u) = sup{t ≥ 0 : v + tu ∈ K}. Then,

vol(K) =

∫
∂Bn

2

∫ φ(u)

0

tn−1 dtdu =

∫
∂Bn

2

φ(u)n

n
du.

40Some texts use vol(K) = 1 and A(K) = λKI for some constant λK . It remains an open problem as to whether the value of λK

across convex bodies K ⊆ Rn is bounded above.
41If |b| > |a|, then the first equality implies that ℓ cannot be increasing. Otherwise, we can use the second inequality to justify the

assumption.
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We also have

1 =
1

vol(K)

∫
K

⟨v◦, x⟩2 dx

=
1

vol(K)

∫
∂Bn

2

∫ φ(u)

0

tn−1⟨v◦, v + tu⟩2 dtdu

=
1

vol(K)

∫
∂Bn

2

(
φ(u)n

n
∥v∥2 + 2

φ(u)n+1

n+ 1
⟨v◦, u⟩+ φ(u)n+2

n+ 2
⟨v◦, u⟩2

)
du

=
1

vol(K)

∫
∂Bn

2

φ(u)n
n

(√
n(n+ 2)

n+ 1
∥v∥+

√
n

n+ 2
φ(u)⟨v◦, u⟩

)2

+
φ(u)n

n(n+ 1)2
∥v∥2

du

=
1

vol(K)

∫
∂Bn

2

φ(u)n

n

(√
n(n+ 2)

n+ 1
∥v∥+

√
n

n+ 2
φ(u)⟨v◦, u⟩

)2

du

+
∥v∥2

(n+ 1)2

This gives a bound of ∥v∥ ≤ n + 1. To get the bound mentioned in the theorem, it remains to bound the
integral by a suitable positive quantity. Now, we have

0 = b(K) =
1

vol(K)

∫
∂Bn

2

∫ φ(u)

0

tn−1(v + tu) dtdu

=
1

vol(K)

∫
∂Bn

2

φ(u)n

n
v +

φ(u)n+1

n+ 1
udu

= v +
1

vol(K)

∫
∂Bn

2

φ(u)n+1

n+ 1
udu.

Therefore,

1

vol(K)

∫
∂Bn

2

φ(u)n

n

(√
n(n+ 2)

n+ 1
∥v∥+

√
n

n+ 2
φ(u)⟨v◦, u⟩

)
du

=

(√
n(n+ 2)

n+ 1
− n+ 1√

n(n+ 2)

)
∥v∥ = − 1

(n+ 1)
√
n(n+ 2)

∥v∥ .

We can then use the Cauchy-Schwarz inequality to get 1

vol(K)

∫
∂Bn

2

φ(u)n

n

(√
n(n+ 2)

n+ 1
∥v∥+

√
n

n+ 2
φ(u)⟨v◦, u⟩

)2

du

 · 1 ≥ 1

(n+ 1)2n(n+ 2)
∥v∥2 .

That is,

1 ≥
(

1

(n+ 1)2n(n+ 2)
+

1

(n+ 1)2

)
∥v∥2 =

∥v∥2

n(n+ 2)
,

proving the result.

■

5.1.6. The KLS Conjecture

Let us now move on to the main result of this section.

Theorem 5.7. For any convex body K,

ψ(K) ≥ ln 2

M1(K)
.
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In Definition 5.1, let K3 be the intersection of K with the open ε/2-neighbourhood of ∂S. Further, let K1 = S \K3

and K2 = (K \ S) \K3. Then, it suffices to prove the following, which is yet another improvement of Theorems 4.15
and 4.34.

Theorem 5.8. Let K be a convex body and K = K1 ∪K2 ∪K3 a decomposition of K into three measurable sets
such that d(K1,K2) = ε > 0. Then

vol(K1) vol(K2) ≤
M1(K)

ε ln 2
vol(K) vol(K3).

Proof. We may assume that K1 and K2 are closed. Assume that b(K) = 0. Let f1, f2, and f3 be the indicator
functions on K1, K2, and K3 respectively and f4(x) = ∥x∥ /ε ln 2. We then wish to show that∫

K

f1

∫
K

f2 ≤
∫
K

f3

∫
K

f4.

By Lemma 5.3, it suffices to show that for any exponential needle E,∫
E

f1

∫
E

f2 ≤
∫
E

f3

∫
E

f4.

Let E be an arbitrary exponential defined by [a, b] and γ. As before, we may assume that γ = 1 by rescaling
appropriately. The case γ = 0 is taken care of by going to the appropriate limits.
First of all, we may assume that 0 ∈ [a, b]. Indeed, otherwise, we can move the body such that 0 goes to the point
on [a, b] closest to it initially. Then the integral of f4 decreases while the others remain the same, so proving it for
this case suffices.
So let us restate the problem in the one-dimensional case that we have reduced it to. Let [a, b] be an interval, u ∈ [a, b]
and [a, b] = J1 ∪ J2 ∪ J3 be a decomposition of [a, b] into three measurable sets, where d(J1, J2) ≥ ε > 0. We wish to
show that ∫

J1

et dt

∫
J2

et dt ≤
∫
J3

et dt

∫ b

a

|t− u|
ε ln 2

et dt.

