
Coding Theory

Amit Rajaraman

Summer 2020

Contents

0 Notation 3

1 Preliminaries 4
1.1 Metric Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Combinatorics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Number Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Group Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Field Theory and Linear Algebra 8
2.1 Introduction to Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Characteristic of a Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Introduction to Linear Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Inner Product Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 The Geometric Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Introduction to Probability 12
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Some Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 The Probabilistic Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4 The Entropy Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Introduction 16
4.1 Why is Coding Theory required? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2 Basics and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5 Bounds on the Number of Codewords 20
5.1 Some Useful Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.2 Perfect Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

6 Linear Codes 24
6.1 Introduction to Linear Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.2 Encoding and Decoding with Linear Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.3 Some results on Binary Linear Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.4 Error Detection in Binary Linear Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.5 The Dual Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.6 The Parity-Check Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.7 Syndrome Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29



Coding Theory 2 -Amit Rajaraman

7 Perfect Codes 31
7.1 Binary Hamming Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.2 Family of Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.3 The Hadamard and Simplex codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

8 Several Bounds 34
8.1 Bounding Volume using the Entropy Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
8.2 The Hamming Bound and the Singleton Bound . . . . . . . . . . . . . . . . . . . . . . . . . . 35
8.3 The Gilbert-Varshamov Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
8.4 The Plotkin Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
8.5 The Griesmer Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

9 Shannon’s Theorem 39
9.1 Introduction and the statement of the theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 39
9.2 Proof of the second part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
9.3 Proof of the first part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

References 44



Coding Theory 3 -Amit Rajaraman

§0. Notation

N represents the set {1, 2, 3, . . .}.
Z represents the set of integers {. . . ,−2,−1, 0, 1, 2, . . .}.
R represents the set of real numbers.

For n ∈ N, [n] represents the set {1, 2, . . . , n}.

Definition 0.1. An alphabet is a finite non-empty set. Elements of an alphabet are typically called letters
or symbols.

An alphabet is usually denoted by Σ. We typically use q to denote |Σ|.
For n ∈ N, Σn represents the set of length n strings of Σ, that is, the set {a1a2a3 · · · an | ai ∈ Σ for all i ∈ [n]}.
We also often represent an element of Σn as a row vector.
For a set Ω, we denote the power set of Ω by 2Ω.

Definition 0.2. A permutation of a set S = {x1, x2, . . . , xn} is a bijection from S to itself. We denote a
permutation f of S by  x1 x2 · · · xn

↓ ↓ ↓
f(x1) f(x2) · · · f(xn)


Unless mentioned otherwise, assume that log = log2.
We assume that the reader is familiar with o,O, ω, and Ω notation used to describe the asymptotic behaviour
of functions.
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§1. Preliminaries

§§1.1. Metric Spaces

Definition 1.1. A metric space is an ordered pair (M,d) where M is a set and d : M ×M → R is a metric
on S, that is, a function such that for all x, y, z ∈M ,

(i) d(x, y) = 0 ⇐⇒ x = y,

(ii) d(x, y) = d(y, x), and

(iii) d(x, z) ≤ d(x, y) + d(y, z).

Theorem 1.1. If d is a metric over a set M , then d(x, y) ≥ 0 for all x, y ∈M .

Proof. For x, y ∈M , We have

d(x, y) + d(y, x) ≥ d(x, x)

d(x, y) + d(x, y) ≥ 0

d(x, y) ≥ 0

Note that equality occurs if and only if x = y. �

§§1.2. Combinatorics

If n,m ∈ Z with 0 ≤ m ≤ n, the binomial coefficient
(
n
m

)
is defined by(

n

m

)
=

n!

m!(n−m)!

where 0! = 1 and m! = m(m− 1)(m− 2) · · · (2)(1) for m > 0.

Lemma 1.2. The number of unordered selections of m distinct objects that can be made from a set of n
distinct objects is

(
n
m

)
.

Theorem 1.3 (Binomial Theorem). Let x, y ∈ R and n ∈ N. Then

(x+ y)n =

n∑
i=0

(
n

i

)
xiyn−i.

Definition 1.2. A balanced block design consists of a set S of v elements, called points or varieties, and a
collection of b subsets of S, called blocks, such that for some fixed k, r, λ ∈ N,

(i) each block contains exactly k points,

(ii) each point lies in exactly r blocks, and

(iii) each pair of points occurs together in exactly λ blocks.

Such a design is called a (b, v, r, k, λ)-design.

Example. Take S = {1, 2, 3, 4, 5, 6, 7} and the subsets as {1, 2, 4}, {2, 3, 5}, {3, 4, 6}, {4, 5, 7}, {5, 6, 1},
{6, 7, 2}, {7, 1, 3}. This is a (7, 7, 3, 3, 1)-design.

Note that in a balanced block design, bk = vr and r(k − 1) = λ(v − 1).

Definition 1.3. The incidence matrix A = (aij) of a (b, v, r, k, λ)-design is a v× b matrix whose i, jth entry
is given by

aij =

{
1 xi ∈ Bj
0 xi 6∈ Bj
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Note that the number of 1s in any column is k and the number of 1s in any row is r.

Example. The incidence matrix corresponding to the example given above is

1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1
1 0 0 0 1 1 0
0 1 0 0 0 1 1
1 0 1 0 0 0 1


.

Definition 1.4. A (b, v, r, k, λ)-design is called symmetric if v = b and k = r. Such a design is referred to
as a (v, k, λ)-design.

Definition 1.5. A Hadamard design is a (4t− 1, 2t− 1, t− 1)-design.

§§1.3. Number Theory

Unless mentioned otherwise, assume that p is a prime.

Theorem 1.4 (Fundamental Theorem of Arithmetic). In N, every number greater than 1 can be represented
as a product of prime numbers, and further, this representation is unique up to the order of the factors.

Definition 1.6. The greatest common divisor (abbreviated gcd) of two or more numbers not all 0 is defined
to be the largest positive integer that divides each of the integers.

The gcd of two integers x, y is denoted (x, y).
If a divides b, we write a | b.

Lemma 1.5 (Bezout’s Lemma). If x and y are nonzero integers and d = (x, y), there exist α, β ∈ Z such
that αx+βy = d. Furthermore, d is the smallest positive integer that can be represented in the form αx+βy
where α, β ∈ Z.

If m | (a− b) for integers a, b,m, we write a ≡ b (mod m).

Definition 1.7. Let a,m be integers. A modular multiplicative inverse of a modulo m is an integer x such
that ax ≡ 1 (mod m).

Theorem 1.6. Let a,m ∈ Z. The modular multiplicative inverse of a modulo m exists if and only if
(a,m) = 1.

Proof. We have

ax ≡ 1 (mod m) ⇐⇒ ax− 1 = ms for some s ∈ Z
⇐⇒ ax−ms = 1 for some s ∈ Z
⇐⇒ (a,m) | 1
⇐⇒ (a,m) = 1

�

Theorem 1.7 (Stirling’s Approximation). For every integer n ≥ 1, we have

√
2πn

(n
e

)n
eλ1(n) < n! <

√
2πn

(n
e

)n
eλ2(n)

where

λ1(n) =
1

12n+ 1
and λ2(n) =

1

12n
.
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§§1.4. Group Theory

Definition 1.8. A group (G, ·) is a set G along with a binary operation · : G×G → G (We write ·((a, b))
as a · b for a, b ∈ G) such that

(i) (a · b) · c = a · (b · c) for all a, b, c ∈ G,

(ii) There exists an identity element e ∈ G such that a · e = e · a = a for all a ∈ G (this identity element is
unique, see 1.8 below), and

(iii) For all a ∈ G, there exists an element b ∈ G (called the inverse of a) such that ab = ba = e.

A group (G, ·) in which a · b = b · a for all a, b ∈ G is called an abelian group.
The identity element of a group written multiplicatively is usually written as 1.

Theorem 1.8. The identity element of a group is unique.

Proof. Let e and e′ be identities of a group (G, ·). We have e · e′ = e as e′ is an identity and e · e′ = e′ as e
is an identity. Thus, e = e′ and the identity is unique. �

A common example of a group is Z under addition.

We define the set Z/nZ for some integer n as follows. Let ∼ be a relation given by

a ∼ b if and only if n | (b− a).

It may be shown that ∼ is an equivalence relation. Each equivalence class is given by a = {a+ kn | k ∈ Z}.
There are precisely n equivalence classes, namely 0, 1, . . . , n− 1. These n equivalence classes are the elements
of the set Z/nZ.
For a, b ∈ Z/nZ, we further define addition and multiplication as

a+ b = a+ b and a · b = a · b

It may be checked that the above is well-defined.
We see that Z/nZ is an abelian group under the addition operation with identity 0 and the inverse of a as
−a. We denote this group as Z/nZ or Zn.

We often drop the · and simply write a · b as ab and write the group (G, ·) as just G. We also write aa · · · a
(n times) as an.

Theorem 1.9. Let G be a group. Then the inverse of any element of the group is unique.

Proof. Let a ∈ G and b, c be inverses of a. We have ab = ac = 1. Premultiplying by b gives (ba)b = (ba)c,
that is, b = c. �

Definition 1.9. Let G be a group. A subset H of G is a subgroup of G if H is nonempty and it is closed
under products and inverses. That is, a, b ∈ H implies a−1 ∈ H and ab ∈ H. If H is a subgroup of G, we
write H ≤ G.

Note that if H ≤ G, the identity of G belongs to H as well.

Definition 1.10. If G is a group and a ∈ G, the smallest positive integer n such that an = 1 is called the
order of a.

In the above case, the set {1, a, a2, . . . , an−1} form a cyclic subgroup with a as generator. Note that the
order of this subgroup is equal to the order of a.

Definition 1.11. Let H be a subgroup of group G. For any a ∈ G, the set aH = {ah | h ∈ H} is called a
left coset or just coset. An element of a coset is called a representative of the coset.

Theorem 1.10. LetN be a subgroup of a groupG. The set of left cosets ofH inG partitionG. Furthermore,
for all u, v ∈ G, uN = vN if and only if v−1u ∈ N .
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Proof. First of all, as N ≤ G, 1 ∈ N . Thus g ∈ gN for all g ∈ G, that is,

G =
⋃
g∈G

gN

To show that distinct left cosets have empty intersection, let uN ∩vN 6= ∅ for some u, v ∈ G. We must show
that uN = vN . Let x ∈ uN ∩ vN . Then x = un = vm for some n,m ∈ N . This gives u = v(mn−1). For
any t ∈ N , ut = v(mn−1t) ∈ vN as mn−1t ∈ N . Thus uN ⊆ vN . Similarly, we get vN ⊆ uN . Therefore,
uN = vN if they have nonempty intersection and we get that the set of left cosets partition G.
By the first part of this theorem, we get uN = vN if and only if u ∈ vN , which is equivalent to v−1u ∈ N . �

If H is a normal subgroup of group G, the set of cosets of H in G again form a group by defining (aH)(bH) =
(ab)H. This multiplication makes sense as H is normal. This group is called the quotient group and is denoted
by G/H.

Theorem 1.11 (Lagrange’s Theorem). If H is a subgroup of a finite group G, |H| divides |G| and the

number of left cosets of H in G is |G||H| .

Proof. Let |H| = n and the number of left cosets of H be k. As the set of left cosets partition G, by the
map F : H → gH defined by h 7→ gh is a surjection from H to the left coset gH. Further, F is injective
as gh1 = gh2 =⇒ h1 = h2. This proves |gH| = |H| = n. Since G is partitioned into k subsets each of

cardinality n, |G| = kn. Thus k = |G|
n = |G|

|H| . �

As a corollary, note that the order of any element of a finite group divides the order of the group.

Theorem 1.12 (Cauchy’s Theorem). If G is a finite group and p is a prime dividing the order of G, then
G contains an element of order p.