Here, each Ji corresponds to the intersection of Ki with the interval and u corresponds to the position of 0 in [a, b].
Let us first prove the result for the case where J3 is a single interval. Let a ≤ s < s+ ε ≤ b (Why does it suffice to
prove it for the case where the interval is of length ε?). Then we claim that∫ s

a

et dt

∫ b

s+ε

et dt ≤
∫ s+ε

s

et dt

∫ b

a

|t− u|
ε ln 2

et dt.

Equivalently, ∫ s

a

et dt

∫ b−s

ε

et dt ≤
∫ ε

0

et dt

∫ b

a

|t− u|
ε ln 2

et dt.

Now, note that the expression on the left is maximized when s = (a + b − ε)/2 and that on the right is minimized
when u = ln((ea + eb)/2). Substituting these values on each side and simplifying, it suffices to show that

(e(b−a)/2 − eε/2)2 ≤ 1

ln 2

eε − 1

ε

− ln

(
ea−b − 1

2

)
eb−a + ln

(
eb−a − 1

2

) .

On decreasing ε, the left increases whereas the right decreases. Therefore, it suffices to prove the above in the limit
case where ε = 0. Letting z = e(b−a)/2 ≥ 1, we want to prove that

ln 2(z − 1)2 + z2 ln

(
z−2 − 1

2

)
− ln

(
z2 − 1

2

)
≤ 0.
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This is a computational task and is not too difficult.42

For the general case, let [ci, di] be maximal intervals in J3 for 1 ≤ i ≤ k. They are each of length at least ε. Then
we get

k∑
i=1

∫ ci

a

et dt

∫ b

di

et dt ≤
∫
J3

dt

∫ b

a

|t− u|
ε ln 2

et dt.

We then have
k∑

i=1

∫ ci

a

et dt

∫ b

di

et dt ≥
∫
J1

et dt

∫
J2

et dt,

completing the proof. ■

Let K be an arbitrary convex body and for each x ∈ K, let χK(x) denote the longest segment in K that has midpoint
x. Let

χ(K) =
1

vol(K)

∫
K

χK(x).

Note that χ(K) = diam(K ∩ (2x−K)).

Theorem 5.9. For any convex body K,

ψ(K) ≥ 1

χ(K)
.

Proof. As before, it is equivalent to show that for any decomposition K = K1 ∪K2 ∪K3, where d(K1,K2) = ε > 0,

vol(K1) vol(K2) ≤
1

ε
vol(K3)

∫
K

χK(x) dx.

The proof of this is very similar to the that of the previous theorem. It suffices to show that for any interval [a, b]
and any decomposition [a, b] = J1 ∪ J2 ∪ J3 into three measurable sets such that d(J1, J2) ≥ ε,∫

J1

et dt

∫
J2

et dt ≤ 1

ε

∫
J3

et dt

∫ b

a

min{t− a, b− t}et dt.

Similar to earlier, this can be shown without too much difficulty in the case where J3 is a single interval, and similarly
extending it to the general case. ■

The two bounds Theorems 5.7 and 5.9 are not comparable however. For example, Theorem 5.7 gives ψ(K) = Ω(n−1/2)
for any body in isotropic position whereas Theorem 5.9 gives Ω(1) for the isotropic ball and Ω(n−1) for the isotropic
simplex.

Theorem 5.10. For any convex body K with covariance matrix A,

ψ(K) ≤ 10√
∥A∥op

.

This is proved using the following result.

Theorem 5.11. Let K be a convex body in Rn and assume that b(K) = 0. Let u ∈ Rn have unit norm and
β = EK(⟨u, x⟩2). Then

vol(K ∩ {x : ⟨u, x⟩ < 0}) vol(K ∩ {x : ⟨u, x⟩ > 0}) ≥ 1

10

√
β vol(K) voln−1(K ∩ {x : ⟨u, x⟩ = 0}).

42Show that the function f on the left is monotone decreasing and use the fact that f(1) = 0.
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The above can be proved by projecting the body onto the u-axis and considering the resulting log-concave function
(using Brunn’s Theorem).

Conjecture (KLS Conjecture). There is a constant c (independent of dimension) such that for any log-concave
density p on Rn,

ψp ≥ c · inf
H is a halfspace

p(∂H)

min{p(H), p(Rn \H)}
.

The KLS Conjecture asserts that up to a constant factor, a hyperplane cut is the “worst” cut (involved in the
isoperimetric coefficient).

5.2. A More Detailed Look

Henceforth, we write a ≳ b if there is some constant c (independent of dimension and all parameters under consid-
eration) such that a ≥ cb.
Generalizing Theorem 5.10 to an arbitrary log-concave density (by a nearly identical proof), it just says that

inf
H is a halfspace

p(∂H)

min{p(H), p(Rn \H)}
≳

1√
∥A∥op

,

where A is the covariance matrix of p and ∥A∥op is the largest eigenvalue of A.
In this context, the KLS Conjecture can be restated as follows.

Conjecture (KLS Conjecture (Reformulated)). For any log-concave density p with covariance matrix A, ψp ≳

∥A∥−1/2
op . Equivalently, ψp ≳ 1 for any isotropic log-concave density p.

Theorem 5.7 then says that for any isotropic log-concave p, ψp ≳ n−1/2.

Next, we look at a few consequences of the KLS Conjecture.

5.2.1. The Slicing Conjecture

The slicing conjecture essentially asks whether a convex body of unit volume in Rn has a hyperplane section whose
(n− 1)-volume is at least some universal constant.

Conjecture (Slicing Conjecture). Any convex body K ⊆ Rn of volume 1 has at least one hyperplane section H
such that

voln−1(K ∩H) ≳ 1.

[Bal88] showed that the above is in fact equivalent to asking how much volume is present around the origin. This
makes sense because if a large proportion of volume is there around the origin, then no hyperplane will intersect a
lot of volume.
Motivated by this intuition, define

Definition 5.5 (Slicing Constant). For any isotropic log-concave density p on Rn, define the isotropic (slicing)
constant by Lp = p(0)1/n.
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Conjecture (Slicing Conjecture). For any isotropic log-concave density p on Rn, the slicing constant Lp is O(1).

5.2.2. The Thin-Shell Conjecture

Conjecture (Thin-Shell Conjecture). Let p be an isotropic log-concave density. Then

σ2
p := EX∼p

[
(∥X∥ −

√
n)2
]
≲ 1.

Equivalently, VarX∼p(∥X∥2) ≲ 1.

The above means that a random point X from a log-concave density lies in a constant width annulus (a thin shell)
with constant probability.

It was shown in [EK10] that the Thin-Shell conjecture implies the Slicing conjecture and by Ball that the KLS
conjecture implies the Thin-Shell conjecture. That is, we have that Lp ≲ σp ≲ ψ−1

p .

5.2.3. The Poincaré Constant

Definition 5.6. For any isotropic log-concave density p in Rn, define the Poincaré constant ζp by

ζp = inf
smooth g

Ep

[∥∥∇g(x)∥∥2
2

]
Varp(g(x))

.

It may be shown that
ζp ∼ ψ2

p,

that is, ζp is within a constant factor of the square of the isoperimetric constant. Due to this strong relation, we
shall in fact use the Poincaré constant in a later proof (of Lemma 5.22) to help bound the isoperimetric constant.

5.3. Recent Bounds on the Isoperimetric Constant

5.3.1. A Look At Stochastic Localization

Most of the progress towards proving the conjecture in recent times has been done using a method known as stochas-
tic localization. Recall how in the proof of the localization lemma Theorem 4.31, which is possibly one of the most
powerful tools we have built thus far, we use a bisection argument, where we bisect the body with a hyperplane at
each step. In the general setting, this just corresponds to multiplying the current log-concave measure by 1H , where
H is a certain half-space.

For now, let us discuss how stochastic localization works out in discrete time. Instead of multiplying by this indicator
function, we multiply by an affine functional that is very close to 1. That is, we transform the density p(x) to
(1 + ε⟨x− µ, θ⟩)p(x), where µ is the barycenter of the measure and θ is randomly chosen. This is like a reweighting
in favour of a certain half-space.
As a result, the resulting measure is a probability measure. Further, this measure remains log-concave (assuming p
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is log-concave).
This gives a stochastic process (which is discrete time for now) defined by

p0(x) = p(x) and pt+∆t(x) = (1 + ⟨x− µt,
√
∆tZt⟩)pt(x). (5.4)

The
√
∆tZt represents ±εθ and is the random component. Here, µt is the barycenter of the measure corresponding

to pt and the Zt are iid random which are either uniform on the sphere on
√
nSn−1 or standard Gaussians in Rn.

By the averaging property mentioned, the pt form a martingale (with respect to the filtration with Ft = σ{Zs : 0 ≤
s ≤ t}).
Now, we would like to make this continuous by letting ∆t → 0. How do we do this? When the Zt are Gaussian,
Equation (5.4) can be rewritten as a stochastic differential equation

dpt(x) = ⟨x− µt,dWt⟩pt(x), (5.5)

where p0 = p and µt, as before, is
∫
Rn xpt(x) dx.

Existence and uniqueness for all t ≥ 0 can be shown using standard means. Moreover, for any time t, pt is almost
surely continuous. If Ft is the σ-algebra generated by (Ws)0≤s≤t, then E[pt(x) | Fs] = ps(x) for s < t. That is, it is
a martingale. The processes are also Ft-adapted.

While the above is the basic idea, the following, slightly more complicated form is what is slightly more handy.
Define the stochastic differential equation

c0 = 0 and dct = dWt + µt dt, (5.6)

with pt and µt defined by

pt(x) =
e⟨ct,x⟩−(t/2)∥x∥2

p(x)∫
Rn e⟨ct,y⟩−(t/2)∥y∥2

p(y) dy
and µt(x) = Ex∼pt

[x].

Sometimes, to add another method to control the covariance, we add in a control matrix Ct to control the covariance
matrix At of the density pt at time t. This is incorporated into the previous equations as

dpt(x) = (x− µt)
⊤C

1/2
t dWtpt(x)

c0 = 0, dct = C
1/2
t dWt + Ctµt dt,

B0 = 0, dBt = Ct dt,

pt(x) =
e⟨ct,x⟩−(1/2)(x⊤Btx)

2

p(x)∫
Rn e⟨ct,y⟩−(1/2)(y⊤Bty)2p(y) dy

, µt(x) = Ex∼pt
[x],

(5.7)

where Ct is a Lipschitz function with respect to ct, µt, At, and t.
It may be shown that a solution to the above equation exists and is unique (up to almost-sure equivalence).
It is also not too difficult to show using Itô’s Lemma that (5.7) implies (5.5).