We omit the proof of the above theorem.
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§2. Field Theory and Linear Algebra

§§2.1. Introduction to Fields

Definition 2.1. A field (F,+, ·) is a set F along with two binary operations + : F×F → F and · : F×F → F
(We write +((a, b)) and ·((a, b)) as a+ b and a · b respectively for a, b ∈ F ) such that

(i) + and · are associative. That is, (a+ b) + c = a+ (b+ c) and a · (b · c) = (a · b) · c for all a, b, c ∈ F .

(ii) + and · are commutative. That is, a+ b = b+ a and a · b = b · a for all a, b ∈ F .

(iii) There exist two distinct elements in F called 0 and 1 such that a+ 0 = a and a · 1 = a for all a ∈ F .

(iv) For every a ∈ F , there exists an element in F , denoted −a, such that a+ (−a) = 0.

(v) For every a 6= 0 in F , there exists an element in F , denoted a−1 or 1/a, such that aa−1 = 1.

(vi) Multiplication is distributive over addition, that is, a · (b+ c) = a · b+ a · c for all a, b, c ∈ F .

The above definition is just equivalent to saying that a field is a set F along with two binary operations
+ : F × F → F and · : F × F → F such that (F,+) is an abelian group with identity 0, (F \ {0}, ·) is an
abelian group with identity 1, and multiplication distributes over addition.

We shall often represent a field (F,+, ·) as just F and a · b for a, b ∈ F as just ab.
Common examples of fields are R and Q.

Theorem 2.1. Let F be a field. For all a, b ∈ F ,

(i) a0 = 0.

(ii) ab = 0 =⇒ a = 0 or b = 0.

Proof.

1. We have a(0) = a(0 + 0) = a0 + a0. Adding −(a0) on either side gives the required result.

2. If a 6= 0, a has a multiplicative inverse. Then we have (a−1a)b = a−10 which gives b = 0. This is the
required result.

�

A finite field is a field with a finite set of elements. The number of elements in a finite field is called its
order.

Theorem 2.2. For n ∈ N, consider the set Zn with addition and multiplication defined modulo n, that is,
a+ b = a+ b and a · b = ab for a, b ∈ Zn. Zn is a field if and only if n is a prime.

Proof. If n is not a prime, then there exist a, b ∈ N both less than n such that ab = n, that is, a · b = 0. As
the group Zn under addition has identity 0, we see that Zn cannot be a field by 2.1.
For prime n, Zn is a field as for any a 6∈ 0, (a, n) = 1 and thus a modular multiplicative inverse exists for
every element of Zn \ {0} (Recall 1.5). �

This field, called the prime field of order n, is denoted Fn.

Let F be a field. For a ∈ F, n ∈ N, we denote a+ a+ · · ·+ a (n times) as na and aa · · · a (n times) as an.
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§§2.2. Characteristic of a Field

Definition 2.2. Let F be a field. The smallest positive integer n such that n1 = 0 is called the characteristic
of F and is denoted charF . If no such n exists, we say that F has characteristic 0.

Note that if charF = n, then na = 0 for all a ∈ F (na = n(1a) = (n1)a = 0).

Theorem 2.3. Let F be a finite field. Then charF is prime.

Proof. On the contrary, assume that n = charF is composite, that is, n = ab for some a, b ∈ N, a, b > 1. We
have n1 = 0, that is, (a1)(b1) = 0. Then 2.1 implies that a1 = 0 or b1 = 0. As a, b < n and n is the smallest
positive integer such that n1 = 0, this is a contradiction. Thus, n must be prime. �

Theorem 2.4. Let F be a finite field. Then the order of F is equal to pn for some prime p and n ∈ N.

Proof. Let charF = p. Then since 1 has order p in the group (F,+), p divides the order of F .

Let q 6= p be another prime dividing the order of F . By 1.12, there exists an element of order q in (F,+),
that is, there is some non-zero a such that qa = 0. We also have pa = 0 because p = charF . As p and q are
distinct primes, (p, q) = 1.

By 1.5, there exist m,n ∈ Z such that mp + nq = 1. We then have mp(a) + nq(a) = 1(a) which implies
0 = m(pa) + n(qa) = a. This is a contradiction.

Thus, p is the only prime that divides the order of F . �

Definition 2.3. Fields F and G are isomorphic if there is a bijection ϕ : F → G such that ϕ(x + y) =
ϕ(x) + ϕ(y) and ϕ(xy) = ϕ(x)ϕ(y) for all x, y ∈ F . Such a map is called an isomorphism.

Theorem 2.5. Given any prime power q, there exists a unique field of order q (up to isomorphism).

We omit the proof of the above theorem.

Given the above, we unambiguously denote the field of order q as Fq.

§§2.3. Introduction to Linear Algebra

We assume that the reader has an introductory level knowledge of linear algebra and merely state the
definitions and theorems without proofs for the sake of completeness.

Definition 2.4. Let (V,+) be an abelian group, F a field, and let a multiplication F × V → V exist such
that

(i) 1a = a for all a ∈ V .

(ii) α(βa) = (αβ)a for all α, β ∈ F and a ∈ V .

(iii) α(a + b) = αa + αb for all α ∈ F and a,b ∈ V .

(iv) (α+ β)a = αa + βa for all α, β ∈ F and a ∈ V .

Then V is called a vector space over F. The identity of (V,+) is denoted by 0.

In this case, the elements of V are called vectors and the elements of F are called scalars.

Let q be a prime power and n ∈ N. We denote the vector space Fnq over Fq by V (n, q).

Definition 2.5. Let V be a vector space over F. A non-empty subset W of V is a subspace of V if it is a
vector space over F under the same addition and scalar multiplication defined for V .

Theorem 2.6. A non-empty subset W of a vector space V over F is subspace if and only if x,y ∈W =⇒
x + y ∈W and x ∈W,α ∈ F =⇒ αx ∈W .

Definition 2.6. A linear combination of r vectors v1,v2, . . . ,vr in a vector space V over F is a vector of
the form a1v1 + a2v2 + · · ·+ arvr where ai ∈ F for all valid i.
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Definition 2.7. A set of vectors {v1,v2, . . . ,vr} is said to be linearly dependent if there are scalars a1,
a2, . . . , ar not all 0 such that

a1v1 + a2v2 + · · ·+ arvr = 0.

Definition 2.8. A set of vectors {v1,v2, . . . ,vr} is said to be linearly independent if it is not linearly
dependent, that is,

a1v1 + a2v2 + · · ·+ arvr = 0 =⇒ a1 = a2 = · · · = ar = 0

for scalars a1, a2, . . . , ar.

Definition 2.9. Let V be a vector space and S = {v1,v2, . . . ,vr} be a subset of V . S is called a spanning
set or generating set of V if every element of V can be expressed as a linear combination of elements of S.

Definition 2.10. A spanning set of a vector space V which is also linearly independent is called a basis of
V .

Theorem 2.7. Let V be a vector space. Any spanning set of V contains a basis of V .

Theorem 2.8. Let W be a subspace of vector space V (n, q) and B = {v1,v2, . . . ,vk} a basis of W . Then

(i) Every vector in W can be expressed uniquely as a linear combination of elements of B.

(ii) W contains exactly qk vectors.

Definition 2.11. Let V be a vector space and B be a finite basis of V . The number of elements in B is
called the dimension of V and is denoted dimV . We also then say that V is a finite-dimensional vector
space. If B is infinite, we say that V is infinite-dimensional.

It can be shown that the dimension of a vector space is independent of our choice of basis. Unless mentioned
otherwise, assume that any vector space mentioned henceforth is finite-dimensional.

§§2.4. Inner Product Spaces

Definition 2.12. Let V be a vector space over F = R or C. An inner product on V is a function V ×V → F,
given by (u,v) 7→ 〈u,v〉. For all u,v,w ∈ V, α ∈ F, it must satisfy the following axioms:

(i) 〈u,v〉 = 〈v,u〉 (Hermitian property or conjugate symmetry)

(ii) 〈u,v + w〉 = 〈u,v〉+ 〈u,w〉 (additivity)

(iii) 〈u, αv〉 = α〈u,v〉 (homogeneity)

(iv) 〈v,v〉 ≥ 0 with 〈v,v〉 = 0 ⇐⇒ v = 0 (positive definite)

An inner product space is a vector space with an inner product defined on it.
For example, the dot product defines an inner product on Rn as a vector space.

Omitting positive definiteness, we extend this idea similarly to vector spaces over finite fields (We take x = x
for scalar x). Let u = u1u2 · · ·un and v = v1v2 · · · vn be elements of V (n, q). The dot product of u and v is
given by

u · v = u1v1 + u2v2 + · · ·+ unvn.

Definition 2.13. The norm of a vector v in an inner product space V is given by

‖v‖ =
√
v · v.

While we state the following definitions and theorems for inner product spaces, they also hold for V (n, q)
under the dot product.

Definition 2.14. Let V be an inner product space and u, v ∈ V . If u · v = 0, we say that u and v are
orthogonal and write u ⊥ v.
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Lemma 2.9. For any u,v,w ∈ V (n, q) and α, β ∈ Fq,

(i) u · v = v · u.

(ii) (αu + βv) ·w = α(u ·w) + β(v ·w).

Definition 2.15. Let V be an inner product space and W a subspace of V , we define the orthogonal subspace
of W by

W⊥ = {v ∈ V | v ⊥ w for all w ∈W}.

Theorem 2.10. Let V be a finite dimensional inner product space and W be a subspace of V . Then
dimW + dimW⊥ = dimV .

We discuss the proof of a specific form of the above theorem (which is what we require) in 6.10.

Theorem 2.11. Let V be an inner product space and W be a subspace of V . Then (W⊥)⊥ = W .

Proof. We clearly have W ⊆ (W⊥)⊥. But dim(W⊥)⊥ = n−(n−k) = k = dimW and thus W = (W⊥)⊥. �

§§2.5. The Geometric Lemma

Lemma 2.12 (Geometric Lemma). Let v1,v2, . . . ,vm ∈ Rn be non-zero vectors.

(i) If vi · vj ≤ 0 for all i 6= j, then m ≤ 2n.

(ii) Let each vi be a unit vector. If vi · vj ≤ −ε < 0 for all i 6= j, m ≤ 1 + 1
ε .

Proof.

(i) We shall prove this by induction on n. The base case n = 0 is clear as then we have m = 0 as well.

Since we only care about the sign of vi ·vj , assume without loss of generality that vm = (1, 0, 0, . . . , 0).
For each i ∈ [m − 1], let vi = (αi, vi,1, vi,2, . . . , vi,m−1) and wi = (vi,1, vi,2, . . . , vi,m−1). Then as
vi · vm ≤ 0 for each i ∈ [m− 1], we have αi ≤ 0 for each such i.

We now claim that at most one of the wis can be equal to the all zero vector 0. To prove this, assume
otherwise (w.l.o.g.) that wj = wm−1 = 0 for some j. Then

wj ·wm−1 = αjαm−1 > 0 (as each vi is non-zero)

Thus assume w.l.o.g. that v1,v2, . . . ,vm−2 are all non-zero vectors that also have non-zero wi for each
i. Note that for each i, j ∈ [m− 2],

yi · yj = wiwj − αiαj ≤ vi · vj ≤ 0.

Applying the induction on the yis for i ∈ [m− 2], we have

m− 2 ≤ 2(n− 1).

The result follows.

(ii) Let z = v1 + v2 + · · ·+ vm. Then

0 ≤ ‖z‖2

=

m∑
i=1

‖vi‖2 + 2
∑
i<j

vi · vj

≤ m+ 2

(
m

2

)
(−ε)

= m(1− εm+ ε).

The result follows.

�
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§3. Introduction to Probability

§§3.1. Introduction

Definition 3.1. A probability space is a triple (Ω,F , P ), such that

(i) Ω is a non-empty set called the sample space.

(ii) F is a subset of 2Ω (the power set of Ω) called the event space, such that

• Ω ∈ F ,

• if A ∈ F , then Ω \A ∈ F , and

• F is closed under countable unions. That is, if A1, A2, . . . ∈ F then
⋃
i∈NAi ∈ F .