For the other direction, using Equation (5.5),

dlog pt(x) = (x− µt)
⊤ dWt −

1

2
(x− µt)

⊤(x− µt) dt

= x⊤(dWt + µt dt)−
1

2
∥x∥2 dt+ g(t)

= x⊤ dct −
1

2
∥x∥2 dt+ dg(t),

where dg(t) is independent of x. This explains the appearance of the Gaussian in (5.7) – the above implies that pt
is “more log-concave” than e−t∥x∥2/2.
As the Gaussian factor dominates more and more, the density converges to a Dirac delta “function”, where the
measure of any subset is 0 or 1. This is stated in Theorem 5.15.
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The KLS Conjecture has been proven for Gaussian distributions. More generally, for any distribution whose density
is the product of the density of N (0, σ2I) and any log-concave function, ψp ≳ 1/σ – this can be proved by normal
localization.

To get some sort of bound for ψp, we want to bound the covariance matrix (in some meaningful sense of the word
bound).
Using Itô’s Lemma once more on the covariance matrix, we get

dAt =

∫
Rn

(x− µt)(x− µt)
⊤ · (x− µt)

⊤ dWt · pt(x) dx−A2
t dt

= Ex∼pt
(x− µt)(x− µt)

⊤ · (x− µt)
⊤ dWt −A2

t dt. (5.8)

One important result that we have not mentioned thus far is due to [Mil08], which proves that the isoperimetric
profile Ip : [0, 1] → R+, defined by

Ip(t) = inf
S⊆Rn

p(S)=t

p(∂S)

is concave. In particular, since Ip(t) = Ip(1−t), it attains its maximum at 1/2. Concavity implies that Ip(t)/t attains
its minimum at t = 1/2, and therefore to bound the isoperimetric coefficient (and prove the KLS Conjecture), it
suffices to check subsets of measure 1/2.

With this added information, we desire from stochastic localization that the covariance matrix does not explode. In
fact, it turns out that it suffices to show that the measure of a set E of measure 1/2 (initially) does not change much:

p(∂E) = E
[
pt(∂E)

]
(pt is a martingale)

≥ E

[
1

2

∥∥∥B−1
t

∥∥∥−1/2

2
min{pt(E), pt(Rn \ E)}

]
(pt is more log-concave than the Gaussian)

≥ 1

4
· 1
2

∥∥∥B−1
t

∥∥∥−1/2

2
Pr

[
1

4
≤ pt(E) ≤ 3

4

]
(pt(E) ≥ 0)

=
1

4

∥∥∥B−1
t

∥∥∥−1/2

2
Pr

[
1

4
≤ pt(E) ≤ 3

4

]
min{p(E), p(Rn \ E)}. (5.9)

Over the next two sections, we give a n−1/4 bound on ψp, as described in [LV17]. More precisely, we show that
ψp ≳ Tr(A2)−1/4.

5.3.2. Towards a n−1/4 Bound

Before we begin, define the following for notational convenience.

Definition 5.7. For any stochastic processes xt and yt, denote the quadratic variations [x]t and [x, y]t by

[x]t = lim
∥P∥→0

∞∑
n=1

(xτn − xτn−1
)2

and

[x, y]t = lim
∥P∥→0

∞∑
n=1

(xτn − xτn−1)(yτn − yτn−1),

where P = {0 = τ0 ≤ τ1 ≤ · · · ↑ t} is a stochastic partition of the non-negative reals and ∥P∥ = maxn(τn − τn−1) is
called the mesh of P and the limit is defined using convergence in probability.

For example, if xt and yt satisfy dxt = µ(xt) dt+ σ(xt) dWt and dyt = ν(xt) dt+ η(yt) dt, then

d[x]t = σ2(xt) dt and d[x, y]t = σ(xs)η(ys) dWt.

The following two results will also come in useful.
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Lemma 5.12 (Reflection Principle). Given a Wiener process Wt and a, t ≥ 0,

Pr

[
sup

0≤s≤t
Ws ≥ a

]
= 2Pr [Wt ≥ a] .

Theorem 5.13 (Dambis, Dubins-Schwarz Theorem). Every continuous local martingale Mt is of the form

Mt =M0 +W[M ]t for all t ≥ 0,

where Ws is a Wiener process.

The first simplest case is when we take the control matrix to just be the identity. That is, the relevant stochastic
differential equation is given by (5.6). Denote by At the covariance matrix of pt.

First, we give some “basic estimates”. Let us start by bounding the measure of any set of initial measure 1/2.

Lemma 5.14. For any E ⊆ Rn with p(E) = 1/2 and t ≥ 0,

Pr

[
1

4
≤ pt(E) ≤ 3

4

]
≥ 9

10
− Pr

[∫ t

0

∥As∥op ds ≥
1

64

]
.