(iii) P , the probability distribution, is a function from F to [0, 1] such that

• P (Ω) = 1 and

• if A1, A2, . . . ∈ F is a collection of pairwise disjoint sets, then

P

(⋃
i∈X

Ai

)
=
∑
i∈X

P (Ai).

We shall restrict ourselves to the case where Ω is a finite set.
We abuse notation and for ω ∈ Ω, denote P ({ω}) as P (ω).

Definition 3.2. Let D be a finite set. The uniform distribution over D, denoted UD, is the one corresponding
to the probability space (D, 2D, p), where

p(A) =
|A|
|D|

for any A ⊆ D.

Definition 3.3. Let (Ω,F , P ) be a probability space. A (real-valued) random variable is a function X :
Ω→ R such that

{ω ∈ Ω | X(ω) ≤ r} ∈ F for all r ∈ R.

In the above case, the expectation of X is defined as

E[X] =
∑
ω∈Ω

P (ω)X(ω).

In this report, we primarily consider binary random variables, that is, random variables which map to {0, 1}.

Definition 3.4. Let (Ω,F , P ) be a probability space. Given an event E ∈ F , we define its indicator variable
to be the random variable 1E : Ω→ {0, 1} such that for each ω ∈ Ω,

1E(ω) =

{
1 if ω ∈ E
0 otherwise.

We occasionally abuse notation and use E instead of 1E .

Now that we have the concept of a random variable, we can talk of the probability that the random variable
has a given value. For example, given a probability space (Ω,F , P ), a corresponding random variable V ,
and x ∈ R, we can write

Pr[V ≥ x] = P ({ω ∈ Ω | V (ω) ≥ x}) .

The right expression is well-defined due to the property given in 3.3.

And now that we have the above, we can abstract away the details of Ω and F . We can talk merely of the
different elements of the image of the random variable and the associated probabilities.
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Definition 3.5. The Bernoulli distribution with parameter p ∈ [0, 1] is the binary random variable X such
that for x ∈ {0, 1}

Pr[X = x] =

{
p if x = 1

1− p if x = 0.

Definition 3.6. The binomial distribution with parameters n ∈ N and p ∈ [0, 1] is the random variable B
to {0, 1, 2, . . . , n} such that for k ∈ {0, 1, 2, . . . , n},

Pr[B = k] =

(
n

k

)
pk(1− p)n−k.

§§3.2. Some Results

Lemma 3.1. Let (Ω,F , P ) be a probability space and E ∈ F be any event. Then

E[1E ] = P (E)

Theorem 3.2 (Linearity of Expectation). Given random variables V1, V2, . . . , Vm defined over the same
domain D and with the same probability distribution p,

E

[
m∑
i=1

Vi

]
=

m∑
i=1

E[Vi].

Theorem 3.3. Let X be a binomial distribution with parameters n and p. Then

E[X] = np.

Proof. We have

E[X] =

n∑
i=0

iPr[X = i]

=

n∑
i=1

i

(
n

i

)
pi(1− p)n−i

=

n∑
i=1

n

(
n− 1

i− 1

)
pi(1− p)n−i

=

n∑
i=1

np

(
n− 1

i− 1

)
pi−1(1− p)n−i

= np

n−1∑
i=0

(
n− 1

i

)
pi(1− p)n−1−i

= np(p+ 1− p)n−1

= np.

�

Theorem 3.4 (Union Bound). Let (Ω,F , P ) be a probability space. Given events E1, E2, . . . , Em,

P

(
m⋃
i=1

Ei

)
≤

m∑
i=1

Pr(Ei).

The union bound is tight if for every i, j ∈ [m] such that i 6= j,

Ei ∩ Ej = ∅

We omit the proofs of the above results as they are relatively easy to check.
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Theorem 3.5 (Markov Bound). Let V be a non-negative random variable. Then for any t > 0,

Pr[V ≥ t] ≤ E[V ]

t
.

Proof. We have

E[V ] =
∑
i∈[0,t)

iPr[V = i] +
∑

i∈[t,∞)

iPr[V = i]

≥
∑

i∈[t,∞)

iPr[V = i]

≥ t
∑

i∈[t,∞)

Pr[V = i]

= tPr[V ≥ t].

�

Corollary 3.6. Let V be a non-negative random variable. Then for any a ≥ 1,

Pr[V ≥ aE[V ]] ≤ 1

a
.

Putting t = aE[V ] in the Markov bound gives the required result.

Definition 3.7. Two random variables A and B are called independent if for every a, b in the ranges of
A,B respectively,

Pr[(A = a) ∨ (B = b)] = Pr[A = a] Pr[B = b].

Definition 3.8. Let X,Y be two random variables defined over the same probability space. Let X take the
distinct values x1, x2, . . . , xn and Y take the distinct values y1, y2, . . . , ym. For some i, j, we then define the
probability of X = xi conditioned over Y = yj as

Pr[X = xi | Y = yj ] =
Pr[X = xi ∧ Y = yj ]

Pr[Y = yj ]

The above is straightforward to check using the definition of conditional probability.

Theorem 3.7 (Multiplicative Chernoff Bound). Let X1, X2, . . . , Xm be independent binary random vari-
ables and X =

∑
Xi. Then for 0 < ε ≤ 1,

Pr[|X − E[X]| > εE[X]] < 2e−ε
2E[X]/3

Theorem 3.8 (Additive Chernoff Bound). Let X1, X2, . . . , Xm be independent binary random variables
and X =

∑
Xi. Then for 0 < ε ≤ 1,

Pr[|X − E[X]| > εm] < 2e−ε
2m/2

The Chernoff bounds can be proved by applying the Markov bound 3.5 to etX to get

E[X ≥ a] ≤ min
t>0

e−ta
∏
i

E[etXi ]

and
E[X ≤ a] ≤ min

t>0
eta
∏
i

E[e−tXi ]

and bounding the resultant expression after putting a suitable value of a.
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§§3.3. The Probabilistic Method

The probabilistic method is a method used to show the existence of objects that exhibit certain properties
without giving an explicit construction.
Say we must show the existence of an object C that has property P. This is done by defining a probability
distribution D over all such objects and showing that when an object C is chosen according to D ,

Pr[C has property P] > 0 or Pr[C doesn’t have property P] < 1

This can be simplified by defining sub-properties P1, P2, . . . , Pm such that P = P1 ∧P2 ∧ · · · ∧Pm and then
showing that for all valid i,

Pr[C doesn’t have property Pi] <
1

m

and then using the union bound 3.4.

Finally, if f is a function from the set of objects to R, then E[f(C )] ≤ b for some b ∈ R implies that there
exists an object C0 such that f(C0) ≤ b.

§§3.4. The Entropy Function

Definition 3.9. Let q ∈ Z and x ∈ R such that q ≥ 2 and 0 ≤ x ≤ 1. Then the q-ary entropy function is
defined as follows:

Hq(x) = x logq(q − 1)− x logq(x)− (1− x) logq(1− x).

We take 0 logq(0) = 0.

The following graph shows the behaviour of Hq(x) for some values of q.

0.5 1

1

x

Hq(x)

q = 2
q = 3
q = 4

Hq attains its maximum value of 1 at 1− 1

q
.

The binary entropy function H2 is denoted as HBer.

Note that

q−Hq(p) =

(
p

q − 1

)p
(1− p)1−p
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§4. Introduction

§§4.1. Why is Coding Theory required?

The English language has an enormous amount of redundancy. For instance, it’s likely that the reader has
seen the following text or something like it:

Fi yuo cna raed tihs yuo hvae a sgtrane mnid. Olny srmat poelpe cna raed tish.

While we have no doubt about the smartness of the reader, the above is not a good test of the same. It
merely means that the massive amount of redundancy in the language allows effective communication even
in the presence of (an acceptable amount of) errors.
Of course, even in the digital realm, we expect to see errors as no system is truly foolproof. To understand
the data even in the presence of errors, digital systems use redundancy as well.

Error-correcting codes (or just codes) are clever ways of representing data by introducing some redundancy
such that the original data we want transmitted can be recovered even if parts of the data have errors.
When packets are transmitted over the internet, some packets get corrupted or lost in transmission. To deal
with data corruption, a form of correction called “CRC Checksum” is used. This is not a very good code.
It searches for errors, and if an error is detected, it requests the data again. However, for obvious reasons,
this is not always feasible. For instance, if we are receiving a transmission from a Mars Rover, we cannot
just request the information again, it is simply not practical. Codes can also be seen in non-communication
examples such as bank balances, bar codes and the memory of a computer. In these cases as well‘, the data
cannot be requested again.

In this report, we shall mainly focus on codes in the communication scenario. There is a sender who wants
to send symbols over a noisy channel. He first encodes the symbols into a codeword of n symbols and sends
it over the channel. The receiver gets a received word of n symbols. He then tries to decode the received
word to recover the original symbols.

We make the assumption in this text that the sender and receiver have no method to communicate outside
of the channel.

As we mentioned earlier, redundancy enables us to detect errors in a code with higher likelihood. A basic
question that comes to mind is “What is the minimum amount of redundancy required to ensure a high
probability of detecting all errors in a code?”

The following diagram shows essentially what occurs in the process of encoding and decoding.

Message Codeword Channel
Received

Word
Decoded

Word

Received
Message

Noise

During the course of this report, we primarily follow the texts A First Course in Coding Theory [2] for
sections 4 through 6 and Essential Coding Theory [1] for sections 7 through 9.

§§4.2. Basics and Definitions

Definition 4.1. A block code C over an alphabet Σ is a non-empty subset of Σn for some n ∈ N.

Henceforth, we shall refer to “block code” as just “code”.
A q-ary code of length n is a subset of Σn where |Σ| = q.

Definition 4.2. Elements of a code are called codewords. The length of a code C over an alphabet Σ is the
n for which C ⊆ Σn.
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A code C of cardinality M and length n can be written as an M × n array whose rows are the codewords of
C.

Definition 4.3. Let C be a code of cardinality M over Σ where |Σ| = q. Then the dimension of C is given
by

k = logq(M)

Example. Let us look at two codes over F2 = {0, 1}. The first code is called the parity code, denoted C⊕.
Given any (x1, x2, x3) ∈ {0, 1}3, its corresponding codeword is

C⊕((x1, x2, x3)) = (x1, x2, x3, x1 + x2 + x3).

That is, the final bit gives the sum of the first three bits modulo 2. If a single error (a single bit-flip) occurs
in C⊕, we can detect it, since then the sum of the first three bits modulo 2 will not be equal to the final bit.
The second, called the repetition code (represented Cn,rep), which is a very näıve approach involves repeating
each bit n times. For instance, for n = 3, we have

C3,rep((x1, x2, x3)) = (x1, x1, x1, x2, x2, x2, x3, x3, x3)

C3,rep is stronger since if a bit-flip occurs, not only can we detect it, we can correct it and recover the original
message by taking the symbol repeated 2 or more times in each set of 3 bits.

We shall now attempt to formalize the meanings of encoding and decoding. As we wish to send a message
through a channel by converting it to a codeword and then sending the codeword, we may use [|C|] to list
all the messages that we can send.

Definition 4.4. Let C ⊆ Σn. An equivalent description of the code C is an injective mapping E : [|C|]→ Σn

called the encoding function.

To decode on the other hand, we must obtain a message from whatever word we receive (which may have
errors).

Definition 4.5. Let C ⊆ Σn be a code. A mapping D : Σn → [|C|] is called a decoding function of C.

Definition 4.6. For x = (x1, x2, . . . , xn),y = (y1, y2, . . . , yn) ∈ Σn, we define the Hamming distance between
x and y as

d(x,y) = |{i ∈ [n] | xi 6= yi}|.
If Σ is a field, then for x ∈ Σn, we define the Hamming weight of x to be

wt(x) = d(x,0)

where 0 represents the all zero vector (0, 0, . . . , 0).

We see that the Hamming distance d defines a metric on Σn as

1. d(x,y) = 0 if and only if {i ∈ [n] | xi 6= yi} = ∅. This is equivalent to saying that xi = yi for all
i ∈ [n], that is, x = y.