Proof. Let gt = pt(E). Then dgt =
∫
E
(x− µt)

⊤ dWtpt(x) dx. We have

d[g]t =

∥∥∥∥∫
E

(x− µt)pt(x) dx

∥∥∥∥2
2

dt

= max
∥ζ∥2≤1

(∫
E

(x− µt)
⊤ζpt(x) dx

)2

dt

≤

(
max

∥ζ∥2≤1

∫
Rn

((x− µt)
⊤ζ)2pt(x) dx

)(∫
Rn

pt(x) dx

)
dt

= max
∥ζ∥2≤1

ζ⊤Atζ dt = ∥At∥op dt.

Using Theorem 5.13, let W̃t be a Wiener process such that gt − g0 has the same distribution as W̃[g]t . Then,

Pr

[
1

4
≤ gt ≤

3

4

]
= Pr

[
−1

4
≤ W̃[g]t ≤

1

4

]
≥ 1− Pr

[
max

0≤s≤1/64
|W̃s| >

1

4

]
− Pr

[
[g]t >

1

64

]
= 1− 4Pr

[
W̃1/64 >

1

4

]
− Pr

[
[g]t >

1

64

]
≥ 9

10
− Pr

[∫ t

0

∥As∥op ds ≥
1

64

]
.

In the second-to-last equation, the first two terms simplify on estimates for the concentration of the normal distri-

bution and the second term simplifies on using the earlier bound on d[g]t
dt . ■

We now restate the bound on the isoperimetric constant we mentioned earlier for distributions more log-concave
than the Gaussian.

Theorem 5.15. Let

h(x) =
f(x)e−∥x∥2/2σ2∫
f(y)e∥y∥

2/2σ2
,



High-Dimensional Convex Geometry 97 / 106 Amit Rajaraman

where f : Rn → R+ is an integrable log-concave function. Then h is log-concave and ψh ≳ 1/σ. That is, for any
measurable S ⊆ Rn, ∫

∂S

h(x) dx ≳
1

σ
min

{∫
S

h(x) dx,

∫
Rn\S

h(x) dx

}
.

Now, let us get to the main estimation of the isoperimetric constant using the above results.

Theorem 5.16. Suppose there is T > 0 such that

Pr

[∫ T

0

∥As∥op ds ≤
1

64

]
≥ 3

4
.

Then ψp ≳ T 1/2.

Proof. Let E ⊆ Rn with p(E) = 1/2. We then have∫
∂E

p(x) dx = E

[∫
∂E

pT (x) dx

]
(pt is a martingale)

≳ T 1/2E
[
min

{
pT (E), pT (Rn \ E)

}]
(pT is more log-concave than the Gaussian)

≳ T 1/2 Pr

[
1

4
≤ pT (E) ≤ 3

4

]

≳ T 1/2

 9

10
− Pr

[∫ T

0

∥As∥op ds ≥
1

64

] (by Lemma 5.14)

≳ T 1/2. ■

As mentioned earlier, we now need to control the growth of the covariance matrix At, preventing it from exploding
and ensuring that the condition in above theorem is satisfied for some large T .

5.3.3. Controlling At

To control the growth of At, we use the potential function Tr(A2
t ).

Lemma 5.17. Given a log-concave distribution p with mean µ and covariance matrix A, for any positive semi-definite
matrix C, ∥∥∥∥Ex∼p

[
(x− µ)(x− µ)⊤C(x− µ)

]∥∥∥∥
2

≲ ∥A∥1/2op Tr
(
A1/2CA1/2

)
.

Proof. First, consider the case where C is of the form vv⊤. Let w = A1/2v and y = A−1/2(x−µ). Let the distribution
of y be p̃ (it is isotropic and log-concave). Then∥∥∥∥Ex∼p

[
(x− µ)(x− µ)⊤C(x− µ)

]∥∥∥∥
2

=

∥∥∥∥Ey∼p̃

[
A1/2y(y⊤w)2

]∥∥∥∥
2

= max
∥ζ∥2≤1

Ey∼p̃

[
(A1/2y)⊤ζ(y⊤w)2

]
≤ max

∥ζ∥2≤1

√
Ey∼p̃

[
((A1/2y)⊤ζ)2

]√
Ey∼p̃

[
(y⊤w)4

]
≲ max

∥ζ∥2≤1

√
ζ⊤AζEy∼p̃

[
(y⊤w)2

]
(p̃ is isotropic)

= ∥A∥1/2op ∥w∥22 .



High-Dimensional Convex Geometry 98 / 106 Amit Rajaraman

The second-to-last inequality uses a reverse Hölder-like inequality, which says that if q is a log-concave density in Rn

and k ≥ 1, then

Ex∼q ∥x∥k ≤ (2k)k
(
Ex∼q ∥x∥2

)k/2
.

We use the above with k = 4 and x = y⊤w, which has a one-dimensional log-concave distribution.
The bound for a general C isn’t too difficult to show by writing it as

∑
λiviv

⊤
i in terms of its eigenvalues λi ≥ 0 and

eigenvectors vi. ■

Lemma 5.18. Given a log-concave distribution p with mean µ and covariance matrix C,

Ex,y∼p

[
|⟨x− µ, y − µ⟩|3

]
≲ Tr(A2)3/2.