2. d(x,y) = |{i ∈ [n] | xi 6= yi}| = |{i ∈ [n] | yi 6= xi}| = d(y,x).

3. Note that the minimum number of steps required to change x to z is d(x, z). We can change x to z
by changing x to y in d(x,y) steps then y to z in d(y, z) steps. This gives d(x, z) ≤ d(x,y) + d(y, z).

Although the Hamming distance metric may not always be a very appropriate metric, it provides a good
way to measure how “close” two strings are.

We assume the following noise model called the Adversarial Noise Model, which was first studied by Ham-
ming:
Any error pattern can occur during transmission as long as the total number of errors is bounded. This
means that both the location and the nature of the errors is arbitrary.

We define error correction and detection in terms of the (Hamming) distance between a codeword and the
word that is received after passing the codeword through the channel. Note that the output word is not
fixed for a given codeword since we assume the Adversarial Noise Model.
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Definition 4.7. Let C ⊆ Σn and let t ≥ 1 be an integer. C is said to be t-error correcting if there exists a
decoding function D such that for every m ∈ [|C|], y ∈ Σn where

(i) d(C(m),y) ≤ t and

(ii) C(m) can become y after passing through the channel,

we have D(y) = m.

Definition 4.8. Let C ⊆ Σn and let t ≥ 1 be an integer. C is said to be t-error detecting if there exists a
detecting procedure D : Σn → {0, 1} such that for every m ∈ [|C|], y ∈ Σn where

1. 1 ≤ d(C(m),y) ≤ t and

2. C(m) can become y after passing through the channel,

we have D(y) = 1 if y ∈ C and 0 otherwise.

So going back to the example discussed, C⊕ is a 1-error detecting code and C3,rep is a 1-error correcting code
(and a 2-error detecting code).

Definition 4.9. If we receive a word y after passing a codeword through a channel, nearest neighbour
decoding or minimum distance decoding decodes y as codeword x′ such that d(x′,y) is minimum.

Definition 4.10. If we receive a word y after passing a codeword through a channel, maximum likelihood
decoding decodes y as codeword x′ such that Pr(y received | x sent) is maximum.

We now consider a specific type of channel.

Definition 4.11. Consider an alphabet Σ. A corresponding channel is called a q-ary symmetric channel if

(i) Each symbol has the same probability p < 1
2 , called the symbol error probability, of becoming erroneous.

(ii) If a symbol becomes erroneous, then each of the q− 1 other symbols of Σ is equally likely to replace it.

A q-ary symmetric channel is denoted qSCp and a binary symmetric channel is denoted BSCp.
Note that if the error vector e is drawn from qSCp, wt(e) follows a binomial distribution with parameters n
and p.

The probability that a received codeword of length n has an error in exactly i specific places is pi(1− p)n−i.
Since p < 1

2 , it is more probable that a fewer number of errors occur.

Consider the code C = {000, 111} for the binary alphabet {0, 1} passed through a binary symmetric chan-
nel. Say 000 is transmitted. Then following nearest neighbour decoding, the probability that the received
codeword is decoded as 000 (that is, the received codeword is 000, 100, 010 or 001) is (1− p)3 + 3p(1− p)2 =
(1−p)2(1+2p). For any word c in C, the word error probability of C, denoted Perr(c), denotes the probability
that c is interpreted incorrectly after passing through a channel (Note that by symmetry, this is equal for
any codeword in this case). Here,

Perr(c) = 1− (1− p)2(1 + 2p) = 3p2 − 2p3.

Definition 4.12. For any code C, the minimum distance is defined as

d(C) = min{d(x,y) | x,y ∈ C,x 6= y}.

Theorem 4.1.

(i) A code C is s-error detecting if d(C) > s.

(ii) A code C is s-error correcting d(C) > 2s.

Proof.
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(i) Suppose a codeword x is transmitted, and the received codeword y has s or fewer errors. Then
d(x,y) ≤ s and as x ∈ C, y 6∈ C and the error can be detected.

(ii) Supposed a codeword x is transmitted and the received codeword y has s or fewer errors. Then
d(x,y) ≤ s. We claim that the codeword x′ such that d(x′,y) is minimum is unique and equal to x.
If x′ 6= x, then d(y,x′) ≤ d(x,y) ≤ s. Then d(x,x′) ≤ d(x,y) + d(y,x′) ≤ s+ s = 2s as d is a metric.
However, we have d(C) > 2s, which is a contradiction. Thus, x′ = x and C can correct up to s errors.

�

Corollary 4.2. Let a code C have minimum distance d. Then

(i) C is (d− 1)-error detecting.

(ii) C is

⌊
d− 1

2

⌋
-error correcting.

Proof. We have d > s if and only if s ≤ d − 1 and d > 2s if and only if s ≤
⌊
d− 1

2

⌋
. Combining this with

4.1 gives the required result. �

Notation. An (n,M, d)q-code is a code of length n, cardinality M and minimum distance d over an alphabet
Σ such that |Σ| = q.
For example, the code {000, 111} over {0, 1} is a (3, 2, 3)2-code.

Definition 4.13. Let C be a code of length n and minimum distance d. The relative distance of C is given
by δ = d

n .

Definition 4.14. For q, n ∈ N, the repetition code of length n over an alphabet Σ is the code whose codewords
are aa · · · a (repeated n times) where a ∈ Σ.

A q-ary repetition code of length n is an (n, q, n)q-code. It is represented by Cn,rep.
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§5. Bounds on the Number of Codewords

An ideal (n,M, d)q-code has a small value of n (so the data can be transmitted faster), a large value of M
(so a larger number of messages can be transmitted), and a large value of d (to detect/correct many errors).

§§5.1. Some Useful Bounds

We shall attempt to optimize the value of M keeping the other two fixed.

Definition 5.1. We denote by Aq(n, d) the largest value of M such that there exists a q-ary (n,M, d)q-code.

Theorem 5.1. For all n, q ∈ N,

(i) Aq(n, 1) = qn.

(ii) Aq(n, n) = q.

Proof.

(i) M ≤ qn as the code is a subset of Σn. As Σn is of length n and has minimum distance 1, Aq(n, 1) = qn.

(ii) If the minimum distance of a code is n, any two codewords differ at all n places. Thus the symbols
appearing in any fixed position in the M codewords must be distinct, giving M ≤ q. The q-ary
repetition code of length n is an (n, q, n)q-code so Aq(n, n) = q.

�

Definition 5.2. Two q-ary codes are equivalent if one can be obtained from the other by a combination of
the following operations:

(i) permutation of the positions of the code.

(ii) permutation of the symbols appearing in a fixed position.

Note that if we represent an (n,M, d)q-code as an M × n array, (i) corresponds to rearranging the columns
and (ii) corresponds to a renaming of the symbols in a given column.
As distances between codewords remain the same, two equivalent codes have the same value of length,
cardinality, and minimum distance.

Lemma 5.2. Any (n,M, d)q-code over {0, 1, . . . , q−1} is equivalent to an (n,M, d)q-code (over {0, 1, . . . , q−
1}) that contains the codeword 0 = 000 · · · 0.

Proof. Consider any codeword x = x1x2 · · ·xn. For each i, apply the permutation of symbolsxi 0 j
↓ ↓ ↓ for all j 6= xi, 0
0 xi j

 .

�

Let Σ = F2. For some n ∈ N, consider x, y be two vectors in Σn, where x = x1x2 · · ·xn and y = y1y2 · · · yn.
x + y is given by the component wise sum in F2. x ∩ y is defined to be the component wise multiplication
in F2. That is, x+ y = (x1 + y1, x2 + y2, . . . , xn + yn) and x ∩ y = (x1y1, x2y2, . . . , xnyn).

Lemma 5.3. For any x, y ∈ Fn2 , d(x, y) = wt(x+ y).

Proof. x + y has a 1 wherever xi 6= yi and 0 elsewhere. As wt(x) is just the number of 1s in x, d(x, y) =
wt(x+ y). �

Lemma 5.4. For any x, y ∈ Fn2 , d(x, y) = wt(x) + wt(y)− 2 wt(x ∩ y).
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Proof. We have d(x, y) = wt(x+ y), the number of 1s in x+ y, from the previous lemma. This is given by
the number of positions with 1 in x + the number of positions with 1 in y − the number of positions with
1 in both x and y. This is just wt(x) + wt(y)− 2 wt(x ∩ y). �

Theorem 5.5. Let d be odd. Then a binary (n,M, d)2-code exists if and only if a binary (n+ 1,M, d+ 1)2-
code exists.

Proof. Let C be a binary (n,M, d)2-code for odd d. Construct a code C ′ such that for each x = x1x2 · · ·xn ∈
C, we extend it to x′ = x1x2 · · ·xn+1 where xn+1 =

∑n
i=1 xi. This is called adding an overall parity check.

As wt(x′) is even for any x′ ∈ C ′ (because wt(x′) ≡ 2xn+1 (mod 2)), d(C ′) is even by 5.4. Clearly,
d ≤ d(C ′) ≤ d+ 1. As d is odd, d(C ′) = d+ 1. Thus C ′ is an (n+ 1,M, d+ 1)2 code.

In the other direction, let C ′ be a binary (n+ 1,M, d+ 1)2-code. Choose x, y ∈ C ′ such that d(x, y) = d+ 1.
Construct a code by choosing any position where they differ and deleting this position from all codewords.
The resulting code has minimum distance d and is thus an (n,M, d)2-code. �

Corollary 5.6. Let d be odd. then A2(n+ 1, d+ 1) = A2(n, d).

Proof. This follows from the previous theorem. �

Definition 5.3. For any u ∈ Σn (where |Σ| = q) and any integer r ≥ 0, the Hamming ball or sphere of
radius r and centre u is given by

Bq(u, r) = {v ∈ Σn | d(u, v) ≤ r}.

If q is understood, we simply write B(u, r).

This gives more insight into why a code is s-error correcting if d(C) > 2s (if u is received, the transmitted
codeword will be the unique codeword in Bq(u, s)).

Lemma 5.7. Let Σ contain q symbols. The number of words in a ball of radius r in Σn is exactly

r∑
i=0

(
n

i

)
(q − 1)i.

Proof. The number of words at a distance of exactly i from a given word x is given by choosing exactly i
positions from the n positions and then picking one of q − 1 symbols to replace the symbol at each of those
positions. This is equal to

(
n
i

)
(q−1)i. The required result is the sum of this quantity over {i : 0 ≤ i ≤ r}. �

Theorem 5.8 (The Hamming bound). An (n,M, 2t+ 1)q-code satisfies

M

t∑
i=0

(
n

i

)
(q − 1)i ≤ qn.

Proof. Note that two balls of radius t centered at distinct codewords have no words in common as the
minimum distance of the code is 2t+ 1. The number of words in each ball is

∑t
i=0

(
n
i

)
(q − 1)i by 5.7. The

total number of words in the M balls is M multiplied by this quantity, which must be less than or equal to
qn, the total number of words in Σn. This gives the required result. �

The Hamming bound provides an upper bound on Aq(n, d).
In general for an (n,M, d)q-code,

M

b d−1
2 c∑
i=0

(
n

i

)
(q − 1)i ≤ qn.

In the binary case, the Hamming bound gives

M

b d−1
2 c∑
i=0

(
n

i

)
≤ 2n.
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For an (n,M, d)q-code of dimension k,

k ≤ n− logq

b
d−1
2 c∑
i=0

(
n

i

)
(q − 1)i


§§5.2. Perfect Codes

A code which achieves the Hamming bound is called a perfect code.

Definition 5.4. An (n,M, d)q-code is called a perfect code if it satisfies

M

b d−1
2 c∑
i=0

(
n

i

)
(q − 1)i = qn.

The repetition code of length n, where n is odd, is a perfect code. These codes, along with codes that contain
exactly one codeword and codes that are the entirety of Σn, are called trivial perfect codes.

An example of a nontrivial perfect code is the following.
Let 0 = 0000000, 1 = 1111111, a1 = 1101000, a2 = 0110100, a3 = 0011010, a4 = 0001101, a5 = 1000110,
a6 = 0100011, a7 = 1010001. We further define bi as the same as ai except that all 0s are replaced with 1s
and all 1s are replaced with 0s. Then the code C containing 0,1, all the ais and all the bis is a (nontrivial)
perfect code. Note that the ais correspond to the rows of the matrix in 1.2.

For any i, j ∈ [7], i 6= j,

d(ai, aj) = wt(ai) + wt(aj)− 2 wt(ai + aj) = 3 + 3− 2 = 4.

Also, d(0, ai) = d(1, bi) = 3 and d(0, bi) = d(1, ai) = 4.
Finally, ai and bj differ exactly where ai and aj agree so d(ai, bj) = 7− d(ai, aj) = 3.
Thus C is a (7, 16, 3)2-code. It may be checked that this is a perfect code.

We shall study perfect codes more in detail later on.

Theorem 5.9. If there exists a Hadamard (4t− 1, 2t− 1, t− 1)-design, then

Aq(4t− 1, 2t− 1) ≥ 8t.

Proof. Similar to the construction described above, construct a code C containing 0, 1, the vectors ai
corresponding to each of the rows of the incidence matrix of the Hadamard design and the vectors bi which
are the same as ai except that all 0s are replaced with 1s and all 1s are replaced with 0s.

As each vertex is present in exactly 2t− 1 blocks, there are (2t− 1) 1s in each row and thus

d(0, ai) = 2t− 1 for all valid i.

Similarly,
d(0, bi) = d(1, ai) = 2t and d(1, bi) = 2t− 1.

We also have

d(ai, aj) = wt(ai) + wt(aj)− 2 wt(ai ∩ aj)
= 2t− 1 + 2t− 1− 2 wt(ai ∩ aj).

As mentioned earlier, wt(ai) = wt(aj) = 2t − 1. wt(ai ∩ aj) is the number of blocks in which the vertices
corresponding to ai and aj are both present, which is equal to t− 1.
Thus, d(ai, aj) = (2t− 1) + (2t− 1)− 2(t− 1) = 2t− 1 for all valid i, j. Similarly, we get d(bi, bj) = 2t− 1
and d(ai, bj) = 2t.

The number of codewords in this code is 2 + 2(4t − 1) = 8t. The minimum distance of this code is 2t − 1
and its length is 4t− 1.
Therefore, the resulting code is a (4t− 1, 8t, 2t− 1)2-code. �
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This provides another bound on Aq(n, d). Namely, if a Hadamard (4t − 1, 2t − 1, t − 1)-design exists,
Aq(4t− 1, 2t− 1) ≥ 8t.
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§6. Linear Codes

§§6.1. Introduction to Linear Codes

Definition 6.1. A linear code over Fq is a subspace of V (n, q) for some positive integer n.

Note that the dimension (recall 4.3) of a linear code is equal to its dimension as a vector space.
We denote by 0 the element of a linear code that consists of all 0s.
If a linear code is a k-dimensional subspace of V (n, q), we call it an [n, k]q-code. If we further wish to specify
the minimum distance d of the code, we call it an [n, k, d]q-code.

Lemma 6.1. If x, y ∈ V (n, q), then d(x, y) = wt(x− y).

Proof. x− y is nonzero exactly wherever x and y differ. The result follows. �

Theorem 6.2. Let C be a linear code and wt(C) = min{wt(x) | x ∈ C \ {0}}. Then d(C) = wt(C).

Proof. There exist x, y ∈ C such that d(x, y) = d(C), that is, wt(x − y) = d(C). This gives d(C) =
wt(x− y) ≥ wt(C) since x− y ∈ C.
Let x ∈ C such that wt(x) = wt(C). Then wt(C) = d(x,0) ≥ d(C).
This gives d(C) = wt(C). �

Note that to find the minimum distance in any general code, we must make
(
m
2

)
comparisons, but in a linear

code, we only need to examine the weights of M − 1 codewords.

Definition 6.2. Let C be an [n, k]q-code. A k×n matrix whose rows form a basis of C is called a generator
matrix of C.

Note that if G is a generator matrix of an [n, k]q-code C, C = {xG | x ∈ V (n, k)}.
For example, the generator matrix of the q-ary repetition code of length n over Fq is the 1 × n matrix(
1 1 · · · 1

)
.

Definition 6.3. Two linear codes over Fq are called equivalent if one can be obtained from the other by a
combination of the following operations:

(i) Permutation of the positions of the code.

(ii) Multiplication of the symbols appearing in a fixed position by a non-zero scalar.

Alternatively, two linear codes are equivalent if they are isomorphic.
Note that this is not the same as the definition of equivalence we gave earlier in 5.2.

Theorem 6.3. Two k × n matrices generate the same [n, k]q-code over Fq if one matrix can be obtained
from the other by a combination of the following operations:

(i) Permutation of the rows.

(ii) Multiplication of a row by a non-zero scalar.

(iii) Addition of scalar multiple of one row to another.

(iv) Permutation of the columns.

(v) Multiplication of a column by a non-zero scalar.

Proof. The first three conditions merely replace one basis of the code with another. The final two conditions
are those in the definition of equivalence of linear codes. �

Theorem 6.4. Let G be a generator matrix of an [n, k]q-code. G generates the same code as as a matrix
in the standard form (Ik | A), where Ik is the k × k identity matrix and A is a k × (n− k) matrix.
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Proof. Let G = (gij) and let r1, r2, . . . , rk and c1, c2, . . . , cn be the rows and columns of the matrix respec-
tively. We repeat the following three step procedure for j = 1, 2, . . . , k, which transforms cj into the required
form leaving the first j − 1 columns unchanged. Suppose that G has already been transformed to

1 0 · · · 0 g1j · · · g1n

0 1 · · · 0 g2j · · · g2n

...
...

...
...

...
0 0 · · · 1 gj−1,j · · · gj−1,n

0 0 · · · 0 gjj · · · gjn
...

...
...

...
...

0 0 · · · 0 gnj · · · gnn


.

1. if gjj = 0 and gij 6= 0 for some i > j, we interchange ri and rj . Otherwise, if gjj = 0 and gji 6= 0 for
some i > j, interchange ci and cj (the existence of such an i is guaranteed by the fact that the rows
are linearly independent).

2. Multiply rj with g−1
jj (which is well-defined as gjj 6= 0).

3. For each i = 1, 2, . . . , k, replace ri with ri − gijrj .

The column cj then has the required form. After we repeat this procedure for j = 1, 2, . . . , k, the generator
matrix will be in standard form. �

§§6.2. Encoding and Decoding with Linear Codes

Let C be an [n, k]q-code with generator matrix G over Fq. For any u ∈ V (k, q) (here we represent u by a
row vector), we have uG ∈ C as this is merely a linear combination of the row vectors of G.

This suggests a way to encode message vectors of Fkq . Note that the encoding function briefly described
above given by u 7→ uG for u ∈ V (k, q) maps the vector space V (k, q) onto C.

This is even easier to understand in the case where the generator matrix is in standard form. Let G =
(Ik | A) where A = (aiji implies is a k × (n − k) matrix. The message vector u is encoded as x = uG =

x1x2 · · ·xkxk+1 · · ·xn. Here, xi = ui for 1 ≤ i ≤ k and xi =
∑k
j=1 ajiuj for k + 1 ≤ i ≤ n.

Note that in addition to the message u, x contains extra information. The message digits xk+1, xk+2, . . . , xn
are called check digits and represent the redundancy we mentioned at the start of this report. They provide
protection against any errors that might occur.

Now, suppose the codeword x is sent through the channel and the received codeword is y. We define the
error vector e to be

e = y− x.

Definition 6.4. Suppose that C is an [n, k]q-code over Fq and a ∈ V (n, q). Then for a ∈ C, the coset a+C
is given by

a + C = {a + x | x ∈ C}.

This corresponds to 1.11 considering V (n, q) as a group under addition.

Lemma 6.5. The set of cosets of a code in V (n, q) partition V (n, q). Furthermore, for a,b ∈ V (n, q),
a + C = b + C if and only if b ∈ a + C.

Proof. This follows from 1.10. �

Theorem 6.6 (Lagrange’s Theorem). Suppose C is an [n, k]q-code over Fq. Then every coset of C in V (n, q)
contains exactly qk elements.

Proof. This follows from 1.11. �
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Definition 6.5. A vector having minimum weight in a coset is called a coset leader. If a coset has more
than one vector of minimum weight, we choose any such vector and call it the coset leader.

A Slepian standard array or simply standard array of an [n, k]q-code C is a qn−k × qk array of the elements
of V (n, q) which is constructed as follows.

1. List the codewords of C, starting with 0, in the first row.

2. Choose any vector of minimum weight not already in the array. Write this as the first entry of the
following row. Denote this vector as the coset leader.

3. Fill out the row by adding the coset leader to the codeword at the top of each column. The sum of
the coset leader of row i and the jth codeword becomes the i, jth element of the array.

4. Repeat the above two steps until all the cosets and every vector of V (n, q) appears in the array.

That is, each row of the standard array represents a coset with the coset leader written on the left.
Note that any element of the array is equal to the sum of the first element of the row and column of said
element.
For example, the standard array corresponding to the code C = {0000, 1011, 0101, 1110} is

0000 1011 0101 1110
1000 0011 1101 0110
0100 1111 0001 1010
0010 1001 0111 1100

Now, if we want to decode a received vector, we may do so by identifying the error vector e with the first
element of the row containing the received vector and the decoded word as the first element of the column.
That is, we decode an element as the codeword at the top of its column in the standard array.

The error vectors which will be corrected are precisely the coset leaders.

Let C be an [n, k, 2t+ 1]q-code. Then C can correct any t errors. This implies every vector of weight i ≤ t
is a coset leader. Determining the number of coset leaders of weight i > t is problematic in the general case
however. It is easy to establish that in the case of perfect codes, this is equal to 0 for each i > t. However,
these values are not known even for several well-known families of codes.

The primary issues with standard array decoding are that

• It requires a massive amount of storage as we store every single vector in V (n, q). For example, a
binary code of length 32 would require 232 entries.

• It takes a large amount of time to locate a given vector in the array due to its size.

§§6.3. Some results on Binary Linear Codes

We now restrict ourselves to binary linear codes. We assume that the channel is a binary symmetric channel
with symbol error probability p.

Theorem 6.7. Let C be a binary [n, k]2-code and for i = 0, 1, . . . , n let αi denote the number of coset leaders
of weight i. Then the probability that a decoded vector decoded using a standard array is the codeword c
which was sent is

Pcorr(c) =

n∑
i=0

αip
i(1− p)n−i

Proof. The probability that the error vector is a given vector of weight i is pi(1−p)n−i. As there are αi such
errors, the probability that the error vector is one of the acceptable error vectors is the sum of αip

i(1−p)n−i
over i = 0, 1, 2, . . . , n. �
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The probability that the decoded word is not the codeword c sent, called the word error rate, is given by

Perr(c) = 1− Pcorr(c).

Definition 6.6. Let C be an [n, k]q-code. The rate of C is defined by

R(C) =
k

n
.

The rate captures a way to measure the redundancy of a code. The higher the redundancy, the lower the
rate is. Therefore, an efficient code will have a high rate.

A natural question to ask would be:
Given a code of distance d, what is the largest rate R that it can have?

§§6.4. Error Detection in Binary Linear Codes

We now consider error detection. If the codeword sent is x, we will fail to detect an error if and only if the
received vector y is a codeword as well, that is, e = y− x is a codeword.
For any code C and c ∈ C, we denote by Pundetec(c) the probability that an incorrect codeword is received,
which is independent of the codeword sent in the binary symmetric channel case.

Theorem 6.8. Let C be a binary [n, k]2-code transmitted through a binary symmetric channel of symbol
error probability p. Let Ai be the number of codewords of C of weight i for each valid i. Then if C is used
for error detection, for any c ∈ C,

Pundetec(c) =

n∑
i=1

Aip
i(1− p)n−i.