Proof. We may assume that µ = 0. For a fixed x, we have

Ey∼p

[
|⟨x, y⟩|3

]
≤ Ey∼p

[
|⟨x, y⟩|2

]3/2
= (x⊤Ax)3/2 =

∥∥∥A1/2x
∥∥∥3 .

Thus,

Ex,y∼p

[
|⟨x, y⟩|3

]
≤ Ex∼p

[∥∥∥A1/2x
∥∥∥3]

≤ Ex∼p

[∥∥∥A1/2x
∥∥∥2]3/2

= Tr(A2)3/2.

■

Theorem 5.19. With the previously used notation, there is a universal constant c1 such that

Pr

[
max
t∈[0,T ]

Tr(A2
t ) ≥ 8Tr(A2

0)

]
≤ 0.01 with T =

c1√
Tr(A2

0)
.

Before we get to the proof, we show that the bound on the isoperimetric constant follows from previously mentioned
results.

Corollary 5.20. For any log-concave distribution p with covariance matrix A,

ψp ≳ Tr(A2)−1/4.

In particular, if p is isotropic log-concave,
ψp ≳ n−1/4.

Proof. Theorem 5.19 implies that

Pr

[
max
s∈[0,t]

Tr(A2
s) ≤ 8Tr(A2

0)

]
≥ 0.99,

where t is equal to the quantity we denoted as T there. Since ∥As∥op ≤
√
Tr(A2

s), we have

Pr

[
max
s∈[0,t]

∥As∥op ≤
√

8Tr(A2
0)

]
≥ 0.99.

Therefore, letting

T = min

{
c1,

1

64
√
8

}
1√

Tr(A2
0)
,
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we have

Pr

[∫ T

0

∥As∥op ds ≤
1

64

]
≥ 0.99,

and the result follows on using Theorem 5.16. ■

Proof of Theorem 5.19. Define the potential function Φt = Tr(A2
t ).

It is a computational task using Itô’s Lemma to check that

dΦt =
(
2Ex∼pt

(x− µt)
⊤At(x− µt)(x− µt)

⊤
)
dWt +

(
Ex,y∼pt((x− µt)

⊤(y − µt))
3 − 2Tr(A3

t ) dt
)
dt.

Write this as
dΦt = δt dt+ v⊤t dWt.

By Lemma 5.18, we get

δt ≲ Tr(A2
t )

3/2 = Φ
3/2
t

by dropping the negative term in the expression (At is positive semi-definite). What about the martingale term?
Using Lemma 5.17, we have

∥vt∥2 = 2
∥∥∥Ex∼pt

(x− µt)
⊤At(x− µt)(x− µt)

⊤
∥∥∥
2
≲ ∥At∥1/2op Tr(A2

t ) ≤ Φ
5/4
t .

Intuitively, this means that the drift term (the dt part) grows as Φ
3/2
t t and the martingale term (the dWt part) grows

as Φ
5/4
t

√
t. So for t up to O(Φ

−1/2
0 ), the potential Φt remains O(Φ0).

To formalize this, define f(a) = 1/
√
a+Φ0. Observe that Φt ≥ 8Φ0 if and only if f(Φt) ≥ −1/3

√
Φ0. We can use

Itô’s Lemma to get

df(Φt) =

(
1

2

v⊤t dWt

(Φt +Φ0)3/2

)
+

(
1

2

δt
(Φt +Φ0)3/2

− 3

8

∥vt∥22
(Φt +Φ0)5/2

)
dt ≤ dYt + C ′ dt,

where C ′ is a suitable constant and dYt is the martingale term. Observe that

d[Y ]t
dt

=
1

4

∥vt∥22
(Φt +Φ0)3

≤ C√
Φ0

for a suitable constant C.
Let W̃t be a Wiener process such that Yt = W̃[Y ]t (in distribution). Using Lemma 5.12,

Pr

[
max
t∈[0,T ]

Yt ≥ γ

]
≤ Pr

 max
t∈[0,CT/

√
Φ0]

W̃t ≥ γ


= Pr

[
W̃CT/

√
Φ0

≥ γ
]
≤ 2 exp

(
−γ

2
√
Φ0

2CT

)
.

Therefore,

Pr

[
max
t∈[0,T ]

f(Φt) ≥ − 1√
2Φ0

+ C ′T + γ

]
≤ 2 exp

(
−γ

2
√
Φ0

2CT

)
.

Setting T = 1/256(C + C ′)
√
Φ0 and γ = 1/4

√
Φ0, we get

Pr

[
max
t∈[0,T ]

f(Φt) ≥ − 1

3Φ0

]
≤ 2 exp(−8).

Using our earlier observation about f ,

Pr

[
max
t∈[0,T ]

Φt ≥ 8Φ0

]
≤ 2 exp(−8) ≤ 0.01. ■

Over the next few sections, we look at the best bound attained (as of the time of writing) of the isoperimetric
constant, as described in [Che21].
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5.3.4. An Almost Constant Bound

Here, we prove that there is a constant c such that for any log-concave p in Rn,

ψp ≥ 1

nc
√

log logn/ logn ∥A∥1/2op

.

Rather than the original proof given in [Che21], we give a slightly modified proof from here. Again, we set the control
matrix Ct in Equation (5.7) as the identity matrix.
To begin, for any integer n ≥ 1, define

ψn = inf
p is log-concave in Rn

and has compact support

ψp ∥A∥1/2op .

Using results from [Pao06], we may assume that the log-concave density p has compact support – we can restrict it
to a sufficiently large ball losing exponentially small measure in the process. We shall restrict our measure to a ball
of radius n5.
Assume the dimension n is at least 3.
First, like before, let us give a basic estimate like in the last section to bound the isoperimetric constant.

Lemma 5.21. Let p be an isotropic log-concave density. If for some T > 0,

E

[∫ T

0

∥At∥op dt

]
≤ 1

8
,

then ψp ≳ T 1/2.

Proof. Let E be a set of measure initially 1/2 (under p). As described before, we would like to bound the change in
measure of E. We have∫

∂E

p(x) dx = E

[∫
∂E

pT (x) dx

]
≳ T 1/2E[min{pT (E), 1− pT (E)}] ≥ T 1/2E[pT (E)(1− pT (E))].

Let Mt = pt(E). Then

dMt =

∫
E

⟨x− µt,dWt⟩pt(x) dx =

〈∫
E

(x− µt)pt(x) dx, dWt

〉
,

so Mt is a martingale. Letting the first expression in the final inner product be vt, we have

∥vt∥ = sup
θ∈Sn−1

∫
E

⟨x− µt, θ⟩pt(x) dx ≤

√
sup

θ∈Sn−1

∫
E

⟨x− µt, θ⟩2pt(x) dx = ∥At∥1/2op .

Using Itô’s Lemma,
d(Mt(1−Mt)) = −∥vt∥2 dt+ (martingale term).

Taking the expectation on eithe side and using the bound,

dE[Mt(1−Mt)] ≥ −E
[
∥At∥op

]
dt.

Therefore,

E[Mt(1−Mt)] ≥M0(1−M0)−
1

8
=

1

8
,

proving the lemma. ■

Therefore, we wish to control the growth of the spectral norm. To do this, define the potential

Γt = Tr(Aq
t ).

It is quite easy to see that Γ
1/q
t ≥ ∥At∥op.

https://www.him.uni-bonn.de/fileadmin/him/Lecture_Notes/chen_lecture_notes.pdf
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Lemma 5.22. With the above definition,

dΓt ≤
2q2

t
Γt dt+ (martingale term) (5.10)

and
dΓt ≲ q2ψ−2

n ∥At∥op Γt dt+ (martingale term). (5.11)

Proof. Let dΓt = δt dt+ (martingale term). We wish to show that

δt ≤ 2q2Γt min

{
1

t
, cψ−2

n ∥At∥op

}
for a suitable constant c.
Denote the minimum used on the right as κ−1.
Recall the Poincaré constant from Section 5.2.3. Since pt is more log-concave than the Gaussian exp(−t ∥x∥2 /2), ζpt

is at least t. Also, the Poincaré constant is at least cψ2
n/ ∥At∥op. So, ζpt

≥ κ.

Recalling (5.8), let d(At)i,j = ⟨ξi,j ,dWt⟩ − (A2
t )i,j dt, where

ξi,j = E
[
XiXjX

]
=

∫
Rn

xxixjpt(x+ µt) dx.

To bound δt, we use the following lemma. Let 0 < λ1 ≤ · · · ≤ λn be the eigenvalues of At. Then for any smooth
function f ,

d

n∑
i=1

f(λi) =

1

2

n∑
i,j=1

∥∥ξi,j∥∥2 f ′(λi)− f ′(λj)

λi − λj
−

n∑
i=1

λ2i f
′(λi)

 dt+ (martingale term).

If λi − λj = 0, we interpret the corresponding term as f ′′(λi). The ξi,j are expressed in the basis of eigenvectors of
At.
Substituting f as t 7→ tq,

δt = q

1

2

n∑
i,j=1

∥∥ξi,j∥∥2 λq−1
i − λq−1

j

λi − λj
−

n∑
i=1

λq+1
i


≤ q

1

2

n∑
i,j=1

(q − 1)
∥∥ξi,j∥∥2(λq−2

i + λq−2
j

2

)
−

n∑
i=1

λq+1
i


≤ q(q − 1)

2

n∑
i,j=1

∥∥ξi,j∥∥2 λq−2
i .

Denote
ξi,j,k = E[XiXjXk], ξi = (ξi,j,k)j,k=1,...,n = E[XiXX

⊤] ∈ Rn×n.

Observe that ξi,j = (ξi,j,k)k=1,...,n ∈ Rn and further,
∑n

j=1

∥∥ξi,j∥∥2 ≤ Tr(ξ2i ). Therefore, it suffices to upper bound

n∑
i=1

λq−2
i Tr(ξ2i ).

To control the growth of the individual traces,

Tr(ξ2i ) = Tr
(
ξiE[XiXX

⊤]
)

= E
[
Xi⟨ξiX,X⟩

]
≤
√

E[X2
i ]
√
E
[
⟨ξiX,X⟩2

]
.
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As we are working in the basis of the eigenvectors of At, the first term is upper bounded by
√
λi.

Using the definition of the Poincaré constant on the function t 7→ ⟨ξt, t⟩ together with our earlier bound using κ,

Var⟨ξiX,X⟩ ≤ 1

ζp
E
[
∥2ξiX∥2

]
≤ 4

κ
E
[
∥ξiX∥2

]
=

4

κ
Tr
(
Atξ

2
i

)
.