Proof. We must simply find the probability that the error vector is in C. As the probability that there are
exactly i specific errors is pi(1− p)n−i and there are Ai codewords of weight i, the result follows. �

If we detect an error, we might ask to retransmit the data again. In this case, the probability that we will
request retransmission is given by

Pretrans(c) = 1− (1− p)n − Pundetec(c).

The above follows as (1− p)n is the probability that no error occurs and Pundetec is the probability that an
error occurs but we do not detect it.

§§6.5. The Dual Code

Definition 6.7. Let C be a linear [n, k]q-code. The dual code of C, denoted C⊥, is the orthogonal subspace
of C with respect to V (n, q), that is,

C⊥ = {v ∈ V (n, q) | v ⊥ w for all w ∈ C}.

Lemma 6.9. Let C be an [n, k]q-code with generator matrix G. Then v ∈ V (n, q) is an element of C⊥ if
and only if vGT = O.

Proof. Let r1, r2, . . . , rk be the row vectors of G which form a basis of C.
If v ∈ C⊥, then v is orthogonal to every element of C and in particular, the row vectors of GT, so the ‘only
if’ part of the lemma follows.
To prove the ‘if’ part of the lemma, let u be any element of C. We have that v · ri for each i as vGT = 0.
Then u = a1r1 + a2r2 + · · ·+ akrk for scalars a1, a2, . . . , ak and so

v · u = v · (a1r1 + a2r2 + · · ·+ akrk)

= a1(v · r1) + a2(v · r2) + · · ·+ ak(v · rk) = 0

This proves the required result. �
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Theorem 6.10. Let C be a linear [n, k]q-code over Fq. Then C⊥ is a linear [n, n− k]q-code.

Proof. Let us first show that C⊥ is a linear code. Let v1,v2 ∈ C⊥. Then for all α, β ∈ Fq and u ∈ C,
(αv1 + βv2) ·u = α(v1 ·u) + β(v2 ·u) = 0. That is, αv1 + βv2 ∈ C⊥. Thus C⊥ is a subspace of V (n, q) and
is a linear code.
We shall now show that C⊥ has dimension n − k. Let G = (gij) be a generator matrix of C. Then C⊥

contains exactly those vectors v = v1v2 · · · vk satisfying

n∑
i=1

gijvj = 0 for i = 1, 2, . . . , k.

It is a standard result that the solution space of a system of k independent homogeneous equations and n
unknowns has dimension n− k. Thus C⊥ is of dimension n− k. �

§§6.6. The Parity-Check Matrix

Definition 6.8. Let C be a linear [n, k]q-code. A parity-check matrix H of C is a generator matrix of C⊥.

Thus H is an (n− k)× n matrix that satisfies GHT = O, where G is a generator matrix of C.
Note that 6.9 gives

C = {x ∈ V (n, q) | xHT = O}.
The rows of a parity-check matrix give parity checks on the corresponding code. That is, they say that
certain linear combinations of the coordinates are equal to 0.
For example, if a code C has parity-check matrix

H =

(
1 1 0 0
0 0 1 1

)
then the code is given by

C = {(x1, x2, x3, x4) ∈ V (4, 2) | x1 + x2 = x3 + x4 = 0}.

Lemma 6.11. Let G be a generator matrix of an [n, k]q-code C1. If H is an (n−k)×n parity check matrix
of a code C2 such that GHT = O, then C1 = C2.

Proof. We shall first show C1 ⊆ C2. Given any u ∈ C1, there exists x ∈ V (n, q) such that u = xG. Then

uHT = (xG)HT = x(GHT) = 0.

That is, u ∈ C2.
To prove the converse, note that dimC2 = n − (n − k) = dimC1. As C1 ⊆ C2 and dimC1 = dimC2,
C1 = C2. �

Theorem 6.12. If G = (Ik | A) is the standard form generator matrix of a linear [n, k]q-code C, then a
parity check matrix of C is H = (−AT | In−k).

Proof. H is an (n−k)×n matrix so it is of the correct size. We shall show that every row of G is orthogonal
to every row of H. Let

G =

1 · · · 0 a11 · · · a1,n−k
...

...
...

...
0 · · · 1 an1 · · · an,n−k

 .

Then

H =

 −a11 · · · −an1 1 · · · 0
...

...
...

...
−a1,n−k · · · −an,n−k 0 · · · 1

 .

Then the inner product of the ith row of G and the jth row of H is 0 + · · ·+ 0 + (−aij) + 0 + · · ·+ 0 + (aij) +
0 + · · ·+ 0 = 0 �
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Definition 6.9. An (n− k)× n parity check matrix H is said to be in standard form if H = (B | In−k).

Theorem 6.13. Let C be an [n, k, d]q-code with parity-check matrix H. Then d is the minimum number
of linearly dependent columns in H.

Proof. By 6.2, we must show that d, the minimum weight of a nonzero codeword in C is equal to t, the
minimum number of linearly dependent columns.

Let c = (c1, c2, . . . , cn) ∈ C such that wt(c) = d. We have cHT = O, which gives that

n∑
i=1

ciHi = 0

where Hi represents the ith column of H. Note that we can skip multiplication for the terms where ci = 0.
This leaves wt(c) linearly dependent columns. Thus d ≥ t.
For the other direction, let Hi1 , Hi2 , . . . ,Hit be linearly dependent. Then there exist nonzero scalars
c′i1 , . . . , c

′
it

such that
t∑

j=1

c′ijHij = 0.

The cij s are nonzero due to the minimality of t. Now let c′ = (c′1, c
′
2, . . . , c

′
n) where c′j = 0 for j 6∈

{i1, i2, . . . , it}. This gives c’HT = O and thus c′ ∈ C. This implies d = wt(c′) ≤ t. The required result
follows. �

§§6.7. Syndrome Decoding

Definition 6.10. Let H be a parity-check matrix of an [n, k]q-code C. Then for any vector y ∈ V (n, q),
the 1× (n− k) row vector

S(y) = yHT

is called the syndrome of y.

Note the following.

• If the rows of H are r1, r2, . . . , rn−k, then for y ∈ C,

S(y) = (y · h1,y · h2, . . . ,y · hn−k).

• S(y) = 0 ⇐⇒ y ∈ C.

Lemma 6.14. Let C be a linear code and u,v ∈ C. u and v are in the same coset of C if and only if they
have the same syndrome.

Proof. u and v are in the same coset

⇐⇒ u− v ∈ C
⇐⇒ (u− v)HT = 0

⇐⇒ uHT = vHT

⇐⇒ S(u) = S(v)

�

Corollary 6.15. There is a bijection between cosets and syndromes.
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In standard array decoding, one of the issues that we faced was that the time taken to locate a vector is very
large. We fix this by calculating the syndrome S(e) for each coset leader e and extend the standard array
by listing the syndromes in an extra column.

For example, consider the code C = {0000, 1011, 0101, 1110}. A parity-check matrix of C is given by

H =

(
1 0 1 0
1 1 0 1

)
Thus, the modified standard array corresponding to the code C = {0000, 1011, 0101, 1110} is

0000 1011 0101 1110 00
1000 0011 1101 0110 11
0100 1111 0001 1010 01
0010 1001 0111 1100 10

The decoding algorithm is as follows.

1. When a vector y is received, calculate S(y) = yHT and locate S(y) in the syndromes column of the
array.

2. Locate y in the corresponding row and decode it as the codeword at the top of the column containing
y.

This works because if y = x + e, where x is the codeword sent and e is the error vector,

S(y) = (x + e)HT = eHT = S(e).

The second issue we had in standard array decoding was that we had to store all the elements of V (n, q) in
the array. However, note that now we only need to store the syndromes and the coset leaders (and the code,
of course) in the computer memory. This is called a syndrome look-up table.
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§7. Perfect Codes

§§7.1. Binary Hamming Codes

Definition 7.1. Define the r× (2r − 1) matrix Hr over F2, such that the ith column of Hr, 1 ≤ i ≤ 2r − 1
is the binary representation of i.

For example,

H3 =

0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

 .

Definition 7.2. For r > 1, the [2r − 1, 2r − r − 1]2-code that has parity-check matrix Hr is called the
Hamming code and is denoted CH,r.

In other words, the code CH,r is given by

CH,r = {c ∈ {0, 1}2
r−1 | cHT

r = O}.

Theorem 7.1. For r > 1, the [2r − 1, 2r − r − 1]2 Hamming code has minimum distance 3.

Proof. Due to 6.13, this is equivalent to showing that the minimum number of linearly dependent columns
in Hr is 3. Since distinct numbers have distinct binary representations, the sum of two columns cannot be
equal to 0 so the minimum distance is ≥ 3. It is equal to 3 as the sum of the first three columns of Hr is 0.0

0
1

+

0
1
0

+

0
1
1

 =

0
0
0


�

Theorem 7.2. For r > 1, the code CH,r is a perfect code.

Proof. The code CH,r is a [2r − 1, 2r − r− 1, 3]2-code. It may be checked that this satisfies the condition for
a perfect code. �

Decoding Hamming codes using syndrome decoding is very effective due to the nature of the code.

1. When a vector y is received, calculate its syndrome S(y) = yHT.

2. If S(y) = 0, then assume that y was the codeword sent.

3. If S(y) 6= 0, then assuming a single error, S(y) gives the binary representation of the error position
and so the error can be corrected.

This works because the syndrome of 00 · · · 010 · · · 00 (with 1 in the jth position) is simply the transpose of
the jth column of H, which is the binary representation of j.

For example, if we consider H3 and y = 1101011, then S(y) = 110, indicating that the error is in the 6th
position and y must be decoded as 1101001.

We now generalize the Hamming code.

Definition 7.3. Define the r×n matrix Hq,r where each column is a nonzero vector from V (r, q) such that
the first nonzero entry is 1.

For example,

H3,2 =

(
0 1 1 1
1 0 1 2

)
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Definition 7.4. For r > 1, the

[
qr − 1

q − 1
,
qr − 1

q − 1
− r
]
q

-code which has generator matrix equal to Hq,r is

called the q-ary Hamming code and is denoted CH,r,q.

Theorem 7.3. CH,n,q has minimum distance 3.

Proof. As no two columns are linearly dependent, the minimum distance of CH,n,q must be ≥ 3. It is equal
to 3 as 0

0
1

+

0
1
0

+

0
1
1

 =

0
0
0

 .

�

Theorem 7.4. CH,n,q is a perfect code.

Proof. It may be checked that the parameters of the q-ary Hamming code satisfy the Hamming bound. �

Thus, CH,n,q is a single error-correcting code.

Corollary 7.5. If q is a prime power and n = qr−1
q−1 for some integer r > 1, then

Aq(n, 3) = qn−r

Proof. CH,n,q is a perfect (n,M, 3)-code where n = qr−1
q−1 and M = qn−r. �

Decoding q-ary Hamming codes is also done using syndrome decoding.

1. When a vector y is received, calculate its syndrome S(y) = yHT.

2. If S(y) = 0, then assume that y was the codeword sent.

3. If S(y) 6= 0, then assuming a single error, S(y) = bHT
j for some b ∈ Fq and j where Hj represents the

jth column of H. The error is corrected by subtracting b from the jth entry of y.

§§7.2. Family of Codes

Definition 7.5. Let q ≥ 2. Let (ni)i≥1 be an increasing sequence (of lengths) and there exist sequences
(Mi)i≥1 and (di)i≥1 such that for each i ≥ 1, there exists an (ni,Mi, di)-code Ci. We also define ki to be
the dimension of Ci for each i. Then the sequence (Ci)i≥1 is said to be a family of codes.

Definition 7.6. Let C = (Ci)i≥1 be a family of codes and let ki be the dimension of Ci for each i ≥ 1. The
rate of C is defined by

R(C) = lim
i→∞

(
ki
ni

)
.

The relative distance of C is defined by

δ(C) = lim
i→∞

(
di
ni

)
.