Therefore,

Tr(ξ2i ) ≤ 2

√
λi
κ

√√√√ n∑
j,k=1

λjξ2i,j,k.

Going back to the original expression we care about,

n∑
i=1

λq−2
i Tr(ξ2i ) ≤

2√
κ

n∑
i=1

λ
q−(3/2)
i

√√√√ n∑
j,k=1

λjξ2i,j,k

≤ 2√
κ

√√√√ n∑
i=1

λqi

√√√√ n∑
i,j,k=1

λq−3
i λjξ2i,j,k

≤ 2√
κ
Γ
1/2
t

√√√√ n∑
i,j,k=1

λq−2
i ξ2i,j,k

≤ 2√
κ
Γ
1/2
t

√√√√ n∑
i=1

λq−2
i Tr(ξ2i ),

where the second-to-last inequality follows since λq−3
i λj + λq−3

j λi ≤ λq−2
i + λq−2

j . Therefore,

δt ≤
q(q − 1)

2

n∑
i=1

λq−2
i Tr(ξ2i ) ≤

2q(q − 1)

κ
Γt,

completing the proof. ■

Corollary 5.23. With the above definitions, for t2 > t1 > 0, we have

E[Γ
1/q
t2 ] ≤ E[Γ

1/q
t1 ]

(
t2
t1

)2q

. (5.12)

Proof. The function x 7→ x1/q is concave. Therefore, the Itô term in dΓ
1/q
t is negative and we have

dΓ
1/q
t ≤ 1

q
Γ
1/q−1
t dΓt ≤

2q

t
Γ
1/q
t + (martingale term),

where the second inequality follows from (5.10). Taking the expectation on either side to eliminate the martingale
term,

dE[Γ
1/q
t ] ≤ 2q2

t
E[Γ

1/q
t ] dt,

so for t2 > t1 > 0, we have

E[Γ
1/q
t2 ] ≤ E[Γ

1/q
t1 ]

(
t2
t1

)2q

. ■

Next, we show that our basic estimate Lemma 5.21 is in fact tight up to a log factor.

Corollary 5.24. There exists a sufficiently small constant c such that if 0 < T ≤ cψ2
n/ log n, then E[∥AT ∥op] ≤ 3,

and further, E[Γ
1/q
T ] ≤ 3n1/q for all q ≥ 1.
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Proof. Recall from earlier that we assume our log-concave density p to be restricted to n5Bn
2 . So, it suffices to show

that Pr[∥At∥op < 2] ≥ 1− n−10, since ∥AT ∥op ≤ n10.
Define the stopping time τ = inf{t ≥ 0 : ∥At∥op ≥ 2} and set Xt = Γmin{t,τ}. Using (5.11), we have

dXt ≲ q2ψ−2
n ∥At∥opXt dt+ (martingale term).

Using the definition of Xt to bound ∥At∥op by a constant and taking the expectation on either side,

dE[Xt] ≲ q2ψ−2
n E[Xt] dt.

Setting q = ⌈40 log n⌉,
E[XT ] ≲ n exp(c log2(n)ψ−2

n T ) ≤ n2

for some constant c and where the last inequality arises from the choice of T . Therefore,

n2 ≳ E[XT ] ≥ Pr
[
∥AT ∥op > 2

]
· 240 logn,

proving the claim.
The second part of the result is easily proved since ΓT ≤ n ∥AT ∥qop. ■

With the above, we may get to the final proof of the bound on the isoperimetric constant.

Theorem 5.25. There exists a universal constant c′ such that

ψn ≳ n−c′
√

log logn/ logn.

Proof. Using Corollary 5.24, let T0 = cψ2
n/ log n < 1/100 for sufficiently small c such that for t ≤ T0, E[Γ

1/q
t ] ≤ 3n1/q.

For t ≥ T0 and q ≥ 2,

E[Γ
1/q
t ] ≤

(
t

T0

)2q

E[Γ
1/q
T0

] ≤
(
t

T0

)2q

3n1/q.

So, for any T1 > T0,

E

[∫ T1

0

∥At∥op

]
=

∫ T1

0

E[∥At∥op] dt

≤ 3T1 + 3n1/q
∫ T1

T0

(
t

T0

)2q

dt

≤ 3

100
+ 3

n1/q

2q + 1

T 2q+1
1

T 2q
0

≤ 3

100
+ 3n1/q

T 2q+1
1

T 2q
0

.

How large can we make T1 while ensuring that the integral we care about (for the purposes of Lemma 5.21) remains
less than 1/8?
We get

T1 ∼ n−1/q(2q+1)T
2q/(2q+1)
0 .

This gives a bound of

ψn ≳ T
1/2
1 ∼ n−1/2q(2q+1)T

q/(2q+1)
0 .

By our choice of T0,
ψn ≳ ψ2q/(2q+1)

n (log n)−q/(2q+1)n−1/2q(2q+1).

Simplifying,

ψn ≳

(
c

log n

)q

n−1/2q
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for some universal constant c. Taking q of the order of
(
log n/ log log n

)1/2
,

ψn ≳ e−c′
√
logn log logn,

completing the proof. ■
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