For example, consider CH , the family of binary Hamming codes with ni = 2i− 1, ki = 2i− i− 1 and di = 3.
Then

R(CH) = lim
i→∞

(
1− i

2i − 1

)
= 1

and

δ(CH) = lim
i→∞

(
3

2i − 1

)
= 0.

Earlier, we mentioned that we desire codes that have high rates. Or more precisely, given the minimum
distance d, what is the largest rate that the code can have? However, this comparison is slightly unfair since
we are comparing an raw parameter with a ratio of two parameters. Now, we desire families of codes that
have both high rates and high relative distances. The following question, which makes more sense than the
previous one, is the one we will now attempt to answer:
What is the optimal tradeoff between R(C) and δ(C) for a given family of codes C?
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§§7.3. The Hadamard and Simplex codes

Definition 7.7. For r > 1, the Simplex code, denoted CSim,r is given by C⊥H,r.

Note that this is merely the code which has generator matrix equal to Hr.

Definition 7.8. For r > 1, the Hadamard code, denoted CHad,r is the code which has generator matrix
equal to the resultant matrix on adding an all 0s column to Hr.

Both the Simplex code and the Hadamard code are [2r − 1, r]2-codes.

Theorem 7.6. For r > 1, CHad,r is a [2r − 1, r, 2r−1]-code.

Proof. We shall in fact show that every non-zero codeword in CHad,r has weight 2r−1 and the result will
follow from 6.2.
For any codeword c, we have c = xHT

r for some nonzero x = (x1, x2, . . . , xr) in V (r, q). As x is nonzero,
assume that xi = 1 for some i.
Note that the jth bit of c is x ·Hj

r, where Hj
r represents the jth row vector of Hr.

Now, split the columns of the generator matrix Hr into 2r−1 disjoint pairs (u,v) such that v = u+ei, where
ei is the vector which has 1 in the ith position and 0 everywhere else. Then,

x · v = x · u + x · ei = x · u + xi = x · u + 1.

That is, exactly one of x ·v and x ·u is 1. As the choice of the pair (u,v) was arbitrary, we have shown that
for any nonzero codeword c, wt(c) = 2r−1. �

Theorem 7.7. For r > 1, CSim,r is a [2r − 1, r, 2r−1]-code.

Proof. Observe that any codeword of CHad,r is given by padding a 0 onto the beginning of a codeword of
CSim,r. As all codewords of CHad,r have weight 2r−1, any codeword of CSim,r also has weight 2r−1. The
result follows. �
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§8. Several Bounds

In this section we describe numerous useful bounds.

§§8.1. Bounding Volume using the Entropy Function

Definition 8.1. Let q ≥ 2 and n ≥ r ≥ 1 be integers. Then the volume of a Hamming ball of radius r is
given by

Volq(r, n) = |Bq(0, r)| =
r∑
i=0

(
n

i

)
(q − 1)i.

Theorem 8.1. Let q ≥ 2 be an integer and 0 ≤ p ≤ 1− 1
q be a real. Then

(i) Volq(pn, n) ≤ qHq(p)n.

(ii) for large enough n, Volq(pn, n) ≥ qHq(p)n−o(n)

Proof.

(i) We have

1 =

n∑
i=1

(
n

i

)
pi(1− p)n−i

≥
pn∑
i=1

(
n

i

)
pi(1− p)n−i

=

pn∑
i=1

(
n

i

)
(q − 1)i

(
p

(1− p)(q − 1)

)i
(1− p)n

≥
pn∑
i=1

(
n

i

)
(q − 1)i(1− p)n

(
p

(1− p)(q − 1)

)pn
p

(1− p)(q − 1)
≤ 1 as p ≤ 1− 1

q

=

pn∑
i=1

(
n

i

)
(q − 1)i(1− p)n

(
p

(1− p)(q − 1)

)pn
=

pn∑
i=1

(
n

i

)
(q − 1)i(1− p)n(1−p)

(
p

q − 1

)pn
=

pn∑
i=1

(
n

i

)
(q − 1)iq−Hq(p)n

≥ Volq(pn, n)q−Hq(p)n.

(i) follows.

(ii) Using Stirling’s Approximation 1.7, we have(
n

pn

)
=

n!

(pn)!(n(1− p))!

>
(n/e)n

(pn/e)pn(n(1− p)/e)n(1−p) ·
1√

2πp(1− p)n
· eλ1(n)−λ2(pn)−λ2(n(1−p))

=
1

ppn(1− p)n(1−p) l(n)

where

l(n) =
eλ1(n)−λ2(pn)−λ2(n(1−p))√

2πp(1− p)n
.
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Note that l(n) = q−o(n).

Now, we have

Volq(pn, n) =

pn∑
i=1

(
n

i

)
(q − 1)i

≥
(
n

pn

)
(q − 1)pn

>
(q − 1)pn

ppn(1− p)n(1−p) l(n)

= qHq(p)q−o(n).

This proves the required result.

�

§§8.2. The Hamming Bound and the Singleton Bound

Recall the Hamming Bound 5.8 which put a bound on the dimension k in terms of n, q and d:

k

n
≤ 1−

logq Volq
(⌊
d−1

2

⌋
, n
)

n
.

From 8.1, we have

Volq

(⌊
d− 1

2

⌋
, n

)
≤ qHq(

δ
2 )n−o(n).

Putting everything in terms of rate and relative distance,

R ≤ 1−Hq

(
δ

2

)
+ o(1)

Theorem 8.2 (Singleton Bound). For valid n, q, d, we have

Aq(n, d) ≤ qn−d+1.

Proof. Let C be an (n,Aq(n, d), d)q-code. Let C ′ be the code of length (n−d+ 1) code obtained by deleting
the first d − 1 letters of each codeword of C. Since the minimum distance of C is d, the words obtained
after deleting the first d − 1 letters of distinct codewords of C must also be distinct. This implies that
|C ′| = |C| = Aq(n, d). As |C ′| ≤ qn−d+1, the result follows. �

The asymptotic version of the singleton bound gives that

k

n
≤ 1− d

n
+

1

n
.

Alternatively,
R ≤ 1− δ + o(1).

§§8.3. The Gilbert-Varshamov Bound

Theorem 8.3 (Gilbert-Varshamov Bound). For valid n, q, d, we have

Aq(n, d) ≥ qn∑d−1
i=1

(
n
i

)
(q − 1)i
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Proof. Let C be a (n,Aq(n, d), d)q-code. Then for all x ∈ Σn, there exists cx ∈ C such that d(x, cx) < d.
This gives ∣∣∣∣∣⋃

c∈C
B(c, d− 1)

∣∣∣∣∣ = qn.

If the above equality does not hold, then there exists some v ∈ Σn \ C such that d(c, v) ≥ d for all c ∈ C,
which contradicts the maximality of C.
We now have

qn =

∣∣∣∣∣⋃
c∈C

B(c, d− 1)

∣∣∣∣∣
≤
∑
c∈C
|B(c, d− 1)|

= Aq(n, d)|B(c, d− 1)|
= Aq(n, d) Volq(d− 1, n)

Substituting the value of Volq(d− 1, n) proves the required result. �

In terms of rate and relative distance, we have Volq(d− 1, n) ≤ qHq(δ)n by 8.1.

The asymptotic version of the Gilbert-Varshamov bound gives that for every 0 < δ ≤ 1 − 1
q there exists a

code of rate R and relative distance δ such that

R ≥ 1−Hq(δ).

§§8.4. The Plotkin Bound

Lemma 8.4 (Mapping Lemma). Let C ⊆ [q]n. Then there exists a function f : C → Rnq such that

(i) for every c ∈ C, ‖f(c)‖ = 1.

(ii) for every c1 6= c2 in C,

f(c1) · f(c2) = 1−
(

q

q − 1

)(
d(c1, c2)

n

)
Proof. Define ϕ : [q]→ Rq by

ϕ(i) =

(
1

q
,

1

q
, · · · , 1− q

q
, · · · , 1

q

)
for each i ∈ [q].

Note that for any i 6= j in [q],

‖ϕ(i)‖2 =
q − 1

q
and ϕ(i) · ϕ(j) = −1

q
.

Define the required function f as follows. For each c = (c1, c2, . . . , cn) ∈ [q]n,

f(c) =

√
q

n(q − 1)
(ϕ(c1), ϕ(c2), . . . , ϕ(cn))

(Identify this vector in (Rq)n to the corresponding one in Rnq) It may be verified by the reader that this f
satisfies both conditions mentioned in the question. �

Theorem 8.5 (Plotkin Bound). Let C be an (n,M, d)q-code. Then

(i) If d = n
(

1− 1
q

)
, M ≤ 2qn.

(ii) If d > n
(

1− 1
q

)
, then M ≤ qd

qd−(q−1)n .
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Proof. Let C = {c1, c2, . . . , cM}. Let f be the function mentioned in the mapping lemma 8.4. For i 6= j in
[M ],

f(ci) · f(cj) = 1−
(

q

q − 1

)(
d(ci, cj)

n

)
≤ 1− qd

(q − 1)n
.

(i) If d = n(1 − 1
q ), then f(i) · f(j) ≤ 0 for all i 6= j, and the required result follows by the first part of

2.12.

(ii) If d > n(1− 1
q ), then we have

f(ci) · f(cj) ≤ −
(
qd− (q − 1)n

(q − 1)n

)
≤ 0.

The result then follows by the second part of 2.12.

�

We now present the following bound, which is an improvement on part (i) of the Plotkin bound in the binary
case.

Theorem 8.6. Let C be a binary (n,M, n2 )2-code. Then M ≤ 2n.

Proof. Let C = {c1, c2, . . . , cM} and ci = (ci,1, ci,2, . . . , ci,n) fo each i. Consider the map f : C → Rn given
by

f(ci) = ((−1)ci,1 , (−1)ci,2 , . . . , (−1)ci,n) for each i.

For any valid i 6= j,
f(ci) · f(cj) = n− 2d(ci, cj) ≤ 0.

The result follows on using 2.12 on the f(ci)’s. �

§§8.5. The Griesmer Bound

Lemma 8.7. If there exists an [n, k, d]q-code, then there also exists an [n− d, k − 1, d′ ≥ ddq e]q-code.

Proof. Let C be an [n, k, d]q-code. Let G be a generator matrix of C such that the first row vector of G is
of the form v = (1, 1, . . . , 1, 0, 0, . . . , 0) where all αis are non-zero (We may assume this by considering an
equivalent code). Write G as follows.

G =

(
1 · · · 1 0 · · · 0
∗ ∗ ∗ G′

)
where G′ is a (k − 1)× (n− d) matrix. Consider the code C ′ generated by G′. C ′ clearly has length n− d
and dimension k − 1. Let d′ be the length of C ′. Let u ∈ C ′ such that wt(u) = d′. Then there exists some
w = (w1, w2, . . . , wd) ∈ Fdq such that (w | u) ∈ C, where (w | u) represents the concatenation of w and u.

By the Pigeonhole Principle, there exists α ∈ Fq such that at least ddq e of w1, w2, . . . , wd are equal to α.

Since (w | u)− αv ∈ C, we have

d ≤ wt((w | u)− αv)

= wt((w− (α, α, . . . , α)) | u)

= wt(w− (α, α, . . . , α)) + wt(u)

≤
(
d−

⌈
d

q

⌉)
+ d′

This gives d′ ≥
⌈
d

q

⌉
, which proves the result. �
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Theorem 8.8 (Griesmer Bound). For any [n, k, d]q-code,

n ≥
k−1∑
i=0

⌈
d

qi

⌉
.

Proof. For a given k and d, we denote by Nk,d the minimum value of n for which there exists an [n, k, d]-code.
We shall prove the result by induction on k. The base case k = 0 is clear.
Let the result be true for k = k0 − 1 and let C be an [Nk0,d, k0, d]-code. Then by 8.7, there exists an
[Nk0,d − d, k0 − 1, d′ ≥ ddq e]-code. By the induction, this gives

Nk0,d − d ≥
k−2∑
i=0

⌈
ddq e
qi

⌉

≥
k−2∑
i=0

⌈
d

qi+1

⌉

Thus,

Nk0,d ≥
k−1∑
i=0

⌈
d

qi

⌉
and the result is proved. �
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§9. Shannon’s Theorem

§§9.1. Introduction and the statement of the theorem

Recall the binary symmetric channel BSCp. We use the notation e ∼ BSCp to denote an error vector e that
is drawn according to the distribution induced by BSCp.

In this section, we shall discuss Shannon’s theorem which was given in his remarkable paper titled “A
Mathematical Theory of Communication” that gave birth to the subject of Coding Theory (and Information
Theory).

He defined a quantity called the capacity, which is a real number such that (reliable) communication is
possible if and only if the rate is less than the capacity. That is, if the capacity is C and we desire rate R < C,
then there exists some code of rate R that guarantees a negligible probability of incorrect communication.

Theorem 9.1 (Shannon’s Theorem for BSCp). Let p, ε be reals such that 0 ≤ p < 1
2 and 0 < ε ≤ 1

2 − p.
Then the following statements are true for large enough n:

(i) There exist real δ > 0, an encoding function E : {0, 1}k → {0, 1}n and a decoding function D :
{0, 1}n → {0, 1}k where k ≤ bn(1−HBer(p+ ε))c, such that for every m ∈ {0, 1}k,

Pr
e∼BSCp

[D(E(m) + e) 6= m] ≤ 2−δn.

(ii) If k ≥ dn(1 − HBer(p) + ε)e, then for pair of encoding function and decoding function E : {0, 1}k →
{0, 1}n and D : {0, 1}n → {0, 1}k respectively, there exists m ∈ {0, 1}k such that

Pr
e∼BSCp

[D(E(m) + e) 6= m] ≥ 1

2
.

While we have only considered the binary case, a similar result holds for the q-ary case. Note that by
Shannon’s Theorem, the capacity of BSCp, which we loosely defined earlier, is equal to 1 − HBer(p). For
qSCp, the capacity is equal to 1−Hq(p).

We also state another version of Shannon’s theorem as follows.

Theorem. The capacity C (P ) of a binary symmetric channel of symbol error probability p is given by

C (p) = 1 + p log p+ (1− p) log(1− p).

If 0 < R < C (p), then for any ε > 0, there exists for sufficiently large n, an [n, k]q-code C of rate k
n ≥ R

such that Perr(C) < ε.

0.5 1

1

p

C (p)
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§§9.2. Proof of the second part

If p = 0, we have k ≥ n(1−HBer(p) + ε) > n and the result follows. Therefore, we shall assume that p > 0.
We shall prove this by contradiction. Assume that for every m ∈ {0, 1}k, we have

Pr
e∼BSCp

[D(E(m) + e) 6= m] <
1

2
.

For each m, define
Dm = {y ∈ {0, 1}n | D(y) = m}

and for γ > 0, let
Sm,γ = {y ∈ {0, 1}n | |d(y, E(m))− pn| ≤ γpn}.

Note that Sm,γ represents the shell between radius (1 − γ)pn and (1 + γ)pn around E(m). Now, by our
assumption, we have

Pr
e∼BSCp

[E(m) + e 6∈ Dm] <
1

2
.

We have

E[d(E(m), e)] = E[d(0, e)]

= E[wt(e)]

= pn (by 3.3).

Then by the multiplicative Chernoff bound 3.7, we have

Pr
e∼BSCp

[E(m) + e 6∈ Sm,γ ] < 2e−γ
2pn/3

= 2−Ω(γ2n).

Using the Union Bound 3.4 gives

Pr
e∼BSCp

[E(m) + e 6∈ Sm,γ ∩Dm] ≤ 1

2
+ 2−Ω(γ2n).

Then for sufficiently large n, we have

Pr
e∼BSCp

[E(m) + e ∈ Dm ∩ Sm,γ ] ≥ 1

2
− 2−Ω(γ2n) ≥ 1

4
.

We also trivially have
Pr

e∼BSCp
[E(m) + e ∈ Dm ∩ Sm,γ ] ≤ pmax · |Dm ∩ Sm,γ |

where

pmax = max
y∈Sm,γ

Pr
e∼BSCp

[E(m) + e = y]

≤ max
d∈[pn(1−γ),pn(1+γ)]

pd(1− p)n−d.

Here the second equality arises due to the fact that the channel is BSCp. However, since p < 1
2 , the function

pd(1 − p)n−d is decreasing in d and the maximum value is attained at the minimum value of d within the
range.

pmax ≤ ppn(1−γ)(1− p)n−pn(1−γ)

=

(
1− p
p

)γpn
ppn(1− p)n(1−p)

=

(
1− p
p

)γpn
2−nHBer(p).
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Thus we have

1

4
≤ Pr

e∼BSCp
[E(m) + e ∈ Dm ∩ Sm,γ ] ≤

(
1− p
p

)γpn
2−nHBer(p) · |Dm ∩ Sm,γ |

which implies that

|Dm ∩ Sm,γ | ≥
1

4

(
1− p
p

)−γpn
2nHBer(p).

Now note that as D is a function, the set of Dms partitions the set {0, 1}n. Thus,

2n =
∑

m∈{0,1}k
|Dm|

≥
∑

m∈{0,1}k
|Dm ∩ Sm,γ |

≥
∑

m∈{0,1}k

1

4

(
1− p
p

)−γpn
2nHBer(p)

= 2k−2

(
1

p
− 1

)−γpn
2nHBer(p)

= 2k−2 · 2nHBer(p)−γpn log(1/p−1)

Put γ =
ε

2p log
(

1
p − 1

) in the above inequality to get

2n > 2k+nHBer(p)−εn.

It follows that
k < n(1−HBer(p) + ε)

which is a contradiction and therefore the second part of the theorem is proved.

§§9.3. Proof of the first part

We prove the first part of Shannon’s Theorem by the probabilistic method, the idea of which was discussed
in section 3.3.
If E(m) is the message transmitted and e is the error pattern, let y be the received word E(m) + e.
We denote by Pr[y | E(m)] the probability that y is the received word if E(m) is the transmitted message.
Then for any ε′ > 0,

Pr
e∼BSCp

[D(E(m) + e 6= m] =
∑

y∈B(E(m),(p+ε′)n)

Pr[y | E(m)] · 1D(y)6=m

+
∑

y6∈B(E(m),(p+ε′)n)

Pr[y | E(m)] · 1D(y)6=m

Simplifying the second term in the above expression,

∑
y6∈B(E(m),(p+ε′)n)

Pr[y | E(m)] · 1D(y) 6=m ≤
∑

y6∈B(E(m),(p+ε′)n)

Pr[y | E(m)]

= Pr[d(y, E(m))− pn > ε′n]

≤ e−ε
′2n/2 (by the additive Chernoff Bound 3.8)
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That is,

Pr
e∼BSCp

[D(E(m) + e 6= m] ≤
∑

y∈B(E(m),(p+ε′)n)

Pr[y | E(m)] · 1D(y)6=m + e−ε
′2n/2

We now consider a random distribution of E. For every m ∈ {0, 1}k, pick E(m) uniformly and independently
at random from {0, 1}n. Let the decoding function D be the maximum likelihood decoding function.

Let us take the expectation on both sides of the above inequality over this distribution of E. Due to the
linearity of expectation and the fact that the distributions on e and E are independent,

EE
[

Pr
e∼BSCp

[D(E(m) + e 6= m]

]
≤

∑
y∈B(E(m),(p+ε′)n)

Pr[y | E(m)] · EE
[
1D(y)6=m

]
+ e−ε

′2n/2

We shall now simplify the right side of the above expression. By 3.4 and since D is the maximum likelihood
decoding function,

EE
[
1D(y)6=m

]
= Pr

E

[
1D(y)6=m | E(m)

]
≤
∑

m′ 6=m

Pr[d(E(m′,y)) ≤ d(E(m),y) | E(m)]

where “| E(m)” means that we are conditioning on the event that E(m) is the transmitted message.
As y ∈ B(E(m), (p+ ε′)n), it follows that d(E(m),y) ≤ (p+ ε′)n. Then

EE
[
1D(y)6=m

]
≤
∑

m′ 6=m

Pr[d(E(m′,y)) ≤ (p+ ε′)n | E(m)]

=
∑

m′ 6=m

Pr[E(m′) ∈ B(E(m), (p+ ε′)n) | E(m)]

=
∑

m′ 6=m

Vol2((p+ ε′)n, n)

2n
(as the choice of E(m)) and E(m′) are independent)

≤
∑

m′ 6=m

2n(HBer(p+ε
′)−1) (by 8.1)

< 2k · 2n(HBer(p+ε
′)−1)

≤ 2n(1−HBer(p+ε)) · 2n(HBer(p+ε
′)−1) (due to our choice of k)

= 2−n(HBer(p+ε)−(HBer(p+ε
′)).

Putting this back in our initial expression,

EE
[

Pr
e∼BSCp

[D(E(m) + e 6= m]

]
≤ e−ε

′2n/2 + 2−n(HBer(p+ε)−(HBer(p+ε
′)) ·

∑
y∈B(E(m),(p+ε′)n)

Pr[y | E(m)]

Then because ∑
y∈B(E(m),(p+ε′)n)

Pr[y | E(m)] ≤
∑

y∈{0,1}n
Pr[y | E(m)] = 1

it follows that

EE
[

Pr
e∼BSCp

[D(E(m) + e 6= m]

]
≤ e−ε

′2n/2 + 2−n(HBer(p+ε)−(HBer(p+ε
′))
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Then for large enough n and small enough δ′,

EE
[

Pr
e∼BSCp

[D(E(m) + e 6= m]

]
≤ 2−δ

′n

However, we are not yet done. We have shown that for any arbitrary m, the expectation of the error
probability is bounded above by the required quantity. However, we must show that the error probability is
bounded above for all m simultaneously.
Consider the uniform random distribution of m over {0, 1}k. Then as the above inequality holds for all m,

Em

[
EE
[

Pr
e∼BSCp

[D(E(m) + e 6= m]

]]
≤ 2−δ

′n

As the distributions over m and E are defined over different domains, we can switch the order of the
expectations to get

EE
[
Em

[
Pr

e∼BSCp
[D(E(m) + e 6= m]

]]
≤ 2−δ

′n

By the probabilistic method, there exists an encoding function E∗ (and decoding function D∗) such that

Em

[
Pr

e∼BSCp
[D∗(E∗(m) + e 6= m]

]
≤ 2−δ

′n

This says that the average error probability is exponentially small, while what we need to show is that the
maximum error probability is exponentially small.
We shall show this “expurgating”, which involves throwing away half the messages.

Let the messages be ordered as m1,m2, . . . ,m2k . For each i, define

Pi = Pr
e∼BSCp

[D∗(E∗(mi) + e) 6= mi].

Assume that P1 ≤ P2 ≤ · · · ≤ P2k . We claim that P2k−1 ≤ 2 · 2−δ′n.
By the definition of Pi,

1

2k

2k∑
i=1

Pi = Em

[
Pr

e∼BSCp
[D∗(E∗(m) + e) 6= m]

]
≤ 2δ

′n.

We shall prove the claim by method of contradiction. Assume that P2k−1 > 2 · 2−δ′n. Then we have

1

2k

2k∑
i=1

Pi ≥
1

2k

2k∑
i=2k−1

Pi

>
1

2k

2k∑
i=2k−1

2 · 2δ
′n

≥ 2−δ
′n

which is a contradiction. Thus P2k−1 ≤ 2 · 2−δ′n.

Now the final code we require has m1,m2, . . . ,m2k−1 as its messages (and thus has dimension k′ = k − 1).
If we have k ≤ b(n + 1)(1 −HBer(p + ε))c, then we have k′ ≤ bn(1 −HBer(p + ε))c. Setting δ = δ′ + 1

n , we

have that for every m ∈ {0, 1}k′ ,

Pr
e∼BSCp

[D∗(E∗(m) + e) 6= m] ≤ 2−δn.

This completes the proof of Shannon’s Theorem.
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